A Network Access Control Solution Combining
OrBAC and SDN

Rafael Aschoff
Pernambuco Federal Institute of Education, Science,
and Technology (IFPE) - Pernambuco, Brazil
rafael.roque @palmares.ifpe.edu.br

Abstract—Standard Port-based Network Access Control (NAS)
with tagged Virtual Local Area Networks (VLANs) systems are
useful to authenticate users within an isolated network environ-
ment. This approach on its own, however, lacks the flexibility
and granularity level that new generation networks based on
SDN (Software Defined Networking) can provide. The flow-
based access control provides a more appropriate granularity
to enforce network policies. In this paper, we propose a novel
solution named SDN-based Network Access Control (S-NAC) that
provides authentication and authorization of clients and servers
based on high-level policies enforced at flow level. The solution
has been implemented, deployed and tested over emulated and
real networks.

I. INTRODUCTION AND MOTIVATION

The security of technology systems information is a key
aspect in any organization, especially for its critical infrastruc-
ture. Over the past few years, we have observed a staggering
increase in the number of cyber-attacks, their sophistication,
and damages caused. Access control strategies are able to
deny access from unauthorized clients to the system and
narrow what legitimated users may effectively access in a
given environment, reducing the range of security breaches
[16]. A strong NAC process is expected to reduce or even to
avoid losses inherent from intentional and accidental security
breaches.

Access control encompasses three sub-processes, namely,
authentication, authorization, and accounting, frequently re-
ferred to by the initials *’AAA’. Networking systems provide
AAA services usually by implementing the IEEE 802.1X
standard, the most widely used framework for port-based
Network Access Control (PNAS). Together with tagged Virtual
Local Area Networks (VLANS), the standard provides a good
foundation to support AAA for devices wishing to attach to
a computer network. On the other hand, the standard PNAS
mechanism, and more broadly speaking, the traditional model
of computing infrastructures, is strongly based on hardware
components. Until recently, this model was presented as
sufficient to meet the demands of the market or computer
applications in general. However, the drawbacks of models
strongly dependent on hardware specifications have started to
show to be counterproductive since they present a limiting
factor for new business opportunities[10].

In this context, the need for the revitalization of computing
infrastructures arises, eliminating the direct dependence on

978-3-901882-89-0 @2017 IFIP

483

Daniel Rosendo, Marcos Machado
Alexandre Santos, and Djamel Sadok

Universidade Federal de Pernambuco (UFPE) - Recife, Brazil

Email: {daniel.rosendo, marcos.machado,
alexandre.santos, jamel} @ gprt.ufpe.br

specific devices and enabling the flexibility of computing
resources [5]. Software Defined Environments (SDE) allow
solutions that were not practical or possible a few years
ago. The SDN paradigm and its advantages over traditional
networks were already exploited by some NAC solutions.
However, they are often in their development initial stage or
focus only on specific areas, such as high-level network policy
programming languages, SDN applications for security policy
enforcement, or authentication processes [11].

It is plausible to imagine a network with many servers,
clients, and services, where some clients can access the email
service, whereas a set of other clients cannot establish a con-
nection to any host in a sub-network. Tasks like expressing the
aforementioned scenario through network policies, managing
security rules, as well as handling potential conflicting between
them, become frequent and should be taken into account.
Thus, it is necessary to create mechanisms to permit network
managers to define, manage, and enforce those interaction
policies in a way that easily says which operations can be
performed by each network entity and decide which entity is
permitted or prohibited to talk to each other [1].

As part of our proposed solution, we have used the OrBAC
(Organization Based Access Control) model [8], a consol-
idated and widely used framework that can be applied in
many scenarios due to its abstract characteristic. This paper
presents a practical and complete approach named S-NAC
(SDN-based Network Access Control), a solution that provides
authentication and authorization of clients and servers based
on high-level policies enforced at flow level. The solution has
been implemented, deployed and tested over emulated and real
networks.

The rest of this paper is organized as follows. Section II
presents a general description of the solution proposed in
this paper. Such general description is further developed in
Sections III, IV , and V with the processes of the solu-
tion, components and interactions between them. Section VI
presents the evaluation studies performed on our solution.
Section VII performs an analysis of the related work. Finally,
Section VIII concludes the paper and presents the next steps.

