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Abstract—Proactive anomaly detection refers to anticipating
anomalies or abnormal patterns within a dataset in a timely
manner. Discovering anomalies such as failures or degradations
before their occurrence can lead to great benefits such as the abil-
ity to avoid the anomaly happening by applying some corrective
measures in advance (e.g., allocating more resources for a nearly
saturated system in a data centre). In this paper we address the
proactive anomaly detection problem through machine learning
and in particular ensemble learning. We propose an early
Anomaly Detection Ensemble approach, ADE, which combines
results of state-of-the-art anomaly detection techniques in order
to provide more accurate results than each single technique.
Moreover, we utilise a a weighted anomaly window as ground
truth for training the model, which prioritises early detection
in order to discover anomalies in a timely manner. Various
strategies are explored for generating ground truth windows.
Results show that ADE shows improvements of at least 10% in
earliest detection score compared to each individual technique
across all datasets considered. The technique proposed detected
anomalies in advance up to ∼16h before they actually occurred.

I. INTRODUCTION

Anomaly detection refers to the problem of finding patterns
in data that do not conform to expected behaviour. These
non-conforming patterns are often referred to as anomalies,
outliers, discordant observations, exceptions, aberrations, sur-
prises, peculiarities or contaminants in different application
domains [1]. The ability to discover anomalies within a dataset
can have a significant impact in variety of application areas,
such as: fraud detection for banking and financial industries,
intrusion detection for discovering security threats, health
related problems, performance degradation detection, traffic
congestion detection and so on. For instance, a failure within
a data centre can be considered an anomaly. In spite of pro-
cessing and storage capabilities of computer system steadily
increasing across the years, Figure 1 illustrates that failures are
still common in data centres both from hardware and software
perspectives, resulting in a discomfort in user experience and
naturally in tremendous revenue losses for organisations1.

Furthermore, proactive anomaly detection refers to the prob-
lem of detecting in advance an anomaly that will happen in the
near future. For instance, a proactive detection of a failure can
be of great benefit, leading to proactive fault tolerance [3], such
that when a physical machine is suspected of failing in the near
future, its VMs can be proactively moved to safer locations
thus avoiding potential downtime [4]. Even more, a proactive

1http://www.evolven.com/blog/downtime-outages-and-failures-
understanding-their-true-costs.html
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Figure 4. Two representative examples for how the failure rate changes as a function of system age (in months). The
curve on the left corresponds to system 5 which is representative for systems of type E and F. The curve on the right
corresponds to system 19 which is representative for systems of type D and G.

in the production workloads.
The curve in Figure 4(b) corresponds to the failures ob-

served over the lifetime of system 19 and represents the
other commonly observed shape. The shape of this curve
is representative for systems of type D and G, and is less
intuitive: The failure rate actually grows over a period of
nearly 20 months, before it eventually starts dropping. One
possible explanation for this behavior is that getting these
systems into full productionwas a slow and painful process.
Type G systems were the first systems of the NUMA era

at LANL and the first systems anywhere that arranged such
a large number of NUMA machines in a cluster. As a result
the first 2 years involved a lot of development work among
system administrators, vendors, and users. Administrators
developed new software for managing the system and pro-
viding the infrastructure to run large parallel applications.
Users developed new large-scale applications that wouldn’t
have been feasible to run on previous systems. With the
slower development process it took longer until the systems
were running the full variety of production workloads and
the majority of the initial bugs were exposed and fixed. The
case for the type D system was similar in that it was the first
large-scale SMP cluster at the site.
Two other observations support the above explanation.

