
Adaptive Service Management for Cloud
Applications Using Overlay Networks

Nasim Beigi-Mohammadi, Hamzeh Khazaei, Mark Shtern, Cornel Barna and Marin Litoiu
Department of Computer Science, York University

Toronto, Ontario, Canada
Email: {nbm, hkh, mark, cornel, mlitoiu}@yorku.ca

Abstract—This paper presents an adaptive service manage-
ment mechanism that maintains service level agreement through
use of overlay networks that are deployed over the cloud
provider network. The application autonomic manager strives
to maintain the SLA without provisioning new resources for as
long as possible. Through continuous monitoring and analysis,
autonomic manager uses software defined networking (SDN) to
dynamically apply policies to the flows of requests that travel
through the application components. We implement and evaluate
the proposed method on a hybrid cloud environment. Through
extensive experiments, we show that the management mechanism
can successfully maintain the SLA of services while it avoids
provisioning extra resources which is the common approach in
cloud.

Index Terms—Adaptive applications, SDN, Overlay networks,
SLA, Bandwidth.

I. INTRODUCTION

Service Level Agreements (SLA) represent the contract
which captures the agreed guarantees between a service
provider and its customers. In a volatile environment such
as cloud, it is not easy to maintain the quality of service
(QoS) specified in the SLA while avoiding over provisioning
[1]. Robust mechanisms should be in place to guarantee SLA
compliance for different types of services in cloud.

The most common approach to maintain SLA at high load
or partial failure is to leverage the cloud elasticity feature
that provides on demand provisioning of computing/storage
resources [2]. With mature virtualization technologies in com-
puting, applications can easily adjust their computing/storage
demands in cloud. However, adding more computing resources
translates into higher cost for application providers as well
as increased carbon footprint in cloud data centers. Moreover
adding/removing computing nodes is not an easy task for all
applications; for example NoSQL datastores as well as big
data analytic platforms such as Apache Spark1 can not be
scaled without experiencing non-negligible overhead associ-
ated with data replication, maintaining consistency or job re-
scheduling [3]. More specifically in down scaling scenario, the
decommissioning process of resources might take a long time
which renders the whole downsizing ineffective [4], [5].

With advancements in network virtualizations, applications
can leverage overlay networks without being locked in a spe-
cific cloud provider. Then using SDN, the flow of application

1http://spark.apache.org

requests through a service can be controlled dynamically based
on application policies and requirements. An overlay network
on top of cloud provider network brings about more flexibility
to application managers to have a fine granular control over
their flows.

Hence, in this paper, we propose a design, implementation
and an algorithm for an application autonomic manager that
leverages overlay networks and SDN to dynamically control
the bandwidth of application flows to meet the SLAs of
its services. The idea of using bandwidth provisioning to
improve SLA is not new; however, in this paper, we are
controlling the bandwidth on application scenario2(or service)
level . In a nutshell, we strive to respond to the following
research question:

Research Question: is it possible for a distributed ap-
plication on cloud to autonomically use bandwidth control
mechanisms for imposing delay on selected flows to maintain
SLA withou scaling out?
While, generally, the intuitive strategy to resolve overload
or bottleneck problem in cloud is to increase the amount
of resources including bandwidth, it has been shown that
reducing the bandwidth may solve the overload problem in
some scenarios [6], [7].

Therefore, in this paper, we investigate the idea of regu-
lating SLAs through imposing delay on some flows within
applications overlay networks. To this end, we propose an
adaptive management mechanism for applications on cloud
that takes advantage of network programmability and network
virtualization to improve the overall performance while reduc-
ing the cost and footprint of applications. We deploy overlay
networks and virtual endpoints on different components of the
application. Network controller programs the virtual end points
on each application node according to the application policies.
The management mechanism uses a heuristic to select flows of
some services that can tolerate delay to improve the response
time of other services. Thus, we present an end-to-end archi-
tecture of the management mechanism and implement it on a
hybrid cloud. Through extensive experiments, we illustrate that
our mechanism improves the overall application performance
without imposing extra cost to application owners. Therefore,
we answer the research questions with following contributions:

2We use scenarios and services interchangablely hereinafter

978-3-901882-89-0 @2017 IFIP 386



• We propose a fine granular badwith control mechanism
for cloud applications that improves the application per-
formance without increasing the cost for applications
owners.

