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Abstract—The inherent complexity of Wireless Mesh Networks
(WMNs) makes management and configuration tasks difficult,
specially for fault detection and diagnosis. In addition, manual
inspections are extremely costly and require a highly skilled
workforce, thus becoming impractical as the problem scales. To
address this issue, this paper proposes a solution that makes use
of machine learning techniques for automated fault detection
and diagnosis (FDD) on solar-powered Wireless Mesh Networks
(WMNs). We have used the Knowledge Discovery in Databases
(KDD) methodology and a pre-defined dictionary of failures
based on our previous experience with the deployment of WMNs.
Thereafter, the problem was solved as a pattern classification
problem. Several classification algorithms were evaluated, such
as Naive Bayes, Support Vector Machine (SVM), Decision Table,
k-Nearest Neighbors (k-NN) and C4.5. The SVM presented the
best results, achieving a 90.59% overall accuracy during training
and over 85% in validation tests.

Index Terms—Machine learning, fault detection and diagnosis,
wireless mesh networks.

I. INTRODUCTION

Wireless Mesh Networks (WMNs) inherit the challenges
and dynamic nature of wireless links, while typically pre-
senting complex topologies. A high degree of automated
configuration and maintenance is a very desirable feature in
these networks, since their operation will frequently require
skilled labor. The high complexity of these networks, coupled
with the difficulty of access they may have, resulted in the
search for automated management methods in order to improve
reliability and reduce costs and downtime. In this scenario,
maintenance is fundamental and an automated fault detection
and diagnosis method must be pursued.

The problem of fault detection and diagnosis (FDD) is a
widely studied field in engineering [1][2]. This problem is
typically solved using one of three methods: (1) analytical
solution and (2) application of statistical models, which com-
prises quantitative methods [3], or (3) the use of Artificial
Intelligence (AI), as the history-based method [4]. Given
the difficulties to model a WMN, its behavior, usage, and
possible changes to the system, the use of quantitative methods
becomes impractical, therefore, the Al approach is used in our
work.

Our proposition’s goal is to define a methodology that
provides automated FDD for WMNs. For this purpose, a
highly complex WMN deployed in the REMOTE project [5]
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was used as our solution target and its testbed network as our
development environment. The REMOTE network consists of
41 mesh nodes installed along a power line for communi-
cation and supervision purposes. During seven years since
deployment, REMOTE’s network nodes presented different
failure modes that could only be diagnosed through costly
and sporadic physical inspections, which often required the
shutdown of the transmission line along which the nodes were
installed. This failure modes’ knowledge was used to define a
dictionary of failures, which is our diagnostic space.

We have already developed a WMN management platform
performing network monitoring functions, named MeshAdmin
[6]. Therefore, network nodes’ monitored data were used as
our history database. It was necessary to define a method
and a specific Al technique to perform the FDD task. The
Knowledge Discovery in Databases (KDD) methodology [7]
and the machine learning techniques [8] were chosen for the
proposition.

To produce a history of labeled faults, a set of real-problem
emulations were performed in the network. Based on a labeled
history database, the supervised learning approach was used
as the machine learning technique. Several classification al-
gorithms were considered and tested, namely: Naive Bayes,
Support Vector Machine (SVM), Decision Table, k-Nearest
Neighbors (k-NN) and C4.5. Another database, containing
only naturally occurred faults’ data, not emulated ones, was
used for results validation.

This paper goals are: (1) propose the KDD methodology and
the supervised learning approach to solve the fault detection
and diagnosis problem in WMNSs; (2) describe each solution
step, the difficulties faced during the development of the
proposed solution and how they were overcome; (3) provide an
autonomous FDD module to be part of the WMN management
integrated platform.

The remainder of the paper is structured as follows. In
Section II we provide a brief description of related work.
Section III presents our proposal for fault detection and di-
agnosis in solar-powered WMNs. Each selected classification
algorithm and its performance are presented in Section IV.
Finally, Section V brings conclusions and future works.
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II. RELATED WORK

WMNSs’ complexity begins with its unstable wireless
medium, the requirements for an enhanced scalability in a
multi-hop mesh environment and energy management. These
obstacles reflect in the communication protocol and network
architecture [9], demanding expertise and skilled workforce in
operation.