II. S-NAC OVERVIEW

S-NAC is a proposal for fine-grained control of network re-
sources based on organizational policies designed for software-

484

defined computer networks (SDCN). The S-NAC solution is
composed of a set of applications that interact within the
context of an SDCN to allow the establishment of network
flows identified by the requesting hosts and required services,
thus controlling access to network resources.

tication VPN

A

Wireless Clients

Link Ethernet
Link Sem Fio
Link Légico
Tunel VPN
—_———

Access Point

Fig. 1. S-NAC Overview

Figure 1 shows the general idea behind the access control
used in the S-NAC. At the center of the solution, we have
one or more OpenFlow switches which are managed by
an SDN Controller. There are different classes of entities
for which S-NAC may potentially provide control through
OpenFlow switches, which act as Policy Enforcement Points
(PEP). External hosts, local wired and wireless hosts, as well
as servers, need to be authenticated to have access to the
controlled network.

Authentication is performed using a server with functions
similar to those from RADIUS. IEEE 802.1X packets ex-
changed between supplicants and the authentication server are
monitored by SnacAgent running in the controller. In the case
of external customers, authentication is done through a VPN
server and do not follow the 802.1x process. In both cases,
hosts receive a unique ID that is used in the authorization
process.

OpenFlow switches have multiple tables where flow entries
are installed. Our SnacAgent manipulates such table’s flows
through the SDN controller. In other words, the SnacAgent
is able to add, update or remove entries in any flow table of
switches managed by the SDN controller where our SnacAgent
is deployed. The controlled switches use these set of flow
rules to establish the actions to be performed upon receiving
a packet.

Authorization is controlled in our solution by such entries
and related actions (block or deny, for instance), which are
translated from a set of abstract policies defined by the net-
work administrator. These policies are specified using OrBAC
model, which permits modeling user, roles, and components,
such as servers or specific services.

Overall, our solution forces both client and servers to
authenticate themselves through the SnacAgent and controls
access to network resources by dynamically enforcing policies
previously defined for these clients and servers.

The next sections detail the specific processes of authenti-
cation, authorization, and accounting provided by S-NAC.

III. AUTHENTICATION

As previously mentioned, S-NAC provides authentication
via a mechanism similar to the IEEE 802.1X standard. From
the point of view of a peer (client or supplicant), it is exactly
the same process. This simplifies the mechanics of deployment
of our solution since most current operating systems already
implement the required tools and mechanism to support PNAC
as specified in the IEEE 802.1X standard.

The usual process, however, requires a number of functions
performed by legacy switches, access points or routers. Our
solution extracts such functions from the network devices and
provides them using our SnacAgent in addition to a special
authentication server.

The authentication server chosen for our prototype was
the hostapd [14]. The hostapd does the heavy lifting for
us in terms of the authentication process, however, we still
require the interception of the exchanged packets (performed
by our SnacAgent) in order to enforce the authentication (into
OpenFlow Switches). Shortly after a successful authentication
process, our SnacAgent allows DHCP traffic for the peer in
question. Information regarding the peer is collected through-
out the entire authentication process and subsequent DHCP ne-
gotiation, including MAC address, physically connected port,
802.1X identifier, and IP address. These values, together with
the authentication status provided by the authentication server,
give us the information we need to start the authorization
process.

In order to reduce the potential damages caused by hack-
ers, clients have to re-authenticate and can also be directly
disconnected from the network. The re-authentication timer
is configured in our SnacAgent. To deny access to a client
regardless of the timer, an administrator would have to use our
graphical interfaces to directly disconnect it and also update
the set of policies (in case one wants to prevent or alter the
privileges of such client).

As one may notice, impersonating the authentication server
can jeopardize the authentication process. In order to mitigate
such issue, we decided to use a prioritized list of authentication
servers that must be directly registered on our SnacAgent.

Apart from monitoring the 802.1x packets, the SnacAgent is
also responsible for informing the controlled switches where
to forward these packets in order for them to reach the desired
authentication server. Considering that we have control over
where to forward 802.1x packets and from where flows are
considered valid, compromising our solution by impersonating
a registered authentication server becomes more difficult.