First, the failure rate curve for other SMP clusters (systems
of type E and F) that were introduced after type D and were
running full production workloads earlier in their life, fol-
lows the more traditional pattern in Figure 4(a). Second, the
curve of system 21, which was introduced 2 years after the
other systems of type G, is much closer to Figure 4(a).
Next we look at how failure rates vary over smaller time

scales. It is well known that usage patterns of systems vary
with the time of the day and the day of the week. The ques-
tion is whether there are similar patterns for failure rates.
Figure 5 categorizes all failures in the data by hour of the
day and by day of the week. We observe a strong correlation
in both cases. During peak hours of the day the failure rate
is two times higher than at its lowest during the night. Simi-
larly the failure rate during weekdays is nearly two times as

5 10 15 200

500

1000

1500

2000

Hour of day

Nu
mb

er
 of

 fa
ilu

re
s

Sun Mon TueWed Thu Fri Sat0

1000

2000

3000

4000

5000

Nu
mb

er
 of

 fa
ilu

re
s

Figure 5. Number of failures by hour of the day (left)
and the day of the week (right).

high as during the weekend. We interpret this as a correla-
tion between a system’s failure rate and its workload, since
in general usage patterns (not specifically LANL) workload
intensity and the variety of workloads is lower during the
night and on the weekend.
Another possible explanation for the observations in Fig-

ure 5 would be that failure rates during the night and week-
ends are not lower, but that the detection of those failures is
delayed until the beginning of the next (week-)day. We rule
this explanation out, since failures are detected by an auto-
mated system, and not by users or administrators. More-
over, if delayed detection was the reason, one would expect
a large peak on Mondays, and lower failure rates on the fol-
lowing days, which is not what we see.

5.3 Statistical properties of time between
failures

In this section we view the sequence of failure events as
a stochastic process and study the distribution of its inter-
arrival times, i.e. the time between failures. We take two
different views of the failure process: (i) the view as seen by
an individual node, i.e. we study the time between failures
that affect only this particular node; (ii) and the view as
seen by the whole system, i.e. we study the time between
subsequent failures that affect any node in the system.
Since failure rates vary over a system’s lifetime (Fig-

ure 4), the time between failures also varies. We therefore
analyze the time between failures separately for the early

Fig. 1: Number of failures across 22 high-performance com-
puting systems at Los Alamos National Lab (LANL) [2].

detection is only beneficial if the it discovers the anomaly
with sufficient time in advance for corrective actions. For
instance, in the case of VM proactive migration it is important
to discover a potential future failure as soon as possible as
the process is typically lengthy and time-consuming. Another
important use case is detecting potential network congestions
that will impact the traffic flow. For instance, the impact
of congestions in the transportation systems is critical [5],
especially considering their exigent requirements. Therefore,
it is of utmost importance to proactively detect an anomaly
as early as possible in order to allow mitigating actions to be
taken in advance to reduce their potential impact in the future.

Moreover, machine learning practitioners are often faced
with the extremely difficult challenge of choosing between
various available machine learning techniques. Similarly in
anomaly detection, plenty of techniques have been proposed
that are specialised for either a type of dataset or application
domain, or type of anomaly to discover (e.g., point, contextual
or collective anomalies). Although this enables them to have a
wide repertoire of tools available, as the complexity of systems
and size of collected data are constantly increasing as well,
selecting and tuning techniques manually becomes infeasible.
It is a very costly, time-consuming trial-and-error practice that
ideally should be avoided.

