978-3-901882-89-0 @2017 IFIP

SDN Middlebox Architecture for Resilient Transfers

Pradeeban Kathiravelu
INESC-ID Lisboa
Instituto Superior Técnico
Universidade de Lisboa, Portugal
pradeeban.kathiravelu @tecnico.ulisboa.pt

Abstract—Leveraging Software-Defined Networking (SDN)
and middleboxes, application-level policies can be propagated
to the network. SMART is an SDN middlebox architecture that
differentiates network flows based on tenant inputs. By leveraging
FlowTags software middlebox in addition to the OpenFlow rules,
it supports a larger scope of tenant preferences and rules from
the application layer to alter the network flow behaviour. It thus
ensures timely delivery of priority flows by dynamically diverting
them to a less congested path or even cloning the packets of
higher priority flows along with the original flow.

I. INTRODUCTION

Enterprise tenant network flows have various constraints
to meet. SMART is an architectural enhancement aiming to
offer a resilient transfer for critical flows, based on tenant
preferences that are passed to the network layer from the
processes or applications executing in the servers. SMART
leverages redundancy through SDN and FlowTags [1] mid-
dlebox architecture to ensure timely delivery of critical flows
following: i) a divert approach that changes the course of
the latter subflow of flows in an alternative direction towards
the destination in case of a detected congestion or a network
failure in the middle of a transfer, typically identified through
a perceived delay in flow completion time as opposed to
an estimate or a specified deadline/threshold; or in the same
situation for higher priority flows ii) a clone approach that
creates a duplicate of the latter subflow and routes it in an
alternative path along with the original flow unmodified.

Figure 1 depicts the SMART deployment, separated into a
1) control plane consisting of the FlowTags-capable SDN con-
troller and SMART components, and a ii) data plane consisting
of the nodes - servers/hosts and OpenFlow-capable switches.
The switches construct the network by connecting each other
as well as the servers where the flows originate. Originally
a POX extension, we redesign the FlowTags controller as an
OSGi bundle to be deployed in Apache Karaf container of
OpenDaylight. This modularized architecture enables plugging
in of SMART components in control plane.

FlowTagger and Rules Manager are SMART components
that are developed as FlowTags-capable software middleboxes.
While in a typical FlowTags deployment an existing middle-
box such as an intrusion detection system (IDS) is extended
to read and write the tags, these SMART components have
no specific functionality other than handling the tags and
communicating with the FlowTags controller by invoking its

Luis Veiga
INESC-ID Lisboa
Instituto Superior Técnico
Universidade de Lisboa, Portugal
luis.veiga@inesc-id.pt

API to generate or consume the tags in a unified manner, as
presented by the FlowTags architecture [1].

10. Tag Consumption Control Plane

FlowTags-Capable Controller 12. Update Controller Data Tree,

[
9. Tag Consumption Query]
FlowTags OpenDaylight 8. Trigger Rules Manager ESI:ART
C C e > FlowTags-capable GLETTEr
N A S Middlebox
A\ . il
;\ %@ ~ N 11. Forward Algorithm Input
g 2 M
\\w—a ¥

Data Plane

\% “ — Host,

&, :
Destination Server
SMART Middlebox o é

N
1 ¥ Data Packe

OpenFlow-capable
Switch,

Host,: Origin Server

Fig. 1. SMART Deployment

FlowTagger is a generator/writer of the tags, similar to
the FlowTags-capable middleboxes for NATs. It is deployed
in each of the hosts. Packets of a selected subset of flows,
defined as the priority or critical flows according to the
tenant applications, are tagged while the other flows are left
unmodified. Hence, the entire SMART enhancement workflow
is initialized only on the priority flows as identified from
the application layer. Following the packet processing walk-
through for tag generation, FlowTagger initially sends the tag
generation query to the FlowTags controller, and receives the
tag generation query response. FlowTagger modifies the packet
headers accordingly, and the data packets are transferred in its
original path through the switches.

OpenFlow switches in the flow path communicate with
the OpenDaylight controller through the OpenFlow API. A
packet-in message is sent by the switches to the controller, and
in turn the switches receive the modify flow entry message
from the controller. The data flows continue through the
intermediary nodes/switches. Later, at a policy violation, as
identified from the tagged packets of the priority flows, the
controller is invoked again through the OpenFlow API. This
further triggers the Rules Manager in the control plane.