In WMNS, there are two types of nodes: mesh routers and
mesh clients. Some WMN architectures can be more flexible,
with mesh routers built on general-purpose computer systems
or even allowing mesh clients to perform essential mesh net-
working functions [10]. This work focuses on Infrastructured
WMNSs, which consists of mesh routers forming a backhaul
for clients to connect. The WMN infrastructure can be built
using various types of radio technologies and protocols [11].

Infrastructured WMNs present some critical issues to net-
work management, such as: dynamic environment, fluctuating
link quality, unfriendly placement and resource constraints
[12]. Management functions as monitoring, fault detection and
diagnosis are essential to surpass those challenges and must
be carried out.

Fault detection and diagnose techniques can be broadly
characterized into distributed and centralized approaches. The
distributed approach relies on local-view and the absence of
centralized monitoring to reduce network data traffic [13].
The centralized approach relies on data aggregation and data
processing in a node with higher computational power, without
resource constrains, reducing network nodes’ resource use.
Since our proposal already takes advantage of a centralized
monitoring tool and some networks might not offer a proper
local-view by neighbors information exchanges, as the RE-
MOTE’s network by its linear aspect, the centralized approach
was the appropriate choice.

Other studies use a centralized approach to perform the di-
agnosis [14][15][16]. Among them, [14] uses information from
the node’s routing table and the RIPPER algorithm [17], a
classifier based on rules for intrusion detection. An automated
FDD technique using simulation models is proposed in [15].
The work uses monitored network metrics to feed a simulator
and compares the performance of the simulated model to the
network’s gathered data. If there is a significant difference,
the proposal systematically injects faults in the simulated
environment. When the performance of the simulator after
a specific fault gets close to the network’s performance, the
system assumes a particular fault as the diagnosis. Sympathy
[16] deals with FDD in wireless sensor networks. The pro-
posed solution relies on connectivity metrics, flows and node
operation information. The collected data feeds a decision tree,
based on empirical knowledge of an expert, to diagnose the
problem cause.

Different from previous proposals, the solution presented in
this paper employs a centralized and completely autonomous
process for fault detection and diagnosis on an individual node
level, based on machine learning techniques. This approach
has the advantage of not requiring an analytical model or

the supervision of an expert in the operation phase. It also
seeks an increased diagnosis accuracy, reducing costs and
workforce required for network maintenance and a possible
lack of information can be treated more effectively, since it
does not use simulation.

III. PROPOSED SOLUTION

The proposed methodology is based on the KDD, which
follows some traditional steps — the so-called five steps for
extracting knowledge from a database [7]. These steps are:
attribute selection, preprocessing (data cleaning and enrich-
ment), data transformation (if needed), data mining and result
evaluation.

Our proposition starts defining the scope of action of
the system. Using our previous WMN operation experience
[5]1[12], a set of specific faults were pointed-out as relevant
and critical to network maintenance. These faults are: high
processor usage, high RAM consumption, battery failure, low
efficiency of the powering system, in our case a solar panel,
antennas misalignment and defects on RF cable connectors.
The regular operational state of a mesh node and the defined
dictionary of failures are our diagnosis space. A history
database with labeled data had to be produced to train a
classifier. To this purpose, fault occurrences were emulated
in a testbed network. After that, the KDD methodology steps
were used as guideline.

A. REMOTE Network

The REMOTE project deployed a communication infras-
tructure based on WMN. While the ultimate goal is to deploy
our solution at the production network of the REMOTE
project, in the development phase, prototypes were evaluated
in a WMN testbed located on one university campus at UFF.

Both the production network and the testbed are infras-
tructured WMNs and have similar characteristics as energy
constraints, the use of a solar power system and multiple radios
with the same technologies. Therefore, the methodology and
the scenarios used in the development phase have immediate
applicability for the production network.