In this paper, we address the challenges above, and propose
ADE, an Anomaly Detection Ensemble approach, a proactive
anomaly detection ensemble approach that prioritises early
discovery of anomalies. The approach learns in time the
accuracy of each technique on that particular dataset type. For
any incoming data measuring the same metrics as the training
dataset, ADE will combine the results from multiple existing
anomaly detection techniques based on the prior learning in
order to detect an anomaly. The approach generates a weighted
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anomaly window and utilizes it as ground truth for training the
model. The ground truth window generation is a core contri-
bution of our approach as it prioritises an earlier detection
within that window for instance by applying higher weights
closer to the beginning of the window. Several strategies
are explored for generating the weighted window. Further,
the approach uses as input features the scores from multiple
existing anomaly detection techniques. Thus, there is no longer
need to choose a technique from multiple available ones, as
the model learns in time the accuracy of each technique based
on the dataset considered and applies accordingly a weight to
each of their scores, each contributing to the computation of
the overall result. Moreover, an extensive set of experiments
are conducted on real-life datasets provided by the Numenta
Benchmark [6]. Besides precision and recall, we also evaluate
the proposed and compared techniques from an early detection
perspective through the proposed ed metric. Results show that
our proposed approach outperforms the compared anomaly
detection techniques in terms of early anomaly detection, with
an average of ∼ 7 hours early detection prior to the actual
anomaly across all datasets considered.
Assumptions: (1) The training dataset is a labelled dataset
as ADE follows a supervised learning approach. As such a
labeled dataset is required for training, where an instance is
recorded as anomalous or not. (2) As the model employs
multiple techniques for obtaining the final score, all individual
models need to be trained on the labeled dataset. (3) The
ensemble learning is based on gathering and learning on the
results of other techniques. As such its scalability in training
the model will depend on the scalability of the employed tech-
niques; although this is only for the training phase. Naturally,
applying the model for scoring on a new incoming dataset
should not be impacted by the training duration.

II. RELATED WORK

Most common existing techniques deployed in real systems
employ threshold based methods, which can be categorised
into parametric (such as [7]) and non parametric ones (such
as [8]). Parametric methods make assumptions of the un-
derlying distribution of the dataset and determine threshold
values based on the distribution. However, this assumption
is many times unrealistic and violated in practice. Moreover,
non parametric methods avoid making such assumptions but
determine the threshold in an ad-hoc manner. However, both
approaches are generally non realistic, do not adapt to varying
patterns in incoming datasets, and often require significant
efforts in tuning the threshold value.

Recent efforts revealed systems that employ more than one
existing anomaly detection techniques, however they utilise
a rather simplistic approach such as a voting mechanism for
determining the result (e.g., Skyline [9] declares a metric as
anomalous when a consensus of 6 techniques detecting it is
reached). Meanwhile, there is another trend in the area, which
tries to tackle the big data problem and increase the scalability
of solutions. For example, [10] presented a distributed anomaly
detection solution based on Hadoop and Weka that removes

the centralised failure point and enables real-time analysis for
big data;[11] developed a light-weight statistics method based
on performance and failure Key Performance Indicators (KPI)
to detect abnormal behaviours in cells.It is computationally
less expensive compared with machine learning base solution,
which enables this solution to be deployed on large netowrks
or environment with low processing power.

As there is a wide spread of use of the following anomaly
detection techniques in the literature and industry, ADE will
utilize their results for training the ensemble model:

1) IBM SPSS Anomaly Detection module2, referred further
as simply SPSS, which employs a clustering based ap-
proach for detecting anomalies in a dataset.

2) NuPIC (Numenta Platform for Intelligent Computing),
referred further as simply Numenta, is an open source
project based on a theory of neocortex called Hierarchical
Temporal Memory (HTM). The HTM technique is well
suited for online real-time applications and has proven
useful in applications such as monitoring server data,
geospatial tracking, stock trading and social media.

3) Etsy Skyline [9], which employs several simplistic
anomaly detection techniques and calculates an anomaly
score through a voting mechanism. Some of the detectors
in Etsy Skyline are: deviation from moving average,
deviation from a least squares estimate, and deviation
from a histogram of past values.

4) AnomalyDetection3 is an R package for detecting anoma-
lies developed by Twitter, introduced first in [12]. We will
refer to this technique further as simply Twitter, which
is based on a combination of statistical techniques to
robustly detect outliers. Based on the Generalized ESD
test, they are combined with robust statistical metrics and
piecewise approximation to detect long term trends.

These can be expanded to additional anomaly detection
techniques, given that they are scalable and able to be applied
on batch and streaming data. Moreover we also compare our
results with each of these individual approaches in Section IV.