Rules Manager is a consumer of tags, similar to the
FlowTags-capable firewalls that reads and interprets the tags.
As only the first packets of the violating flows are sent to
the control plane, control plane becomes the ideal location to
retrieve the tags from the controller and read them by the Rules
Manager, rather than as an additional middlebox in the data
plane. Rules Manager sends the tag consumption query and

560

receives the tag consumption response from the FlowTags API.
It further forwards the contextual information of the packets
of the flow in question to the SMART Enhancer, which is
responsible for computing the routing decisions and propa-
gating them to the SDN controller. Thus, the OpenDaylight’s
data tree, the data structure storing distributed objects inside
the controller, is updated by the Enhancer. Thus the controller
updates the flow tables based on the Enhancer output.

II. SMART REDUNDANCY IN NETWORK FLOWS

A set of algorithms has been developed as part of SMART
Enhancer that is deployed along with the extended FlowTags-
capable OpenDaylight SDN controller. SMART Route, the core
routing procedure is described in Algorithm 1. For the ease of
expression, Algorithm 1 (and the rest of this section) assumes
clone approach to be the default, while referring to both clone
and divert approaches. The latter subsets of packets of priority
flows, known as subflows, are diverted/cloned when the current
routing fails to complete the transmission of the flow within
the stipulated soft limit. These limits, set by the controller on
the switches, will trigger a communication to the controller
from the switches when a violation of a hard limit or threshold
is imminent. Soft limit parameters are often modelled as a
fraction of the respective hard limit parameters such as flow
completion time. Tags such as priority and SLA parameters
are added to the packets of the flows to provide the additional
information required in accomplishing this.

Algorithm 1 SMART Enhancement
. procedure SMART Route(flow, origin, dest)
: repeat
BaseRoutingAlgorithm(flow, origin, dest)
if (flow.policies.isThresholdMet()) then

1
2
3
4
5: cloneOrigin < markBreakPoint(flow, origin,dest)
6
7
8
9

cloneDest < findCloneDest(flow, flow.status)
clonedFlow <+ cloneFlow(flow, cloneOrigin, cloneDest)
flow.status.update(cloneDest, cloneOrigin)
: until (flow.allReceived(cloneDest) or
flow.allReceived(dest))

mergeFlows(flow,clonedF'low)

4

The BaseRoutingAlgorithm (line 3) refers to any underlying
routing algorithm such as Dijkstra’s shortest path algorithm
or equal-cost multi-path (ECMP) algorithm, which is to be
enhanced by SMART. SMARTRoute routes the flows from
the origin to the destination entirely using the BaseRoutin-
gAlgorithm unless a threshold defined in the flow policies is
met. The thresholds can be defined as system-wide policies,
such as minimal throughput and latency, in network system
and individual flow level. A skyline approach [2] is assumed
in the presence of conflicting tenant-specific, flow-specific, or
system-wide policies, to find the best possible compromise
considering all the requirements. If a threshold is met (checked
in line 4), the SMART enhancements are invoked on the flow,
to mitigate the possibility of an SLA violation. Hence, the
SDN controller reroutes the subflow in the new alternative

route towards the clone destination, or forwards the packets
of the subflow in both the original and alternative routes.

A node and a packet are chosen as the breakpoint node
and packet respectively, using the markBreakPoint() invoked
in line 5. Having the breakpoint node as the origin, a subflow
is cloned or diverted starting from the breakpoint packet to
the rest of the flow. The destination of the cloned or diverted
subflow is defined as the clone destination, where the subflow
is merged with the rest of the flow to reconstruct the original
flow. findCloneDest() (line 6) decides the clone destination
based on the flow and its status consisting of information
potentially related to the policy violation. A subflow is cloned
by cloneFlow() (line 7).

The status of the flow is updated to the controller through
flow.status.update() (invoked in line 8) as the tags are read
by the middlebox architecture. Flow status consists of the
information crucial for the reconstruction of the original flow
at the flow destination, such as the sequence number and the
original parent flow. The cloned flow status updates enable
network traffic monitoring from the controller, which can
further be propagated to the presentation layer through the
controller northbound APIL.