• We implement and evaluate our cloud-agnostic mech-
anism in a hybrid cloud setting where extensive ex-
periments are carried out to show the feasibility and
advantages of our badwith management methodology.

The remainder of the paper is organized in these sec-
tions: in Section II, we present the end-to-end architecture of
the management mechanism and explain the overall strategy
through an algorithm. Section III presents the implementation
and results of our solution on real clouds. In section IV, we
overview the related work. And finally, Section V concludes
the paper.

II. METHODOLOGY AND ARCHITECTURE

Although computing/storage adaptations (i.e., scaling in/out
VMs and containers) have been shown to meet application
requirements, they are not always the best solution; from
application owners point of view, adding more resources
translates into higher cost. At the same time, it raises the
environmental effects of data centers. Besides, it is challenging
for a number of applications such as Big Data and NoSQL
data stores to scale out/in due to various reasons including data
inconsistency, job rescheduling etc. [3], [4], [5]. Therefore, in
this paper, we propose a different approach to meet application
performance requirements by imposing delay on some of
the services to meet SLA response time of other services
within the application overlay network. The idea has the
following explanation: by delaying some of the application
services/scenarios, we shorten the queues to some congested
resources and allow other services/scenarios to pass faster
through the queues. More specifically, we propose to delay
flows of services that have response times well below their
SLAs. To implement the idea, we design and implement a
management mechanism that uses overlay networks and SDN
to dynamically throttle some services aiming to improve the
response times of other services whose SLA is near violation.
Our management mechanism is able to postpone adding extra
computing resources to the application as long as possible. Our
solution is cloud agnostics and applications can manage their
network independent of cloud provider network because the
application is deployed on top of the cloud provider network.

Figure 1 shows the high level architecture of our man-
agement mechanism. The autonomic manager follows the
monitor-analyze-plan-execute-knowledge (MAPE-K) loop [8]
to mange the managed system. The managed system consists
of the application along with its virtual links and virtual
endpoints. The actions include bandwidth adaptation and
add/remove VMs.

In our solution, the autonomic manager automatically builds
the application topology; it first instantiate the application
nodes and then deploys an overlay network that connects
the application components through creating virtual tunneling
endpoints (VTEPs) and virtual interfaces (vNIC) on the nodes.

Managed System

Performance
Metrics

Change Bandwidth Add/Remove 
VM

MAPE-K Loop

Autonomic Manager

Figure 1: Application autonomic manager and the managed system;
autonomic manager manages the bandwidth and VMs.

After establishing the overlay network, an SDN controller
programs the overlay network on the fly based on application
autonomic manager policies. The management mechanism
can impose delay on any link within the overlay network
to improve the response time of the services whose SLA
are near violation. In order to achieve this objective, each
application component should be able to distinguish different
services. Therefore, before flows leave the egress interface of
the application nodes, they are classified into different classes
of services as shown in Figure 2; any node of the application
that is to apply bandwidth policies should classify the flows
based on services. The classification can be implemented on
any number of application nodes. Network controller can
then program the virtual ports on each node implementing
classification to delay certain flows. Figure 2 illustrates how
the classification can happen at any node of the application.
Depending on the method used to apply bandwidth policies,
a declassification component might also be needed not to
interfere with application layer processing.

A. Autonomic Manager

The autonomic manger continuously monitors the response
time of application services and checks if the SLA of any
service is about to be violated. If that is the case, actions will
be planned to handle the situation that are basically as follows:

1) The autonomic manager first tries to correct the response
time by following a greedy hill climbing heuristic to
manipulate the bandwidth of application flows.

2) If the badwith control was not successful, the application
is scaled out to prevent SLA violation.

Hill climbing heuristic tries to maximize (or minimize) a target
function. At each iteration, it adjusts a single element and
determines whether the change improves the value of the target
function. Similarly, when the response time of a service is
near violation, our management mechanism at every iteration
searches among application flows to find a flow that meets
certain criteria. If it can find such a flow, it slows the bandwidth
of the chosen flow one step down with the goal of improving
the response time of a service whose SLA is about to be
violated. If no such flow is found, it checks if flows of this
service has been delayed previously. If yes, it increases the
bandwidth of that flow one step up and checks if this action
resolves the problem. The heuristic repeats these actions until

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference 387



it exhausts all its options. If the problem is not still resolved,
the management mechanism adds extra resources to prevent
SLA violation. The management mechanism is summarized in
Algorithm 1. Before getting into the details of the algorithm,
let us define some thresholds that are used in the heuristic
upon which the autonomic manager defines the actions:

s1

sn

s2

sn

application
layer

Virtual Machine (VM)

o
 o

 o

o
 o

 o

declassify classify

s2

s1

VMVM

Figure 2: Classification and declassification of services based on the
management policy; flows are classified into services and receive a
specific bandwidth.