III. ADE: EARLY ANOMALY DETECTION ENSEMBLE

A. Preliminaries

This section introduces the notations used throughout the
paper, along with their definitions. Let d be a dataset with
n features, also referred to as fields: d = {f0, f1, ..., fn}.
We denote by ‖d‖ the total number of rows (i.e., records)
in the dataset d. Let the first field be the index sequence of
the dataset, which represents an arithmetic progression with a
common difference of 1 (i.e., 0, 1, 2, ...). Moreover, as in this
paper we focus on time series datasets, let the second feature
be the timestamp field of the dataset. The timestamp field
represents a chronological sequence of timestamps, denoted
by: 〈t0, t1, ..., tm〉. Let i denote the index (i.e., position) of
the timestamp ti in dataset d: posd(ti) = i.

2https://www.ibm.com/support/knowledgecenter/SS3RA7 15.0.0/com.ibm
.spss.modeler.help/anomalydetectionnode general.htm

3https://github.com/twitter/AnomalyDetection
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Fig. 2: Anomaly Detection Ensemble approach.

The set of anomalies within a dataset d is denoted by
Ad. Anomalies are also referred to as ground truth, their
associated field in the dataset as ground truth label, and their
index is given by posd(a). The ground truth label filed is
denoted by gt = 〈gt0, gt1, ..., gtm〉, where:

gti =

{
0 if ti /∈ Ad;
1 if ti ∈ Ad;

,∀i ∈ [1,m] ∧m = ‖d‖ (1)

Moreover, we denote by ‖Ad‖ the total number of anomalies
within dataset d. From [6] we adopt the definition of an
anomaly window within a dataset d, denoted by awd and
representing a range of data points centred around a true
anomaly. Furthermore, we denote by ‖awd‖ the length of the
anomaly window within dataset d, which similarly to [6] is
10% of the size of the dataset, divided by the number of true
anomalies contained: ‖awd‖ = 10%·‖d‖

‖Ad‖ .
The anomaly detection techniques used as input for the

ensemble model are denoted by Tj , where j ∈ {1, 2, 3, 4},
which correspond to the ones enumerated in Section II. The
associated field of Tj represents the anomaly detection labels
produced by the technique. We denote by T i

j the label pro-
duced by Tj at index i, where T i

j ∈ {0, 1}, 1 when an anomaly
is discovered by Tj at index i, and 0 otherwise . Moreover,
Tj(a) returns the earliest timestamp at which anomaly a is
discovered by Tj , within its window awd(a).

B. Approach

The approach of the ADE is presented in Figure 2 and
involves the following steps:

1) Data preparation (presented in Section III-B1).
2) Anomaly window generation to be used as ground truth

(presented in Section III-B2).
3) Training the ensemble model using the ground truth

window generated field from the prior step.
4) Applying and gathering the results of applying the model

on a new incoming or test dataset.
For the ensemble model, we used the XGBboost library,

which is an optimized distributed gradient boosting library
from the R programming language4. The library provides a
parallel tree boosting (also known as GBDT, GBM) that is

4https://github.com/dmlc/xgboost

known for being efficient and accurate. For the actual window
field used as ground truth for training, a window generation
algorithm is used, following one of the strategies described in
Section III-B2. It is important to mention that for training
the ensemble model we used the scores produced by the
techniques Tj , which in the actual implementation are the four
described in detail in Section II.

1) Data Preparation:: Given a labeled dataset d, the data
preparation phase involves three steps: (1) Applying existing
anomaly detection techniques, Tj ; this will produce (2) The
scores of each technique on the given dataset, which will then
be (3) Aggregated in a single file for training purposes. This
can be observed in the left upper boxes of Figure 2.