Each mesh router is composed of three modules:
Communication module: consists of a router with two wireless
interfaces, a client access interface consisting of an IEEE
802.11g radio, and an interface for communication between
nodes (backbone), consisting of an IEEE 802.11a radio. The
backbone radio is connected through an RF splitter to two di-
rectional antennas pointed towards specific nodes. The network
protocol used is the Optimized Link State Routing (OLSR)
[11], a link state based protocol designed for ad hoc networks.
In the REMOTE’s network an OLSR variation is used, the
OLSR-ML. This variation uses as cost function the Minimum
Loss (ML) metric [18], which results in routes with minimum
error probability in end-to-end communication.

Power module: is formed by a solar power system that
comprises a 40 W solar panel, a charge controller and a bank
of three 12 V/7Ah lead-acid sealed batteries connected in
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parallel, resulting in a voltage of 12 V and total rated capacity
of 21 Ah.

Sensing module: used for site supervision, contains two
LM35 temperature sensors, one LDR S5Smm light sensor,
voltage and current sensors for the solar panel, batteries
and primary load (the communication module). It allows
monitoring the following physical data of the mesh router:
Solar Panel Voltage, Solar Panel Current, Battery Voltage,
Communication’s Module Voltage, Communication’s Module
Current, External (ambiance) Temperature, Internal (sealed
box) Temperature, Incident Light Intensity, Bytes in/out for
each Network Interface, Available Flash Memory, Available
RAM memory, CPU Load Average and Link Quality. Instan-
taneous samples of these data are collected and stored by
MeshAdmin every ten minutes.

B. Populating the Training Database

After the fault dictionary was defined, it was necessary to
obtain samples of each of these events occurrences to generate
a proper training database. At this stage, fault emulations were
performed by causing artificial problems in the network for
five months.

Six emulations were performed, inflicting faults and mon-
itoring their effects in the collected data. Each one had an
observable influence over a mesh node monitored parameters.
In the following paragraphs, we define these emulations and
explain how they have influenced the monitored parameters
when compared to a node at regular operational state.

High processor usage - The objective was to create high
demand for CPU usage in the node. To emulate the effect
of a large and constant flow of processing requests, a random
byte stream was compressed while the average CPU Load was
monitored by MeshAdmin (among all other collected node
information).

High RAM consumption - Network nodes used in this work
have a reduced amount of available flash memory (4 MB),
used mostly for the operating system installation. When the
node is on, most file activities occur in RAM, including
writing into temporary files. If a faulty process creates a large
temporary file, the node may run out of memory, affecting
core functionalities. On extreme cases, the lack of available
RAM may cause node unresponsiveness, which triggers a
watchdog to reboot it. In this experiment, we employed a
process that creates large temporary files in order to verify
how this behavior would be manifested in the data collected
by MeshAdmin.

Battery Failure - The battery pack is comprised of three
batteries in parallel. Initially, tests consisted of replacing one
or more good batteries for defective batteries. Subsequently,
additional tests were performed with an incomplete battery
bank, with batteries removed gradually. A reduction of the
node autonomy could be observed, resulting in a shutdown
during certain periods of the day. As expected, node auton-
omy varied according to the number of defective or missing
batteries, but also according to the intensity of sunlight during
the period, which affects battery charging during the day.

Low Efficiency of the Solar Panel - Several different tests
on the solar panel were performed, all aiming at reducing its
efficiency. This was accomplished by casting full and partial
shadows over the panel and also by varying the shadow inci-
dence angle. Most tests, indeed, resulted in a lower efficiency
of the solar panel, also reducing the node autonomy.

Antennas Misalignment - Directional antennas were mis-
aligned to cause a drop on the received signal strength.
To register this link quality drop, the routing metric was
monitored. During misalignment tests, the quality level of the
tested link varied, as expected.

Defects on RF cable connectors - Antennas are connected
to the router via an N-type male connector. The connector was
brought to a poor contact condition, which caused a significant
increase in the variance of the signal quality level, as expected.