Flow Reconstruction: The flow reconstruction phase
waits till all the packets necessary to recompose the original
flow are received at the clone destination or the final des-
tination (as checked in line 9). Once the minimum packets
necessary to completely reconstruct the flow are received, the
original flow is reconstructed by invoking the mergeFlows()
operation (line 10). If the clone destination is different from
the original destination, the recomposed flow continues in its
original route towards the destination. Sequence numbers and
the status indicating the parent flow from the flow packets are
leveraged in reconstructing the flow. Once the original flow
is received or reconstructed at the clone destination, duplicate
packets are dropped on the fly.

Clone approach minimizes the extent of the necessity to
reconstruct the flow; if all the packets from the original flow
are received before the packets from the clone, the clone
will be dropped. For the divert approach, and for the clone
approach if the packets of the cloned flows arrived earlier, the
flow will be reconstructed by merging the packets from the
diverted or cloned subflow to the packets of the original flow
that have already arrived.

The following priority flows of the same route may be repli-
cated and rerouted, or diverted in the origin, in an alternative
route. Thus, while a fraction of the initial short flows may still
violate SLAs due to the time overhead imposed by the cloning
and recomposing of the flows, following flows will be able to
avoid the violating route altogether. When flows created by
SMART replicate the entire flows, only the first of the flows
to arrive will be considered at the destination. This replicate
approach is a special case of the clone approach, where flow
breakpoints and reconstructions are not applicable as there is
no subflow to merge. As the replicate approach resends the
entire flow from the origin to the destination in one or more
alternative routes, the necessity for recomposing and packet-

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Short Paper

561

562

level manipulation is avoided, albeit with more redundancy.

SMART Breakpoint: Breakpoint is a pointer to the node
and the flow where the subflow is cloned. The controller
chooses the breakpoint dynamically, and writes rules on the
breakpoint nodes to divert or clone the upcoming packets of
the priority flows. Information on breakpoints are not stored
statically in the flows or the controller beyond the time frame
of subflow construction. Algorithm 2 elaborates on marking
a breakpoint for the flow - choosing the exact breakpoint
node and packet from which the flow is to be included in
the diverted or cloned subflow.

Algorithm 2 Marking the Breakpoint
1: procedure MARKBREAKPOINT(flow, origin, dest, policies,
links)
for (link in flow.route) do
if (policies.isThresholdMet()) then
breakPoint.node <— current.node
breakPoint.packet <— current.packet

4
5
6: Return breakPoint
7
8

w N

breakPoint < flow.estimate(policies.breakPolicy)

Return break Point

For each flow, line 3 checks whether any of the thresholds
defined in the policies is met, along the current link or the
following node. If a specific node or a link is estimated to be
responsible for the policy violation, the node will be marked
as the breakpoint node (line 5), the current packet as the
breakpoint packet (line 6), and the breakpoint will be returned
(line 6). If no specific malfunctioning link or node identified,
the delay is due to either i) network congestion across multiple
nodes and links or ii) the flows being much larger than the
typical flows in the data center and hence taking longer to
complete the routing. In these cases, the breakpoints depend
on policies and are decided statistically (line 7). As the origin
of the diverted/cloned subflow, breakpoint node reroutes the
packets to the destination in an alternative route as they arrive
there. All the following packets arriving to the breakpoint node
will be diverted/cloned in the alternative route(s).

Prototype Implementation: A prototype of SMART was
implemented following the devised architecture. The FlowTags
controller deployed along with OpenDaylight aims to make the
priority tags readable by the controller. Hence, the FlowTags
controller as well as the middlebox implementations were kept
minimal as a proof of concept to have a simple software
middlebox to tag the flows and then to read and interpret the
tags from the control plane, than a complete reimplementation
of FlowTags for OpenDaylight. The data plane consisting
of the nodes and middleboxes were emulated with Mininet
through Python scripts. FlowTags controller, Rules Manager,
and the Enhancer were deployed in the Karaf container as
OpenDaylight bundles. SMART control plane modules were
developed using Oracle Java 1.8.