2) Anomaly Window Generation:: We devised different
strategies for generating anomaly windows fields, referred
further as ground truth windows for the ensemble model, in
order to investigate their impact on the early detection of
anomalies. Some strategies focus on giving higher weights
closer to the actual anomaly for improved precision and recall.
Others focus on giving higher weights closer to the beginning
of the window for earlier detection. In particular, the strategies
and associated fields devised are described below:

1) Ground truth window (gtw): This field takes the value
of 1 for the entire anomaly window, awd(a), and 0
otherwise. Through this approach we investigate whether
giving the maximum weight both close to the beginning
of the interval and close to the actual anomaly will
improve the results.

2) Earliest detection (gtwed): The objective of this approach
is to prioritise early detection by training ADE to give
preference to the scores given by the technique detecting
earliest the anomaly. The field will give a higher
probability to the earliest detection by any technique,
decreasing until reaching the actual anomaly. The
probabilities can be seen as weights, where a higher
weight is assigned to the earliest discovery, decreasing
until reaching the end of the anomaly window. This
associated field is defined as:

gtwi
ed =

{
p if ti ∈ awd ∧ i > pos(a),∀a ∈ Ad;
0 if ti /∈ awd;

(2)
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∀ı ∈ [1,m] ∧m = ‖d‖ ∧ pos(a) = min(posd(Tj(a)))

where pos(a), and min(posd(Tj(a))) represent the index
of the earliest detection of a by any of the evaluated
techniques Tj . Moreover, the probability p belongs to
a decreasing sequence of numbers between 1 and 0.5,
such that gtwpos(a)

ed = max(p) and subsequently its value
decreases until reaching the end of the interval awd. The
reason for choosing 0.5 is to assign more weight within
the window. Experiments with a larger range down to
0.1 were also performed; however 0.5 for the lower limit
produced better results.

3) Before earliest detection (gtwbfed ): This approach verifies
whether the scores given by the techniques before de-
tecting the anomaly could be used for ADE to detect the
anomaly before it is observed by the techniques. Thus, we
start with higher weights before the anomaly was detected
by any technique. Similarly to the approach above it uses
probabilities between 1 and 0.5, with the exception that
pos(a) is 10% of awd earlier than min(posd(Tj(a))).

4) Ground truth label (gtwgtl): The objective of this ap-
proach is to prioritise a more accurate detection by
training ADE to give preference to the scores given
by the techniques detecting the anomaly closest to the
ground truth labels (i.e., posd(a),∀a ∈ Ad. In this case,
pos(a) = posd(a).

5) Before ground truth label (gtwbfgtl ): The objective of
this approach is to prioritise a both accurate and early
detection by training ADE to give preference to the scores
given by the techniques detecting the anomaly earlier but
closest to the ground truth labels (i.e., posd(a),∀a ∈ Ad.
In this case, pos(a) is 10% of awd earlier than posd(a).

6) Discrete (gtwdiscr): This approach prioritises a more
accurate detection by assigning p = 1 only when when
the anomaly occurs, i.e., i = posd(a), and 0 otherwise.

7) Discrete probabilistic (gtwdiscrprob ): This approach pri-
oritises a correct detection by assigning p = 1 only when
the anomaly occurs, i.e., i = posd(a), and 0.5 otherwise.

IV. EVALUATION

A. Datasets used

1) Numenta Anomaly Benchmark: The NAB benchmark5

provides a set of real-world time-series datasets, denoted
by D (58 files). These datasets are labeled, i.e., contain a
field that can be 1 or 0 depending on whether the record is
an anomaly or not, respectively. The NAB benchmark also
compares Numenta with Twitter and Skyline. In our evaluation
we also compare against these three techniques, and in addition
to SPSS.

2) Splitting the data: The datasets measuring the same
metric, such as cpu, rds-cpu, network, are merged into one
dataset for each metric in order to enlarge the training dataset
available for the ensemble model. Moreover, in order to
ensure that the training and testing data is sufficient, for this

5https://github.com/numenta/NAB

evaluation we considered only datasets spreading across more
than 1 file, as generally each file contains 1 or 2 true anomalies,
with only a few containing more. We split the data into training
and testing sets, as typically done in the community, using 80%
of the data for training and 20% for testing.