C. Attribute Selection

The impact of each of the nodes’ states in the monitored
parameters were evaluated. A comparison of the node behavior
and its measured parameters before and during tests was
performed. This way, it was possible to infer the most relevant
parameters using MeshAdmin graphical analysis tools.

In order to evaluate if other non-considered parameters
could affect the diagnosis, the following methodology was
employed: (1) All measured parameters were considered as
a primary candidate group and the overall accuracy of a
classification algorithm was measured; (2) Each parameter was
then progressively removed to form a new candidate group,
this candidate group’s overall accuracy was also measured;
(3) If the parameter removal resulted in an overall accuracy
gain, the parameter was definitely discarded. The process was
repeated until all available parameters were either discarded
or preserved and a final group of relevant parameters could be
obtained.

D. Preprocessing and Transformation Steps

During the steps of preprocessing and data transforma-
tion, long periods of node inactivity, resulting in unusable
information, spurious data and other known issues, such as
infrastructure network problems affecting the server, were
removed from the database.

Also, notice that the gathered data is a time series composed
of instantaneous samples of the monitored parameters, while
nodes’ failures progress over time. Hence, it was necessary to
define an observation interval comprising several samples, so
a single instance in the training database was representative of
a failure.

The first step of transformation was scaling the data. The
main advantages of scaling are to avoid attributes in greater
numeric ranges dominating those in smaller numeric ranges
and numerical difficulties during the calculation [19], therefore
the data was normalized.

The data enrichment and transformation process was based
on the description of a time continuous phenomena, like
battery charge and discharge. To this end, the simple moving
average and moving standard deviation of each parameters’
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time series were evaluated using the following past intervals’
samples: 1 hour, 2 hours, 4 hours, 8 hours, 12 hours and
24 hours. To evaluate which observation interval was more
adequate, we used the same methodology employed in the
selection step. The overall accuracy gain of each observation
interval was measured and the observation interval with higher
overall accuracy was chosen.

E. Data Mining and Evaluation

The sensing module generated data containing several nu-
merical attributes, and we have added one nominal attribute to
the problem, the class. Different classification models can be
used to solve problems with such characteristic. These models
are: statistical, linear, rule-based, instance-based and divide-
and-conquer [20].

Statistical models are used to study the probability of an
instance belonging to a certain class based on the value of
its attributes and distribution of each attribute per class. The
most common statistical models are based on Bayes Theorem
of conditional probability. In this work, the Naive Bayes [21]
algorithm was chosen to represent this group of algorithms.

Linear models are divided into two subgroups: those using
linear regression and linear transformation to create a class
membership function, and those that work with the hypothesis
of linear separability of classes, and thus try to find hyper-
planes that divide the classes in a vector space. For this work,
the Support Vector Machine (SVM) [22] was used.

Rule-based models focus on trying to find rules which best
separate the given class from the others. These models start
from the observation of a specific class to create a rule that
separates it from the others as accurately as possible. At the
end, a set of rules is created and evaluated in succession
to determine the class of a given instance. The rule-based
algorithm tested in this work was the Decision Table Majority
[23].

Instance-based models use distance functions to determine
a group of instances at the training database closest to the
evaluated instance. The majority class of this group is chosen
to label the targeted instance. Under this class of algorithms,
we used the k-Nearest Neighbors (k-NN) [24].

Finally, the divide-and-conquer models, usually represented
as decision trees, recursively analyze each attribute and possi-
ble cutoff points that result in a subgroup of instances that
better separate classes, with higher level of purity of the
majority class in each subgroup. The algorithm C 4.5 [25]
was used.

The performance measures taken in order to evaluate the
classification algorithms are: the overall accuracy, the ratio
of correct classifications of all classes; F-Measure [26], the
harmonic mean of Precision and Recall, as a measure for the
exactness and completeness of an algorithm classification for
each class.

Given these classification algorithms and the performance
measurements, the KDD steps could be started. All the clas-
sification algorithms were tested, the overall accuracy and F-
Measure used to evaluate their performance and the confusion

matrix was the representation used to show the results of
the best algorithm for the task. For the construction of the
classifiers and performance tests the Weka tool [27] was used.