III. PRELIMINARY ASSESSMENT

A data center network with leaf-spine topology was emu-
lated with around 1000 nodes in a distributed simulation and

emulation environment, on a cluster with 6 identical nodes (In-
tel® Core™ i7-2600K CPU @ 3.40GHz processor and 12 GB
memory). Leaf-spine topology was used as it i) offers multiple
potential alternative paths between the pairs of nodes, hence
satisfying the prerequisite of SMART, ii) often replaces the
traditional tree topologies in industrial and research data center
networks, and iii) is used in the related network research [3],
[4]. While leaf-spine topology of common data centers have
exactly two-hops, we further evaluated with extended leaf-
spine topologies with longer path lengths. Figure 2 shows
the time taken to route the flows with equal-cost multi-path
(ECMP) as the base routing algorithm in a congested network,
with and without SMART enhancements. SMART improved
the performance by cloning the priority flows in an alternative
route readily available in ECMP, and replicated the following
priority flows of the same congested path in the new route.

5600

z

E

= 400 I

£ I Il 1,

g' a B i!!ln 1
o Ha Ex o

; 200 -

=

E

= 0

@ 0 100 200 300 400 500 600 700 800 900

ECMP Flow Completion Time (ms)
Soft Threshold —— SLA Limit ——
Fig. 2. SMART Adaptive Clone/Replicate with ECMP

SLA violations were avoided by SMART by up to 95%.
Majority of the flows that originally violate SLAs, abide to
the SLA with SMART enhancements. Performance of the con-
troller and switches in detecting the violations, and updating
the rules, contributes to the potential SLA violations. However,
there is no flow which has an SLA violation with SMART
enhancement, which is not also violated with the base routing.
Unless the soft threshold was met, SMART enhancements were
not invoked, as it indicated that the existing route was good
enough to meet SLA and no congestion was expected.

Assessment of Overheads: SMART exhibits an adaptive
behaviour to the nature of the congestion, finding the right
time to clone or divert. The contribution to congestion from
cloning the subflows is minimal, as only around 16.7% of the
packets of the higher priority flows were found to be cloned
in the typical data center network modelled, and hence the
overall redundancy will be further smaller, depending on the
fraction of the flows that are considered higher priority.

The controller computations, such as determining the break-
point node and packet, monitoring the network flows for
thresholds, imposing/changing the flow tables and policies in
the relevant switches, and enforcing the SLA for priority flows
in the congested network based on the tags, are executed in the
scale of microseconds. The overhead was estimated to be lower
than 100 ms in switches when the breakpoints are manipulated
and flow tables are updated, with a minimal overhead in the
bandwidth. As enhancement algorithms and FlowTagger are
integrated with the SDN architecture, no significant overhead

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Short Paper

was caused by the deployment of SMART.

Mininet emulations of an about 1000-node data center with
a distributed controller deployment of OpenDaylight over 6
nodes and SMART enhancements showed that the controller
can handle the routing, rerouting, and reconstruction of flows
and subflows effectively. The majority of the decisions are
handled by the nodes themselves with minimal intervention
from the controller, unless a violation is triggered. Subflows
still respect the ordering of packets with sequence numbers
and flow IDs interpreted by SMART at the clone destination.
Hence, reconstruction of the original flow at the destination
is straightforward, dropping the duplicate packets. The en-
hancements are adaptive to minimize the overhead even for
much smaller flows, where if the performance improvement
is minimal by cloning subflows, entire following/downstream
flows of the same priority, in the same path, will be replicated
and routed in an alternative route along with the original route,
or rerouted in an alternative route omitting the slow route.

IV. RELATED WORK

Multipath TCP (MPTCP) is a popular extension and en-
hancement to TCP to use the available multiple paths be-
tween the origin and destination nodes to send a network
flow [5]. MPTCP uses subflows in transferring data between
the nodes in a network, where it recomposes the original
flow at the destination from the subflows. While MPTCP
increases the bandwidth utilization of the network and its
efficiency, it is found that MPTCP can be unfair towards
the TCP clients in the network [6]. Opportunistic Linked
Increases Algorithm (OLIA) is proposed as an enhancement to
the fairness of MPTCP, making it fair and pareto-optimal [6].
Further research on MPTCP focus on improving the MPTCP
kernel implementations to match the design goal of MPTCP.
MPTCP and the work that was built upon MPTCP are a
major motivation behind the architecture of SMART, with the
subflow handling mechanisms borrowed from MPTCP design.