B. Metrics

In this section, we present the metrics used for the eval-
uation of ADE. We follow a similar approach to the NAB
benchmark for evaluating each technique by considering the
early detection aspect; however, the NAB score proposed
in [6] combines the precision, recall and the early detection
of the techniques into one single score. In contrast to this, we
evaluate all techniques from each of these metrics separately
in order to get a more thorough evaluation.

1) Early Detection (absolute time and rank): Firstly, we
compare the techniques across all anomalies discovered in
terms of absolute time and index of detection.

2) Early Detection (ed): The ed score evaluates how early
an anomaly a was detected relative to the anomaly window.
The ed score is between 0 and 1, where 1 represents that the
anomaly a was discovered at the beginning of the interval and
0 at the end. The ed score is relative to the time interval,
i.e., a 10% increase in ed means that a technique detected an
anomaly 10% of the time interval earlier. For instance, consid-
ering an anomaly window of 200 indexes (most common), a
5min step between two consecutive indexes and an ed of 10%
more, leads to 100min earlier detection. As datasets might
use different time steps between ti and ti+1, the ed uses the
indexes of the timestamp for calculating the score (i.e., index
of tb is b, and index of te is e).

The ed score of a technique Tj for an anomaly a within a
window awd(a) = [tb, te] and d is defined as:

eda(Tj) =

{
1− posd(Tj(a))−b

e−b if a ∈ A
Tj

d ;

0 if a /∈ A
Tj

d ;
(3)

where A
Tj

d represents the anomalies discovered by Tj in
dataset d, Tj(a) represents the time of the first detection by
technique Tj of the anomaly a in dataset d, and posd(Tj(a))
represents the index of that timestamp. Subsequent detections
of anomaly a by Tj within the window awd(a) are ignored as
this metric only evaluates the anomalies’ earliest detection.

The average early detection score of Tj represents an
average of the ed score for all anomalies across all datasets.

3) Precision and recall:: Similarly to NAB approach, if Tj

discovers an anomaly a ∈ Ad within its window, awd(a), but
not exactly at posd(a) then it is considered as a true anomaly
discovered, both for precision and recall.

C. Results

1) Early Detection: We begin by presenting for each tech-
nique the detection time and rank of all anomalies across all
datasets used for testing purposes. A filtered table of these
results, showing only the top performers of ADE is presented
in Table I. Moreover, as ADEwindow and ADEed outperform
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Dataset folder
Anomaly:

Date
(Index)

Numenta:
Detection date

(Index)
Rank

Skyline:
Detection date
(Index) - Rank

SPSS:
Detection date
(Index) - Rank

Twitter:
Detection date
(Index) - Rank

XGB window:
Detection date
(Index) - Rank

XGB earliest:
Detection date

(Index)
Rank

realAWSCloudwatch 26/02/2014 22:05
(3547)

26/02/2014 22:10
(3548) - 3rd

26/02/2014 22:05
(3547) - 2nd

26/02/2014 14:25
(3455) - 1st

26/02/2014 22:05
(3547) - 2nd

26/02/2014 22:10
(3548) - 3rd

26/02/2014 22:15
(3549) - 4th

realAWSCloudwatch 27/02/2014 17:15
(3777)

27/02/2014 17:20
(3778) - 2nd NA 27/02/2014 08:55

(3677) - 1st NA 27/02/2014 17:45
(3783) - 3rd NA

realAWSCloudwatch 19/02/2014 19:10
(5528)

19/02/2014 20:10
(5540) - 1st NA 20/02/2014 03:10

(5624) - 4th
20/02/2014 03:10
(5624) - 4th

19/02/2014 20:15
(5541) - 2nd

19/02/2014 20:15
(5541) - 2nd

realTweets 03/03/2015 21:07
(1433)