• SLA threshold: it defines the maximum legitimate ser-
vice response time;

• Trigger threshold: the goal of the management mecha-
nism is to maintain the response time of each service be-
low its trigger threshold. When response time of a service
reaches its trigger threshold, it triggers our bandwidth
adaptation mechanism.

• Candidacy threshold: this threshold determines if it is
possible to delay a service. If the response time of a
service is above its candidacy threshold, its flow will not
be selected to be delayed.

• Selection criteria: The flow selected to be delayed has
to meet these two conditions: (a) the service that this
flow belongs to should have response time below the
candidacy threshold; (b) the flow should have the highest
throughput compared to other flows in the service.

In Algorithm 1, when the response time of a service violates
its trigger threshold (line 2), the autonomic manager first
performs the hill climbing heuristic with a greedy selection
criteria to find a flow to delay (line 5). If such a flow does not
exist, the algorithm checks if the service whose response time
is about to be violated, has been delayed in previous iterations.
If it finds such flows within the service, it goes one step back
and increases their bandwidth one step up one by one (line 12).
If the algorithm exhausts all its search options, it adds extra
VMs to prevent the SLA violation (line 15). In addition,
the algorithm continuously checks the CPU utilization of the
application. If it reaches below certain threshold, it removes
the extra resources (line 24).

III. IMPLEMENTATION AND EXPERIMENT

We implemented our solution on a hybrid cloud environ-
ment. Hybrid cloud environment can be used to provide more
flexibility to application owners [9]. Also, we chose a hybrid
cloud setting to show our solution is cloud agnostic and does
not depend on underlying cloud infrastructure due to using
overlay networks. We used Amazon EC2 as the public cloud
and Smart Applications on Virtual Infrastructure (SAVI) cloud
[10] as the private cloud. The application is hosted on Amazon

Algorithm 1: Bandwidth adaptation Algorithm:
input : S—vector of services.
input : R—vector of average response times for services.
input : SLA—vector of response times SLA for services.
input : trigger—vector of service response time thresholds that

trigger bandwidth adaptation
input : candidacy—vector of service response time thresholds

based on which a service is selected to slow down
input : CPU lo—low CPU utilization threshold.
input : CPU—average CPU utilization of web servers.
input : H—vector of heats for services, where hs is the heat for

service s ∈ S.
input : heat — a control number for removing VM
input : n,N — the number of consecutive violations required to

trigger an adaptation for bandwidth and VMs respectively.

1 foreach service s ∈ S do
2 if Rs > triggers then
3 if hs = n then
4 hs ← 0;
5 f ← {F ∈ S − {s} who meets selection criteria};
6 if f 6= ∅ then
7 Decrease bandwidth for f ;
8 return;

9 else
10 F ← {flows belong to service s whose bandwidth

can be increased};
11 if F 6= ∅ then
12 Increase bandwidth for one flow in F ;
13 return;

14 else
// bandwidth adaptation

exhausted all options
15 Add VM;
16 return;

17 else
// move one step toward bw adaptation

18 hs ← hs + 1;

19 else
// reset any buildup for bw adaptation for

this service
20 hs ← 0;

21 if CPU < CPU lo then
// cluster underload

22 heat← heat− 1;
23 if heat = −N then
24 Remove VM;
25 heat← 0;
26 return;

EC2 public cloud and consists of a three-tier cluster using
Apache 2.0 as load balancer, an eBook store web application
in Tomcat 7, and a MySQL database. The application provides
four services or use cases:

• browse: the user browses through the book catalog and
clicks on various items to see the details;

• buy: the user adds a book to the shopping cart;
• pay: the user checks out and pays for the content of the

shopping cart;
• auto bundle: upselling / discounting service, where the

user receives the opportunity to bundle together related
books based on the item currently viewed.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference388



A. Experiment setup

Autonomic manger dynamically deploys an overlay network
over SAVI and Amazon networks where all the application
nodes are connected using Virtual Extensible LAN (VXLAN)
technology [11]. Each node uses a virtual switch implemen-
tation where bandwidth policies can be configured on virtual
ports on the nodes. We use Open Virtual Switch (OVS) [12]
and its rate policing mechanism to apply the desired bandwidth
rates. We have implemented the classification mechanism on
proxy shown in Figure 3. The implementation of classification
on other nodes within the application cluster is left for our
future work.