IV. RESULTS AND DISCUSSION

The results presented in this section are divided in three
parts:problem description, algorithm evaluation and results
evaluation.

A. Problem Description

The first investigation was about the observation interval,
and the Decision Table was used for that purpose. This choice
was based in the algorithm simplicity — it does not have any
parameter adjustments —, and also because it has an attribute
selection embedded. Therefore, the lack of a previous attribute
selection does not affect its results as it would affect other
algorithms. Later, when the attribute selection step takes place,
each attribute will already be in its best representation.

The observation intervals were: 1h, 2h, 4h, 8h, 12h and 24h.
The Decision Table overall accuracy results are depicted in
Table 1. As the observation interval increased, the algorithms
overall accuracy also increased, but they did not result in a
significant change of the overall accuracy. Thefore the tests
were stopped with 24 hour observation period as the highest
accuracy result.

TABLE 1
OVERALL ACCURACY PER OBSERVATION INTERVAL
[ Observation Interval (h) 1 2 4 8 12 24 ]
| Overall Accuracy (%) 71.08 7399 7625 78.13 7813 78.88 |

This result is consistent with the nature of the problem,
since it accounts for a full day (e.g., a full cycle of battery
recharge due to sunlight is comprised, as well as a full
cycle of discharge at night). Some of the faults only manifest
themselves in certain periods of the day. For example, a battery
failure is probably not detectable during day, when the solar
panel is capable of supplying energy to the system. However,
during the night, the failure becomes apparent with a faster
discharge of the batteries.

In summary, each instance of the training database is
comprised of a moving average and standard deviation of the
samples during the past 24-hour window. Each instance also
contains the timestamp of the last sample from the observed
period.

The next step is the attribute selection. Several candidate
groups were tested and the C4.5 algorithm was used to
evaluate this test. The C4.5 is a tree algorithm that evalu-
ates the potential class entropy reduction for each attribute.
Therefore, it can be seen as a classification algorithm with
attribute selection embedded method, since it already assesses
all attributes and only uses the relevant ones. The C4.5 was
used with the confidence factor (CF) set to its default value,
0.5.

Initially, the group of all attributes were: date, uptime, the
moving average and standard deviation over the past 24h of
the physical data monitored by the sensing module. All these
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attributes are listed in Table II and the selected ones are marked
with an X.

After the attribute selection, each instance used for the
classification was defined as: date, uptime, solar panel current
average, battery voltage’s standard deviation and average,
internal (sealed-box) temperature average, incident light in-
tensity average, available memory average, cpu load average
and link quality’s standard deviation and average, class (rep-
resenting a fault or regular operation).

Consumption is one of the simplest, possibly diagnosed with
just one attribute, the available memory average.

3) SVM: For the SVM, there are two settings to be made:
the kernel function and the C parameter. Initially the C
parameter was set to 1 and the kernel functions were evaluated
with kernel parameters set to zero. The kernel variation results,
in Table III, were in favor of a linear kernel function. Therefore
this was the kernel used to find the C parameter with best
performance.

TABLE II TABLE III
SELECTED ATTRIBUTES FOR ALGORITHM EVALUATION SVM’S OVERALL ACCURACY PER KERNEL FUNCTION

Monitored parameter Standard deviation  Average Kernel Function Linear Polynomial Radial Basis  Sigmoid
Solar Panel Voltage Overall Accuracy (%) 77.05 74.79 76.30 75.43
Solar Panel Current X
Battery Voltage X X With the kernel function set with a linear function, the
Communication Module Voltage h o h ter C K ol After C=100 th
Communication Module Current searc _Or t e_ parame ?r . took p a_ce' er - . ¢
External Temperature results did not improve significantly while the processing time
Internal Temperature X suffered a large increase. The search was stopped in C=100,
Incident Light Intensity X which represents the result, and the overall accuracy increased
Available Memory X with the C parameter as in Table IV.
CPU Load X
Link Quality X X , TABLE IV
Network Tnterfaces Traffic SVM’S OVERALL ACCURACY PER C PARAMETER