03/03/2015 21:12
(1434) - 4th

03/03/2015 05:02
(1240) - 2nd

04/03/2015 00:37
(1475)
6th

03/03/2015 21:07
(1433) - 3rd

03/03/2015 04:52
(1238) - 1st NA

realTweets 09/03/2015 17:32
(3118) NA 09/03/2015 15:57

(3099) - 2nd
09/03/2015 19:57
(3147) - 3rd NA 09/03/2015 06:47

(2989) - 1st NA

realTweets 16/03/2015 02:57
(4959)

15/03/2015 16:17
(4831) - 2nd

15/03/2015 16:12
(4830) - 1st NA 15/03/2015 16:12

(4830) - 1st
15/03/2015 16:12
(4830) - 1st

15/03/2015 16:12
(4830) - 1st

realTweets 31/03/2015 03:27
(9285)

30/03/2015 18:02
(9172) - 3rd

30/03/2015 17:57
(9171) - 2nd

30/03/2015 18:52
(9182)
5th

30/03/2015 17:57
(9171) - 2nd

30/03/2015 11:57
(9099) - 1st

30/03/2015 18:07
(9173) - 4th

realTweets 05/03/2015 19:47
(17895)

05/03/2015 19:52
(17896)
5th

05/03/2015 18:17
(17877) - 1st

05/03/2015 19:47
(17895) - 3rd

05/03/2015 18:22
(17878) - 2nd

05/03/2015 19:47
(17895) - 3rd

05/03/2015 19:47
(17895) - 3rd

realTweets 11/03/2015 20:57
(19637)

11/03/2015 21:02
(19638) - 3rd

11/03/2015 20:57
(19637) - 2nd

11/03/2015 20:57
(19637) - 2nd

11/03/2015 20:57
(19637) - 2nd

11/03/2015 09:22
(19498) - 1st

11/03/2015 20:57
(19637) - 2nd

realTweets 01/04/2015 21:57
(25697) NA 01/04/2015 18:27

(25655) - 1st NA 01/04/2015 18:27
(25655) - 1st NA NA

realTweets 08/04/2015 04:52
(27508)

07/04/2015 23:57
(27449) - 2nd

07/04/2015 23:57
(27449) - 2nd

07/04/2015 23:52
(27448) - 1st

07/04/2015 23:52
(27448) - 1st

07/04/2015 23:57
(27449) - 2nd

07/04/2015 23:57
(27449) - 2nd

realKnownCause 17/07/2014 09:50
(1287)

17/07/2014 16:30
(1330) - 1st NA NA NA NA NA

realAdExchange 14/07/2011 13:00
(325)

14/07/2011 14:00
(326) - 1st NA NA NA NA NA

artificialWithAnomaly 11/04/2014 00:00
(2880)

11/04/2014 00:05
(2881) - 2nd NA NA 10/04/2014 15:30

(2778) - 1st
11/04/2014 00:05
(2881) - 2nd

10/04/2014 15:30
(2778) - 1st

TABLE I: Earliest detection for all anomalies that have been detected by at least two technique across all testing datasets. First
ranked detections are illustrated in green and italic font. Second ranked detections are illustrated in orange and bold font.

the other ADE techniques in terms of earliest detection, we
only present the results of these techniques in the table. As
it can be observed ADEwindow is ranked 1st in 5 out of 14
cases, in other 3 cases as 2nd and other 3 as 3rd. Twitter
anomaly detector is the 2nd performer, with 4 discoveries
ranked as 1st and 3 as 2nd, and 1 as 3rd. More interesting
is to observe the difference between the detection indexes.
For instance, even though ADEwindow is ranked 2nd for the
3rd anomaly, the difference between its detection index and
Numenta’s, which is ranked 1st, is of just 1 position.