Dynamically rerouting the network flows to optimize the
bandwidth consumption has been proposed in the previous
work [7]. QJump [8] is a Linux Traffic Control module that al-
lows critical latency-sensitive applications to jump the queues
in the presence of packets of lower levels, focusing a shorter
flow completion time. QJump and SMART offer differentiated
SLAs with a focus on QoS for higher priority flows through
bypassing the traditional network routing, though SMART
leverages redundancy in an adaptive manner in addition to
‘jumping the queues’.

pFabric [4] finds that the increase in flow completion time
of short flows is due to the waiting for long flows to complete.
It focuses on optimizing the flow completion time for latency-
sensitive short flows, practically ranging up to a few 10s of
milliseconds. SMART targets the flows ranging from both very
large elephant flows to small mouse flows as long as they
are classified as priority flows by the tenant. Moreover, by
choosing multiple alternative paths in an adaptive replicate
approach, SMART can satisfy the short flows that have a flow
completion time of a few milliseconds.

Preemptive Distributed Quick (PDQ) [9] is designed to
complete flows quickly and meet the deadlines in a fair manner
by following a few pre-defined procedures, enhancing the flow
completion time offered by TCP. D3 is a congestion control
protocol that provides a deadline-aware alternative to TCP for
data centers [10]. Conga offers congestion-aware load balanc-
ing for data center networks through flowlet switching [3].
Flowlets are defined as bursts or chunks of packets of a
flow, that are separated from the other bursts of chunks by
a gap [11]. Flows are often composed of flowlets and gaps
between the flowlets, enabling an efficient partitioning of flows
as flowlets and routing them in multiple alternative routes.
Conga flowlets are similar to SMART subflows though Conga
does not handle differentiated SLA or QoS guarantees.

V. CONCLUSION AND FUTURE WORK

Preliminary evaluations showed the efficiency of SMART in
offering SLA-awareness to data center networks and applica-
tions. The overhead caused by the redundancy in priority flows
can be justified as typically only a small fraction of flows are
of higher priority. An ongoing development effort implements
SMART on a real data center network to evaluate against the
identified related work quantitatively.

Acknowledgements: This work was supported by national funds through Fundag@o
para a Ciéncia e a Tecnologia with reference UID/CEC/50021/2013 and a PhD grant
offered by the Erasmus Mundus Joint Doctorate in Distributed Computing (EMJD-DC).

REFERENCES

S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic middlebox
actions using flowtags,” in Proc. USENIX NSDI, 2014.

S. Borzsony, D. Kossmann, and K. Stocker, “The skyline operator,” in
Data Engineering, 2001. Proceedings. 17th International Conference on.
IEEE, 2001, pp. 421-430.

M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, F. Matus, R. Pan, N. Yadav, G. Varghese et al., “Conga:
Distributed congestion-aware load balancing for datacenters,” in Pro-
ceedings of the 2014 ACM conference on SIGCOMM. ACM, 2014, pp.
503-514.

M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
and S. Shenker, “pfabric: Minimal near-optimal datacenter transport,”
ACM SIGCOMM Computer Communication Review, vol. 43, no. 4, pp.
435-446, 2013.

S. Barré, C. Paasch, and O. Bonaventure, “Multipath tcp: from theory
to practice,” in International Conference on Research in Networking.
Springer, 2011, pp. 444-457.

R. Khalili, N. Gast, M. Popovic, U. Upadhyay, and J.-Y. Le Boudec,
“Mptcp is not pareto-optimal: performance issues and a possible solu-
tion,” in Proceedings of the Sth international conference on Emerging
networking experiments and technologies. ACM, 2012, pp. 1-12.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks.” in NSDI,
vol. 10, 2010, pp. 19-19.

M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson, A. W. Moore,
S. Hand, and J. Crowcroft, “Queues don’t matter when you can jump
them!” in Proc. NSDI, 2015.

C.-Y. Hong, M. Caesar, and P. Godfrey, “Finishing flows quickly with
preemptive scheduling,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 4, pp. 127-138, 2012.

C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” in ACM SIG-
COMM Computer Communication Review, vol. 41, no. 4. ACM, 2011,
pp. 50-61.

S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load
balancing without packet reordering,” ACM SIGCOMM Computer Com-
munication Review, vol. 37, no. 2, pp. 51-62, 2007.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Short Paper

563