B. Algorithm’s evaluation

The selected algorithms were applied to the training
database and evaluated. The k-NN, C4.5 and SVM algorithms
have parameters to be set while the Decision Table and Naive
Bayes do not have any parameters. For k-NN, the k parameter
corresponds to the size of the group which will be used to
define the class of the target instance. For the C4.5 algorithm,
the parameters are the minimum number of instances per
leaf of the created decision tree and the confidence factor
(CF), a parameter used to prune the tree. For the SVM, the
C parameter, indicating the complexity and limits for the
solution, and also a definition of the kernel function were used.

1) Naive Bayes and k-NN: Despite all efforts, the Naive
Bayes and k-NN results were much lower than expected when
compared to other algorithms. To use the Naive Bayes algo-
rithm the data was discretized using an algorithm embedded in
Weka [28], which uses an information entropy minimization
heuristic as a tree algorithm. The Naive Bayes obtained an
overall accuracy of 49.50%. Meanwhile the k parameter of k-
NN was investigated, the best overall accuracy result for this
algorithm was 46.02%, found when using k=1. Hence, there
were no further investigations using those classifiers and their
results will be used just for comparison purposes.

2) Decision Table: As already depicted in the problem
description, the Decision Table obtained an overall accuracy
of 78.88%. The F-Measure is presented in the Table V, and
its lowest point is the High Memory Consumption. This was
an unexpected result since the detection of a Battery Fault
is considered the most complex problem due to all variables
involved, as the battery natural charge/discharge cycle, the
climate influence in the charging cycle and node’s energy
consumption in the discharge cycle, while High Memory

C 1
Overall Accuracy (%) 77.05

10
87.79

25
88.43

50
89.3

100
90.59

The best overall accuracy of 90.59%, achieved with linear
kernel function and C=100, will be used in the overall clas-
sifiers comparison. Observing the F-Measure in Table V, it
is possible to verify the difficulty in diagnosing the Battery
Fault. Therefore this might be a weakness of this classifier.

4) C4.5: The C4.5 algorithm minimum instances per leaf
was set in 2, a small value, and the confidence factor was var-
ied. The tests have shown that the confidence factor variation
did not have a significant impact over the overall accuracy,
with less than 1% of accuracy gains. The C4.5 algorithm
presented a good result, the overall accuracy of 88.45% will
be used as the C4.5 score, achieved with a set of CF=0.5 and
2 instances per leaf. The F-Measure result in Table V shows
the same weak points as the majority of the classifiers, the
Battery Failure and Low Solar Panel’s Efficiency.

C. Results Validation and Interpretation

The final step is to compare all the classifiers and choose
the best ones to validate. The best classifiers generated with
each algorithm are now compared in Table V. The highest
accuracies and F-measures were achieved by SVM and C4.5
algorithms.

TABLE V
F-MEASURE PER CLASS AND THE OVERALL ACCURACY
Class Naive Bayes 1-NN  Decision Table SVM C 45
Regular Operational State 52.25 60.19 80.49 949  88.19
High Processor Usage 5241 62.21 78.99 99.9  88.28
High Memory Consumption 50.87 23.09 71.29 93.6 85.98
Battery Failure 44.09 51.83 75.36 87.6 8147
Low Solar Panel’s Efficiency 43.83 4527 74.92 93.1 8191
Antennas Misalignment 51.03 46.78 80.94 909  87.92
RF Cable Connector defected 51.67 56.87 81.64 90.7  87.57
Overall Accuracy 49.05 46.02 78.88 90.59  88.45
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Additional validation tests were performed with the data
of a mesh node collected during one month. This validation
database had two distinct phases, the first fortnight, in which
the node appeared to be in perfect state, and the second
fortnight, the moment when a battery fault occurred.

The C4.5 classifier was the first to be validated. The results
were not as expected, the real accuracy was under 65%, in
the best case, battery fault diagnosis. In the first fortnight the
accuracy was of 5% of the regular operation state diagnosis,
which indicates an overfitting to the training data. This model
was then discarded.