IV. AUTHORIZATION

Abstract organizational policies provide a very friendly way
to specify the expected behavior of today’s complex computer

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017).: Mini-Conference

networks. In our solution, we employ the OrBAC framework
due to its flexibility in specifying highly abstracted policies as
well as its power to infer conflict free and concrete rules.

These concrete rules represent the inferred permissions and
prohibitions of all specified clients, servers, services in a
server, and more generic rules that contemplate networks. It
is important to note, however, that while these are concrete
rules, they are still not fully specified flow rules. For instance,
these rules do not include network parameters such as switch
port or client IP address.

In fact, it is not a trivial task to align organizational level
policies with network-level policies. In any case, a translation
mechanism is necessary. In S-NAC, such translation is per-
formed by an OrBAC module inside the SnacAgent, alongside
an external application named OrBAC Server.

The OrBAC Server keeps a database with the abstract
policies stored as well as provides concrete rules by demand
through a REST API. Upon request of the authentication
module, the OrBAC module queries all concrete rules that
affect the peer in question, translates them into network
rules, that are OpenFlow table entries, and installs the entries
throughout the required controlled switches accordingly.

1) Policy Definition: In the OrBAC model, the first step
to create a security policy is to define an Organization entity.
This organization represents the domain in which the abstract
policies will be defined. The Role, Activity, and View abstract
predicates also need to be defined for this organization.

The second step involves the specification of concrete
entities of the network domain, including users, hosts, services,
etc. After defining the concrete entities, a link between them
and an organization is necessary. In order to do so, the
relationships Empower, Consider and Use must be used to
link Subjects, Actions, and Objects respectively.

Finally, the relationship Define specify Contexts which are
situations or requirements that can be achieved or not, reflect-
ing the actual state of an abstract rule and, consequently, its
inferred concrete rules. The result of all these steps is a 5-nary
predicate (organization, role, activity, view and context) of the
OrBAC model. Abstract permissions, prohibitions, as well as
obligations rules, can be specified following this guideline.

Organization: As we said, an Organization is the first
entity that must be defined in order to create an abstract
rule. We modeled the Organization as a network environment.
The remained predicates of the 5-nary model must be created
and assigned to this Organization (represented as our network
topology) in order to create abstract security rules for the
network environment.

Role and subject: A Role is a set of one or more subjects.
Plenty of subjects could be grouped by a role, this allows
reducing the number of security rules and consequently
simplifying the policy management. The same is applied to
the Activity and View predicates. Here, as an example, we
defined the AdminUser and StandardUser as our roles and
with them we empower the respective users of our network
environment. The relationship Empower creates an association
between subject, role and organization, as defined below.

Empower(Topology, Bob, StandardUser)

Activity and action: The Action entity represents actions
between subjects and objects, that means, it represents which
actions can be performed by a subject over an object. We
defined the oneWay and twoWay actions of activity Access.
Here, oneWay and twoWay access determine the flow of the
communication, unidirectional or bidirectional respectively.
The link between action, activity, and organization is created
by the Consider relationship.

Consider(Topology, twoWay, Access)

View and object: Objects can be represented as inactive
entities of the network, for example, network services. Here
we represented objects as services such as WebMail, FTP,
SSH, etc. The relationship presented bellow includes an
example for the WebMail service.

Use(Topology, webMail, Services)

Context definition: In this work, we do not cover the
definition of dynamic policies. Here, we use the default context
of the OrBAC model, meaning that the state of all rules
defined will not be changed and its state will always be active,
resulting in static network security rules. The definition of
dynamic policies is an ongoing work that we plan to cover in
future works.

Class definition: A class definition can be defined with
many attributes that may be assigned to concrete entities,
allowing them to obtain valid network parameters and charac-
teristics. We defined the following five classes (Client, Host,
Network, Resource, and Any), as depicted in Figure 2. It is
important to note that those attributes were created based on
the list of required match fields of the OpenFlow protocol
version 1.4.0 [15].