Network controller

vlink

Load 
Balancer

Web Tier Data 
Tier

Amazon

Proxy

SAVI

Autonomic Manager

Overlay Network

Figure 3: Deployment model of the System for experiments.

We have assigned users into four groups that are using the
application’s services. In our implementation, users from each
group are behind a NAT gateway and application proxy sees
only one IP address per group. We implemented this to be in
tune with real scenarios where users from a household, de-
partment etc. use application services. In future, the grouping
policy can be used to differentiate between various users (i.e.,
SLA per user). However, in this work, we do not differentiate
between users in a group in terms of SLA. To emulate users,
we use a workload generator such that users periodically send
requests to different application services. When they receive
the reply, they think for a random period of time (i.e., 500-
550 ms as think time) and then send the next request. The
number of active users in the system changes in range of
[5 · · · 67] during the experiment. Table I shows the overall
distribution of users in four groups.

Table I: Distribution of users in groups.

Group G1 G2 G3 G4

Population 31% 36% 30% 3%

Table II: Candidacy, Trigger, and SLA thresholds of response time
for each application Service.

Service Candidacy thresh Trigger thresh SLA

Buy 158 ms 175 ms 250 ms
Browse 360 ms 400 ms 572 ms

Auto Bundle 540 ms 600 ms 857 ms
Pay 900 ms 1000 ms 1430 ms

B. Experiment Results

In this Section, we show how our bandwidth management
mechanism helps the application to maintain its SLA while
avoiding adding extra resources as long as possible. We
create three major events in which we explore the bandwidth
management mechanism. Hence, we first explain what we
intend to show in each event. We then discuss each event in
more details.

Event 1: in the beginning of the experiment, we show how
by decreasing bandwidth of some services, our management
mechanism maintains the desired response time for all ser-
vices.

Event 2: in the second event, we demonstrate how the
management mechanism successfully maintains the service
response times below the desired threshold through increasing
bandwidth of some flows. We show how our mechanism
maintains the CPU utilization of web application as low as
possible.

Event 3: in this event, we first show a situation where
bandwidth adaptation mechanism exhausts its all options and
can no longer improve the response times. In such a situation,
the autonomic manager scales out the application and adds
a VM to maintain the SLAs. After a while, the workload
is decreased and since all response times are well below
their SLA, the autonomic manger scales in the application
by removing extra VMs.

Figure 4a shows the CPU utilization of application web
worker and database on the left vertical axis and the number
of web workers on the right vertical axis. Figure 4b shows the
bandwidth actions that has been applied to different flows of
services. The bandwidth rate has been adjusted in the range
of [75 · · · 450] kbps as higher bandwidth rates did not have
any impact on the flows’ response time in our application.
In Figure 4b, we only show the flows whose bandwidth has
been changed during the experiment. The three shaded areas
in Figure 4b represents the three events respectively.

Figure 5a shows the service response time of Pay service
on the left vertical axis and the arrival rate of requests for
the service on the right axis. Figure 5b depicts the service
response time and arrival rate of requests for Auto Bundle
service. Figure 5c, and 5d show the service response times and
request arrival rates for Browse and Buy services respectively.
The horizontal axis in all 6 figures illustrates the experiment
iteration number where autonomic manager collects the mon-
itored data, analyzes and initiates an action based on the
monitored data. The duration of each iteration may depend
on the frequency of monitoring and it can range from seconds
to minutes. In our experiment, each iteration is set to one
minute. In all plots in Figure 5, we have highlighted three
horizontal bands for response time axis. The lower band (i.e.,
white color) indicates normal response time where no action
needs to be taken. The middle band (i.e., dark gray) shows the
trigger area in which autonomic manager is triggered to bring
the response times back to the white area. And the upper band
in Orange is the range at which the SLAs are violated. The

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference 389



autonomic manager should try to keep response times away
from this zone. The SLA, trigger and candidacy thresholds for
all services are presented in Table II. In our experiment, we
set this trigger threshold to be 70% of the SLA threshold and
set candidacy threshold to be 90% of the trigger threshold.
Following we explain the various events of the experiments.