The SVM algorithm responded as expected in the first
fortnight, classifying 85% of the entries as regular operational
state. For the second fortnight 40% of the classifications were
indeed for battery fault and 37% were for low solar panel’s
efficiency. As previously presumed during SVM’s F-Measure
analysis, the distinction between battery fault and low solar
panel’s efficiency was proved a weak point.

Besides the F-Measure, another indicator of this assumption
was the confusion matrix for the SVM classifier presented in
Table VI. In this table, the columns are the real classes, while
the rows are the classifier predictions.

TABLE VI
SVM CONFUSION MATRIX
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regular operational state 8148 0 0 4 5 0 0

high processor usage 4 863 0 0 0 0 0

high RAM memory consumption 17 0 812 3 19 3 0

battery failure 15 0 2 3172 | 295 5 0

low efficiency of the solar panel 9 0 2 216 | 3436 1 0

antennas misalignment 0 0 0 6 1 4049 31
defects on the RF cable connectors 0 0 0 0 0 3 1724

Through the confusion matrix, it is possible to notice a cor-
relation between battery failure and low efficiency of the solar
panel. This correlation between these diagnoses represents a
possibility of error, as already seen in the validation. However,
the solution presented high reliability indicators, such as high
accuracy and F-Measure.

A battery fault diagnosis usually takes advantage of a
battery current sensor as a fundamental asset to verify the
battery capacity, instrument not used in this work. Another
noticed point was Battery Failure’s different causes, such as
lower capacity, higher inner resistance, among others [29]. In
the database population tests only the high inner resistance
was considered, while in the validation the cause was lower
capacity, which might have led to this misinterpretation.

Analyzing the likelihood of the output of each class by the
classifier, it was possible to see that in the Low Solar Panel’s
Efficiency classification cases the likelihood of this diagnosis
was around 60% of certainty, while for these same cases,

the probability for Battery Fault was 30%. To workaround
this problem, the solution was using as output the two most
probable causes of the diagnosis and their likelihood as a final
result.

This way the autonomous diagnosis solution for solar-
powered WMNs is feasible and satisfactory. Using the two
most probable causes as the SVM classifier result, a 93.7%
accuracy, measured as the ratio of correct classification in the
primary or secondary diagnoses, was achieved in its worst
scenario, battery fault.

V. CONCLUSIONS

This work presented a proposal for an autonomic solution
for FDD in solar-powered WMNSs, using Al techniques. To use
an Al approach a reduced scope of the work was determined
by the creation of a fault dictionary. As the fault dictionary
was created, the problem could be seen as a pattern recognition
problem, more specifically, a classification problem.

Several classification algorithms were considered and stud-
ied in the process. A performance evaluation method had to
be defined and the search for the most suitable classifier has
been carried on. For this purpose, the steps for knowledge
discovery in databases were followed. Five months of real
network tests were made to populate the database generating
a set of examples to be worked upon in order to produce
training, test and validation databases.

With the databases formed, we compared a number of well-
known classification algorithms for the problem, namely Naive
Bayes, Decision Table, k-NN, SVM and C4.5. The result of
this evaluation showed that the C4.5 and the SVM algorithms
had the best overall prediction performances, with accuracy
over 85%. This accuracy level indicates that an autonomous
solution is, indeed, feasible.

Their results were brought to a validation test. In this
test, the C4.5 presented overfitting characteristics, with poor
results when new data was used. While the SVM has shown a
good overall performance. An already expected weak point,
the Battery Failure detection was identified. This problem
was solved using a multi-classification solution - the two
classes with higher likelihood of success are presented to the
user. With this adjustment, the classifier presented the correct
diagnosis (between the two indicated) in all cases and the work
was considered satisfactory.

Our future work is to investigate an outlier detection and
the multi-class approach, since our final solution was in favor
of the multi-class. After those tests, we intent to integrate
the solution to MeshAdmin and perform tests for possible
adjustments and deployment in the REMOTE testbed network.
As a final goal, the solution will be implemented in the
production network of the REMOTE project.
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