We expand on four of these cases in Figure 3, in particular
to show how much in advance ADE discovered the anomaly
before other techniques. We observe in Figure 3a that only
ADEwindow managed to detect the anomaly earlier than it
actually occurred. In particular, it detected the anomaly ∼ 12h
earlier. ADEwindow used as ground truth the entire anomaly
window, which starts much before the anomaly actually oc-
curred (in this case 3h), and using the prior learning on
the techniques’ scores for previous anomalies, it was able
to detect it in advance, although each individual technique
did not label it as anomaly. Moreover, all others detected the
anomaly at exactly the time it occurred, except for Numenta,
which detected the anomaly 5min later. Figure 3b shows that
only ADEed, and Twitter managed to detect the anomaly
earlier than it occurred, by 8h and a half. All others that
managed to detect it, ADEwindow, Numenta and a few other
ADE approaches had done it only 5min after it occurred.
Furthermore in Figure 3c we observe that all techniques

managed to detect the anomaly earlier than it occurred by ∼ 9h
before. However, ADEwindow detected the anomaly ∼ 15h
before it occurred. Figure 3d presents how Skyline and ADE
were the only ones that detected the anomaly before it had
occurred; ADE by ∼ 11h, while Skyline ∼ 1h and a half in
advance. Only SPSS managed to detect this anomaly as well;
however, ∼ 2h and a half after.

The average ed scores are presented in Figure 4a. We ob-
serve that ADEwindow outperforms the other techniques by at
least 10% (between ADEwindow and Numenta). Moreover, we
observe that other ADE strategies are typically outperformed
by the compared techniques in terms of ed score, with a
difference between 2% and 9% for ADEed, which follows
ADEwindow for this metric; although, we observed before that
across different anomalies ADEed had discovered the anomaly
earlier than the other compared techniques and ADE strategies.
ADEdiscrprob is not far behind ADEed, with 1% difference.

2) Precision and recall: Furthermore, in terms of precision,
we observe in Figure 4b that, as expected, the techniques with
a strategy revolving around the ground truth label outperform
the others, i.e., ADEbfgtl and ADEgtl. ADEbfgtl shows
better results ranging from 3% to 23% more precision than
the compared techniques. As the precision measures the true
anomalies discovered over the total number of anomalies
discovered, this shows a lower rate of false positives for
ADEbfgtl and ADEgtl than the other techniques. In terms
of recall, we observe in Figure 4c that Numenta outperforms
all the other techniques, and in particular ADEwindow by
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(a) Twitter volume AMZN (b) art daily flatmiddle

(c) Twitter volume AAPL (d) Twitter volume AAPL

Fig. 3: Early detection of ADE compared to other techniques on different datasets.
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(b) Precision.
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Fig. 4: Precision, recall and early detection results for all techniques.

5%. This reflects that ADEwindow discovers slightly less
anomalies than Numenta. However, ADEwindow outperforms
all other techniques with 6% to 12%, except for Numenta.

To summarize, depending on the context, different ADE
strategies can be employed to maximize the results for a par-
ticular concern: earliest detection, precision or recall. For ed
score, ADEwindow outperforms all others, while for precision,
ADEbfgtl shows best results. Numenta shows better results in
terms of recall, while ADEwindow outperforms the rest of the
compared techniques.

V. CONCLUSION

In this paper, we proposed an anomaly detection ensemble
approach ADE that prioritises early discovery of anomalies.
Given a dataset, the approach computes the results from
multiple existing anomaly detection techniques and learns their

accuracy on the dataset. For any incoming data measuring
the same metric as the analysed dataset, ADE will combine
results from the techniques employed in order to detect an
anomaly based on prior learning. Seven different window
generation strategies have been explored to maximize the
results of different evaluation metrics such as early detection
or precision, recall. In order to minimize the number of false
positives, strategies that revolve around the ground truth label
show better results in precision. Moreover, strategies that
employ a weighted window starting from an earlier index such
as ADEed, and in particular ADEwindow show the best results
in earliest detection. Results show that ADE outperforms the
compared techniques in early detection across the datasets
considered, with up to ∼16h earlier and on average ∼6h earlier
than the anomaly actually occurred.
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