C. Event 1

In the beginning of the experiment, as shown in Figures
5a, 5b, 5c, 5d, up to iteration 25 all response times of
services are below the trigger line and hence no adaptation
is performed. At iteration 27, the request arrival rate for auto
bundle service increases (see Figure 5b), and, as a result, the
response time of buy service (Figure 5d) reaches the trigger
line. Our algorithm does not take action right away, instead it
waits for two more iterations to make sure the high response
time is not a transient effect preventing the ping-pong effect.
After the response time of buy service remains above trigger
line for two more iterations, the algorithm starts to perform
bandwidth adaptation at iteration 30. From iteration 30 to 32,
the algorithm first chooses pay service to reduce the bandwidth
of its flows because it meets the selection criteria. It can be
seen in Figure 4b, the bandwidth of pay service goes one step
down. After this action, since response time of buy service has
not been corrected yet, at iteration 32, the algorithm performs
the second adaptation and reduces bandwidth of auto bundle
service that meets the selection criteria, too. We can see that at
iteration 33, the response time of buy service is corrected and
is below its trigger line. In addition, we can see in Figures 5a
and 5b, during these iterations, pay and auto bundle services
are delayed and hence their arrival rates decrease accordingly.

Again at iteration 37, the response time of Buy service
reaches its trigger line and stays the same for 3 consecutive
iterations. The algorithm chooses pay service to reduce its
bandwidth that brings the response time of buy service to the
white area. As can be seen in Figure 4b, the bandwidth of pay
service flow goes one step down at iteration 39.

By applying the bandwidth management technique, we can
see that up to iteration 72, the response times of all services
remain below the trigger line and no action is taken up to this
point. At iteration 72, the response time of buy service violates
the trigger line, and hence the heuristic chooses auto bundle
service to reduce its bandwidth (see Figure 4b). However, this
adaptation does not correct the response time of buy service,
therefore another adaptation action is selected which reduces
the bandwidth of a flow belonging to pay service one step
down. At iteration 74, the algorithm fixes the response time
of buy service.

Around iteration 78 the response time of auto bundle service
is in trigger range (ie dark gray) so that autonomic manager
tries to compensate this by reducing the bandwidth of buy
service by two steps, pay service by one step and again buy
service by two steps. As can be seen, all above steps make the
response time for all services in the normal range (i.e., white
area) from iteration 80 to iteration 100.

(a) CPU utilization and number of web workers.

(b) Bandwidth of services.

Figure 4: CPU utilization, no of web workers and bandwidth adap-
tation. Shaded areas represent the bandwidth actions in 3 scenarios.

D. Event 2

After iteration 100, we can see that the response time
of pay service increases sharply and tends to remain above
for a couple of iterations. Therefore, the heuristic tries to
fix this by lowering the bandwidth of buy, auto bundle and
browser services. Despite such actions, the response time of
pay service still does not get below its trigger line. Hence, the
algorithm increases the bandwidth of pay service two steps
up one by one (see Figure 4b) at iteration 112 and 115 that
fixes the response time of pay service at around iteration 117
(Figure 5a). Meanwhile the response time of auto bundle and
browse services goes above their trigger lines due the delay
imposed to them in previous iterations (Figures 5b and 5c).
The algorithm increases their bandwidth one step up at around
iteration 122 and 125. We can see that their response times
improve and get below their corresponding trigger lines. Now,
at around iteration 125, we can observe that our mechanism
successfully maintains the services in good conditions for
more than 20 iterations while the CPU utilization remains
below 80%.

E. Event 3

We increased the request arrivals of buy and browse services
at around iteration 140 which then increases the response time
of all services. The algorithm tries to correct the response
times by managing the bandwidth within the services. It can
successfully fix the response time of pay and auto bundle ser-
vices by increasing their bandwidth step by step (see iteration
150 in Figure 4b). We can see that their response times get
below their trigger lines at iteration 155 and 160 respectively.
However, the response time of browse and buy services still
remain high despite the algorithm trying to increase their

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference390



(a) Pay service.