RESOURCE HOST NETWORK

Fig. 2. Network attributes in class definition

Particular attention must be given to the ID attribute,
presented in both Host and Client classes. As previously
mentioned, our authentication module keeps records of the
credential of the authenticated peers, such as their IDs. When
a client or host authenticates on the network, it is through this
ID attribute that the match occurs, allowing the enforcement of
particular rules. Additional attributes are obtained as a result
of the authentication process, such as IP address, switch, MAC
address, and switch port.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017).: Mini-Conference

485

486

2) Policy Repository: In our proposed solution, the S-NAC
Agent get policies from an external OrBAC Application. This
application uses an XML file to store only the configured
network abstract policies. When this file is loaded by our
application the OrBAC engine automatically infers the rules
to be applied to the network.

3) Policy Decision Point: Here, S-NAC checks for abstract
conflicting policies. The conflict of policies is a common
problem, mainly when defining policies to high and complex
network environments. This problem can be solved by setting
priorities for each security policy. Therefore, we specify a
priority scheme based on the aforementioned five classes
(Resource, Client, Host, Any, and Network), where the first
three have higher priorities and the others lower priorities.
Figure 3 depicts this scheme.

1 2 3

. ' g N
KNET\NORK / ANY } L CLIENT / HOST [RESOURCE ‘
v . _ \. S
L= o VA A

, < ; \ ’ ~
NETWORK/ANVJ LCLIENT/HOST J L RESOURCE |

\ J
\. . p

10000 20000 30000

Fig. 3. S-NAC priority scheme

As a primary example of conflicting policies, suppose that
the network policy manager defines the following abstract
permission and prohibition:

Permission(Topology, StandardUser, twoWayAccess, HostA,
default_context)

Prohibition(Topology, StandardUser, oneWayAccess, Network
A, default_context)

Assuming that the subject Bob is empowered in StandardUser
role, as well as, the HostA is inside NetworkA, the inferred
concrete policies says that: ”In Topology, Bob is permitted
to access HostA”, and “In Topology, Bob is prohibited to
access "NetworkA”, resulting in a conflict. Therefore, the
enforcement of these two rules on a switch will result in
two entries in a flow table, each one with its assigned flow
priority, 40000 and 20000 respectively, based on our priority
scheme. This way, incoming packets will first match flow
entries with high priorities, in that case, the permission flow
rule.

4) Policy Translation: Once we have specified our network
environment in the OrBAC model and created our security
policies, it is time to make the inferred OrBAC concrete
rules understood by the OpenFlow switches in order to
make those rules effective and usable. This means that the
OrBAC concrete rules must be translated into OpenFlow flow
rules, so that them can be write into the OpenFlow network
switches in the topology. In Section VI we made experiments
about the required time to execute this conversion. The

following example show how an OrBAC rule will look like
once translated to OpenFlow flow rule.
Abstract rule: Permission(Topology, =~ AdminUser,
twoWayAccess, sshService, default_context)

Concrete rule: Is_permitted(Alice, twoWay, sshService)

OpenFlow flow rule (ovs-ofctl): cookie=0x29696000000
00000, duration=11.582s, table=0, n_packets=0, n_bytes=0,
hard_timeout=180, idle_age=11, priority=60000,tcp,nw_src
=10.0.3.1,nw_dst=10.0.3.4,tp_dst=22 actions=NORMAL

In this example, we are assuming that Alice is an AdminUser
in a machine with Ip address 10.0.3.1, and the sshService
is a service in a machine with Ip 10.0.3.4 on port 22. The
resulting OpenFlow rule means that all packets with source Ip
10.0.3.1 and destination port 22 will be forwarded to machine
10.0.3.4.

5) Policy Enforcement Point: The security policy enforce-
ment is the last step of our policy based network management
process. It consists of deploying all the high level OrBAC
security rules defined by the network manager.

In our implementation, we used different strategies to
enforce the policies, each strategy depends on the OrBAC
concrete rule entities (Subject, Action, and Object) and its
associated class definition (Resource, Client, Any, Network,
and Host). Figure 4 shows the enforcement of the following
three security policy examples.

Policy 1: Permission(Topology, Alice, twoWayAccess,
HostA, default_context). In this example, we have a client-
to-host permission rule. This means that, this flow will be
enforced in a path from Alice’s switch to HostA’s switch, and
due to the twoWayAccess activity each switch must have two
flow rules, the input and output flows.

Policy 2: Permission(Topology, Any, twoWayAccess, WebMail,
default_context). Here, we have an any-to-resource permission
rule. This means that, this security rule will be enforced in
all switches in the topology and the twoWayAccess activity
means that each switch must have the input and output flow.

Policy 3: Prohibition(Topology, Student, oneWayAccess,
Network_Professor, default_context). This is a client-to-
network prohibition rule. In that case, only the switches in
which a Student is connected to must have this single flow
rule, once this is an oneWayAccess policy. We highlight
that just one OpenFlow flow rule is enough to block the
communication.

V. ACCOUNTING

Although not a traditional accounting process per si, S-NAC
provides a way to monitor both past and current controlled
traffic. Statistics are generated for every active flow entry
installed in all controlled switches. Whenever a flow expires

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017).: Mini-Conference

SECURITY POLICIES / PRIORITY
& rouicy 1/ 40000

|ml POLICY 2 / 30000

IE E
ALF[HEN"H(ATOR DTCP
C 10.0.2.0/8 ggg; 10.0.3.0/8

22 Cpmdee SR T
| H| | ’_|‘|H |

TR LR 1
STUDENT B

ALICE STUDENT C SSH & HTTP SERVICE

i poLicy2/20000

(PROFESSOR’S NETWORK)
10.0.1.0/8

HOST A EMAIL SERVICE STUDENT A

Fig. 4. S-NAC security policy enforcement.

or is directly removed, its statistics are saved for future
analysis. Statistics include creation time, expired time, number
of matches, set of actions, switch id, priority, table id, number
of packets, number of bytes, idle time out, hard time out,
cookie and flow duration in second and nanoseconds.

Since the flow entries are directly related to the available
policies and set of active clients, the provided statistics give
a way to analyze the conformance or attempted deviation
from the expected behavior of the controlled network. It is
important to notice that the main focus of the S-NAC solution
is the authentication and authorization steps. A full network
accounting solution for SDN networks with the knowledge
of highly abstract policies is still an open question and might
pose as an opportunity for future enhancements of the S-NAC.

VI. EXPERIMENTS AND RESULTS

To analyze S-NAC, we first compare the S-NAC with legacy
networks by measuring how long would it take to access a
simple resource on the network considering one is still not
connected. Then, we evaluate the required time to convert a
high-level policy defined in S-NAC to a low-level OpenFlow
flow rule. In order to setup our SDN network we used a
Lanner Network Device model FW-8760 with eight physical
Ethernet ports running the Open vSwitch, a number of Desktop
machines, and a set of U2 Servers. An additional legacy switch
with support for RADIUS was also part of our testbed.

The first evaluation refers to the total required time to
access a network resource for an unauthenticated client. In
the S-NAC scenario, this time involves the following steps: (1)
client authenticates into the network using WPA_Supplicant;
(2) client negotiates an IP address with the DHCP server;
(3) policies from the client are retrieved from the OrBAC
Application; (4) the OrBAC module translates policies into
flow rules; (5) flow rules are enforced in the network; finally,
(6) the client uses the cURL command to request a web page
and the process finishes when it receives an OK HTTP status.
Steps (3) and (4) are not present for the legacy network and
step (5) is much simpler, consisting only of the liberation of
a physical switch port and VLAN assignment.

Figure 5 shows a time series comparison between our S-
NAC solution with the legacy networks scenario. As one can
observe, our solution authentication time is greater than the

5000.00
4500.00
4000.00
3500.00

Z 300000

o 2500.00

£ 200000
1500.00
1000.00

500.00
0.00

Total Required Time (SNAC vs RADIUS)
000000

0-0-0-0-0-0-0-0-0-0-0-0-0< >-0-0-0-0-0-0-

o-o000e

—&—SNAC —@—RADIUS

Fig. 5. Time to connect to the network and access a resource.

legacy network, which was expected since our manageable,
flexible, dynamic, and fine-grained solution needs to translate
high-level rules into OpenFlow network rules and enforce the
generated rules into the switches. The total time for the SNAC
scenario varied between 3.2 and 4.1 seconds and in about
90% of the cases such time were less than 3.9 seconds. It is
important to note, however, that this is our worst case scenario
and only happens once. The total time includes a series of
processes such as authentication, IP allocation, authorization,
and service request and response.