(b) Auto Bundle service.

(c) Browse service.

(d) Buy service (aka add to cart).

Figure 5: Response time and arrival rate of services during the
experiment; the response time axis has been divided into three bands:
(a) the white band indicates normal service time (b) gray shows the
trigger area and (c) orange area highlights the SLA violation area.

bandwidth (see Figure 4b). At iteration 195, the algorithm
exhausts all bandwidth adaptations which leads to scaling out
by adding one VM. The right axis in Figure 4a shows that
the number of web workers is increased to 2 at iteration 198.
The third shaded area in Figure 4b represents Scenario 3 up
to iteration 200. Afterwards, a VM is added and the response
time of all services get below their trigger line at iteration 200.
We can see that our algorithm delayed adding more VMs as
long as possible by managing bandwidth to adhere SLAs.

At the end of experiment, the workload is decreased and

since the response times of all services are good, the auto-
nomic manager scales in the application by removing one VM
while SLAs are still maintained. It can be seen that the number
of workers in Figure 4a goes down from 2 to 1 at around
iteration 240.

IV. RELATED WORK

One associated concern with adding/removing VMs is to
perform it in a timely manner that has been proved to be
challenging [13]–[18].

The idea of network management with respect to application
policies have been discussed in [9], [19], [20]. Also with the
emergence of SDN, cloud providers can expose APIs to cloud
users so that users can manage their networking resources the
same way they manage their computing and storage resources
as also suggested in [21], [22]. However, most public cloud
users do not have access to the cloud SDN APIs, if there is
any [23].

Wickboldt et al. [22] propose a design of a cloud platform
that puts network on the same level with computation (CPU)
and storage (disk) resources; this way the client applica-
tions can dynamically provision and de-provision network as
needed. Most of the related work use cloud provider network
to make dynamic networking configurations. However, our
cloud agnostic solution takes advantage of overlay networks
on top of cloud provider network that brings about higher
flexibility and control to applications to manage their network-
ing. In addition, our mechanism is a versatile solution where
an autonomic manager continuously monitors the response
times of distributed cloud applications and make corrective
actions as needed by communicating to SDN controller. Using
adaptive bandwidth management, our mechanism manages to
maintain SLA while postponing adding extra resources which
is the common approach for applications in cloud.

V. CONCLUSION

In this paper, we presented design, implementation and an
algorithm for managing application performance in complex
and dynamic cloud environments by dynamic management
of network bandwidth. The proposed approach is based on
adaptive bandwidth management that strives to maintain the
response time SLAs across all services of an application.
This is accomplished by applying flow control policies at the
service flow level, which is orchestrated by an application au-
tonomic manager within an overlay network. When bandwidth
management is exhausted, the autonomic manager provisions
new computing resources. We implemented and evaluated the
proposed method on a hybrid cloud environment and showed
that the management mechanism is able to successfully meet
the application’s SLA objectives.

ACKNOWLEDGMENTS

This research was supported by the Natural Sciences and
Engineering Council of Canada (NSERC) CGSD and the On-
tario Research Fund for Research Excellence under the Con-
nected Vehicles and Smart Transportation (CVST) project.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference 391



REFERENCES

[1] H. Khazaei, J. Misic, and V. B. Misic, “Performance analysis of
cloud computing centers using m/g/m/m+r queuing systems,” IEEE
Transactions on parallel and distributed systems, vol. 23, no. 5, pp.
936–943, 2012.

[2] L. Zhao, S. Sakr, and A. Liu, “A framework for consumer-centric sla
management of cloud-hosted databases,” IEEE Transactions on Services
Computing, vol. 8, no. 4, pp. 534–549, July 2015.

[3] H. Khazaei, M. Fokaefs, S. Zareian, N. Beigi-Mohammadi, B. Ram-
prasad, M. Shtern, P. Gaikwad, and M. Litoiu, “How do i choose the right
nosql solution? a comprehensive theoretical and experimental survey,”
Accepted in Journal of Big Data and Information Analytics (BDIA),
2016.

[4] P. Zoghi, M. Shtern, M. Litoiu, and H. Ghanbari, “Designing adaptive
applications deployed on cloud environments,” ACM Transactions on
Autonomous and Adaptive Systems (TAAS), vol. 10, no. 4, p. 25, 2016.