Our next experiment, show in Figure 6, refers to the
translation of different high-level security policies based on
the defined five classes (Client, Host, Network, Resource, and
Any) to low-level OpenFlow flow rules. This experiment was
conducted in a Mininet [12] emulated environment, with a
client node, a Web server resource, both connected to an
OpenFlow switch, and the HP VAN SDN[7] controller. We
chose the Mininet network emulator due to its flexibility in
scenarios and scripts deployment, which helped during the
experiments.

The results show a linear increase of the translation time for
the various types of policies considered. Moreover, policies
with a greater number of OpenFlow fields requires a slightly
larger time to translate (see Figure 2). This is due to the
additional computations need to retrieve the information and
create the flow rule. Finally, the required time to convert a
single policy varied between 1.62ms to 2.19ms, while for
32 policies we needed between 8.04ms to 25.06ms. In order
words, even a large set (32) of very specific policies that deal
with clients and resources directly (client-to-resource) only
takes a few milliseconds.

VII. RELATED WORK

Overall, solutions based on the standard computing in-
frastructure model share some common drawbacks related to
the lack of flexibility. Solutions that employ non-controlled
switches, for instance, are strongly attached to the physical
port of such switches and changes made on the policies
base will not take effect until the user authenticates again.
Moreover, it is usually not possible to properly enforce the
access control when more than one client is attached to the
same physical port. On top of that, most of these solutions
tend to use VLANSs as the underlying mechanism for policy

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017).: Mini-Conference

487

488

- any-to-host .

- client-to-host .
any-to-resource L

- client-to-network -

N 7| -%- any-to-network .

- client-to-resource .

15

Time in miliseconds (ms)
\
A

Number of rules

Fig. 6. Time to translate S-NAC security policy to OpenFlow rules.

enforcement, however, the maximum number of 4096 VLANSs
may be a real limitation in some scenarios.

Our SnacAgent does not suffer from the aforementioned
limitations. Since it is able to update, remove and create
flow rules on-the-fly and dynamically update the controlled
switches, hence changes in policies do not have to wait for
any user activity. Physical ports are just one of the parameters
among many used to identify a client. Thus different roles
or policies can be enforced for different clients connected to
the same port. Finally, while our approach can benefit from
the use of VLANs as a resource, its use is by no means a
requirement.

Some approaches for NAC have already taken into account
the SDN paradigm. Recently some works have done attention
regrading the definition of network security policies using
a high-level language in order to govern rights to network
entities. Those works consists in using a high-level language
to specify network policies that will be later, translated to
SDN OpenFlow flow rules, and then enforced on underlying
network topology (data plane) by the controller.

Batista et al.[4] proposed a framework to manage an Open-
Flow network using the Ponder language. Ponder permits
the management and specification of security policies for
distributed systems. The main drawback of that work is the
absence of a policy conflict resolution mechanism. Also,
they did not make experiments in translating the proposed
PonderFlow language in OpenFlow rules, in order to validate
they approach.

Kim and Feamster[9] proposed Procera, a framework that
uses a high-level language to define policies to be applied in
SDN networks. The framework also focuses in event-driven
networks, a characteristic that requires dynamic network re-
configuration. Scalability (increasing the number of rules) and
performance (time required to translate the high-level language
to OpenFlow rule) evaluation should be done to validate the
framework.

Han et al.[6] proposed a multi-layered policy management

framework for SDN. The framework relies on an application,
control and data layers of SDN network architecture. The
framework weakness is about not reacting to policy updates.

Lara and Ramamurthy [13] proposed OpenSec, a security
framework to automate implementation of security policies.
They also focus on reacting automatically to network security
alerts. In OpenSec, the network operator define security rules
that determine for which processing units (DDoS, DPI, and
Encrypt) a traffic must be re-routed to. While, in this work
we define security policies that determines which operations
can be performed by network entities.

VIII. CONCLUSION AND FUTURE WORKS

In this work, we proposed a NAC solution which combines
features of the SDN paradigm with OrBAC model. We believe
that our approach complements previous work by providing a
complete solution based on commercial applications while im-
proving the flexibility and expressiveness of the authentication
and authorization processes.