[5] M. Smit, M. Shtern, B. Simmons, and M. Litoiu, “Partitioning ap-
plications for hybrid and federated clouds,” in Proceedings of the
2012 Conference of the Center for Advanced Studies on Collaborative
Research, ser. CASCON ’12. IBM Corp., 2012, pp. 27–41.

[6] K. Xu, K. Tang, R. Bagrodia, M. Gerla, and M. Bereschinsky, “Adaptive
bandwidth management and qos provisioning in large scale ad hoc
networks,” in Military Communications Conference, 2003. MILCOM’03.
2003 IEEE, vol. 2. IEEE, 2003, pp. 1018–1023.

[7] M. Welsh and D. E. Culler, “Adaptive overload control for busy internet
servers,” in USENIX Symposium on Internet Technologies and Systems.
Seattle, WA, 2003, pp. 4–4.

[8] IBM, “An architectural blueprint for autonomic computing,” IBM, Tech.
Rep., 2005.

[9] N. Beigi-Mohammadi, C. Barna, M. Shtern, H. Khazaei, and M. Litoiu,
“CAAMP: Completely automated DDoS attack mitigation platform in
hybrid clouds,” in International Conference of Network and Service
Management (CNSM). IEEE, 2016.

[10] SAVI, “Smart applications on virtual infrastructure,”
http://www.savinetwork.ca/.

[11] “VXLAN: A Framework for Overlaying Virtualized Layer
2 Networks over Layer 3 Networks,” online, Access date:
14 Sep. 2016. [Online]. Available: https://tools.ietf.org/html/
draft-mahalingam-dutt-dcops-vxlan-00

[12] “Open vSwitch,” online, Access date: 16 Sep. 2016. [Online]. Available:
http://openvswitch.org/

[13] S. K. Mahalingam and N. Sengottaiyan, “Energy aware resource man-
agement in distributed cloud computing with overload avoidance,”
Journal of Computational and Theoretical Nanoscience, vol. 13, no. 1,
pp. 50–57, 2016.

[14] Y. Liu, Chameleon: Virtual Machine Migration Supporting Cascading
Overload Management in Cloud. Springer International Publishing,
2016, pp. 129–145.

[15] B. Jennings and R. Stadler, “Resource management in clouds: Survey
and research challenges,” Journal of Network and Systems Management,
vol. 23, no. 3, pp. 567–619, 2015.

[16] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Energy-efficient
resource allocation and provisioning framework for cloud data centers,”
IEEE Transactions on Network and Service Management, vol. 12, no. 3,
pp. 377–391, 2015.

[17] A. Nahir, A. Orda, and D. Raz, “Resource allocation and management
in cloud computing,” in 2015 IFIP/IEEE International Symposium on
Integrated Network Management (IM). IEEE, 2015, pp. 1078–1084.

[18] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future generation computer systems, vol. 28, no. 5, pp.
755–768, 2012.

[19] N. Beigi-Mohammadi, H. Khazaei, M. Shtern, C. Barna, and M. Litoiu,
“On efficiency and scalability of software defined infrastructure for adap-
tive applications,” in 3th IEEE International Conference on Autonomic
Computing (ICAC). IEEE, 2016.

[20] G. Wang, T. E. Ng, and A. Shaikh, “Programming your network at run-
time for big data applications,” in Proceedings of the First Workshop on
Hot Topics in Software Defined Networks. ACM, 2012, pp. 103–108.

[21] W. Rankothge, J. Ma, F. Le, A. Russo, and J. Lobo, “Towards making
network function virtualization a cloud computing service,” in 2015
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM). IEEE, 2015, pp. 89–97.

[22] J. A. Wickboldt, L. Z. Granville, F. Schneider, D. Dudkowski, and
M. Brunner, “Rethinking cloud platforms: Network-aware flexible re-
source allocation in iaas clouds,” in 2013 IFIP/IEEE International
Symposium on Integrated Network Management (IM 2013). IEEE,
2013, pp. 450–456.

[23] “Designing Virtual Network Security Architectures,” on-
line, Access date: 16 Sept. 2016. [Online]. Avail-
able: https://www.rsaconference.com/writable/presentations/file upload/
csv-r03-designing virtual network security architectures.pdf

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference392