The S-NAC, however, is not without its limitations. While
it is not the focus of this work, legitimate uses could cause
some damages. Even though we are able to easily update
the policy database and disconnect some users, there is no
mechanism in place to detect or prevent malicious behavior
of authorized users. We also do not prevent social engineering
and other schemes which will indirectly allow non-authorized
users to access confidential information or even some network
resources.

While our approach enables authentication of more than
one user per physical port it is important to ensure the
security of such shared channel, otherwise, an attacker could
potentially impersonate some client. To address this particular
vulnerability, one could use MACSec and the Secure Device
Identity, defined in the standards IEEE 802.1AE [2] and IEEE
802.1AR [3] respectively.

Moreover, the work allows dynamic changes of policies
which impact current and future clients, but does not take
into account dynamic contexts yet, such as time of the day,
for instance. As future works, we plan to extend S-NAC to
support the definition of dynamic security policies, through
the use of Contexts in the OrBAC model.

The main scalability concerns are arguably the time to
translate policies and the number of rules on the switches.
Our translation process only takes a few milliseconds and our
wildcards and on-demand policies help reducing the number
of rules. We still have some scalability issues regardless. In
our future work we will try to reduce table entries and make
use of the high availability functions provided by some SDN
controllers.

We also plan to create mechanisms that aggregate the
enforcement of security policies to save switch’s resources,
such as the TCAM memory. With the concept of hierarchical
policies in OrBAC model along with others techniques, we
can achieve this goal.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017).: Mini-Conference

[1]
[2]

[3]
[4]

[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

Framework for SDN: Scope and Requirements. Technical Recommen-
dation. Version 1.0. ONF, 2015.

I. S. Association et al. Ieee 802.1 ae. Media Access Control (MAC)
Security, 2006.

1. S. Association et al. Ieee 802.1 ar secure device identifier, 2009.

B. L. A. Batista and M. P. Fernandez. Ponderflow: A new policy
specification language to sdn openflow-based networks. International
Journal on Advances in Networks and Services Volume 7, Number 3 &
4, 2014, 2014.

Y. Fan, D. Xiao, X. Mei, C. Liu, X. Yan, and C. Hu. A software-defined
intelligent method for antenna design. In Dependable, Autonomic and
Secure Computing (DASC), 2014 IEEE 12th International Conference
on, pages 470-474. 1IEEE, 2014.

W. Han, H. Hu, and G.-J. Ahn. Lpm: Layered policy management
for software-defined networks. In Data and Applications Security and
Privacy XXVIII, pages 356-363. Springer, 2014.

HP. Technical report, HP SDN controller architecture. Hewlett-Packard
Development Company, L.P., Tech. Rep., September, 2013.

A. A. E. Kalam, R. Baida, P. Balbiani, S. Benferhat, F. Cuppens,
Y. Deswarte, A. Miege, C. Saurel, and G. Trouessin. Organization based
access control. In Policies for Distributed Systems and Networks, 2003.
Proceedings. POLICY 2003. IEEE 4th International Workshop on, pages
120-131. IEEE, 2003.

H. Kim and N. Feamster. Improving network management with software
defined networking. Communications Magazine, IEEE, 51(2):114-119,
2013.

K. Kirkpatrick. Software-defined networking. Communications of the
ACM, 56(9):16-19, 2013.

D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig. Software-defined networking: A comprehensive
survey. Proceedings of the IEEE, 103(1):14-76, 2015.

B. Lantz, B. Heller, and N. McKeown. A network in a laptop: Rapid
prototyping for software-defined networks. In Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, Hotnets-IX,
pages 19:1-19:6, New York, NY, USA, 2010. ACM.

A. Lara and B. Ramamurthy. Opensec: A framework for implementing
security policies using openflow. In 2014 IEEE Global Communications
Conference, pages 781-786. IEEE, 2014.

J. Malinen et al. hostapd: Ieee 802.11 ap, ieee 802.1 x. Technical report,
WPA/WPA2/EAP/RADIUS Authenticator. online: https://w1.fi/hostapd/,
2014.

ONF. Openflow switch specification version 1.4.0. Technical report,
ONF TS-012, 2014.

R. S. Sandhu and P. Samarati. Access control: principle and practice.
Communications Magazine, IEEE, 32(9):40-48, 1994.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017).: Mini-Conference

489

