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Abstract—The Internet of Things (IoT) has become a new
enabler for collecting real-world observation and measurement
data from the physical world. The IoT allows objects with sensing
and network capabilities (i.e. Things and devices) to communicate
with one another and with other resources (e.g. services) on the
digital world. The heterogeneity, dynamicity and ad-hoc nature of
underlying data, and services published by most of IoT resources
make accessing and processing the data and services a challen-
ging task. The IoT demands distributed, scalable, and efficient
indexing solutions for large-scale distributed IoT networks. We
describe a novel distributed indexing approach for IoT resources
and their published data. The index structure is constructed by
encoding the locations of IoT resources into geohashes and then
building a quadtree on the minimum bounding box of the geohash
representations. This allows to aggregate resources with similar
geohashes and reduce the size of the index. We have evaluated
our proposed solution on a large-scale dataset and our results
show that the proposed approach can efficiently index and enable
discovery of the IoT resources with 65% better response time than
a centralised approach and with a high success rate (around 90%
in the first few attempts).

I. INTRODUCTION

Linear or sequential scanning for the entire connected
resources in order to find the appropriate resource that might
have an answer for a query is a prohibitively expensive
task [1]. The current information access and retrieval methods
for the Web and the Internet are often designed by exploit-
ation of pre-defined links between different documents and
resources that are archived on the Web servers. For instance,
the Web search engine mainly works with textual data; it
is based on keyword/text search approach [2]. However, IoT
resources are distributed and often are ad-hoc in uncoordinated
networks. IoT requires efficient, distributed and scalable in-
dexing solutions that assist extracting information and gaining
insights from underlying resources to respond to requests from
higher-level applications and services.

Most of existing indexing approaches rely on centralised
indexing or pre-defined links between resources [3, 4] which
make them not scalable for a large number of connected
resources in distributed environments. Other approaches are
distributed such as [5, 6]. However, they are complex or do
not support efficient updating for indexing structure once the
indexes are constructed [7] which make them not applicable
for wide-scale deployment of IoT.

The problem of indexing IoT data and resources comprises
two key elements: building a distributed and efficient indexing
and developing a query processing scheme. [oT indexing struc-
ture should be adaptive and dynamic because it is expected

that a myriad of data streams will be processed and analysed
at a higher rate than receiving user queries [8]. The processing
scheme utilises the indexing structure to define the region and
find the requested data given a requested query. The query is
often composed of a set of key attributes such as a location
(e.g. longitude and latitude) and a type (e.g. environmental:
temperature and humidity). Queries can be answered using
either exact or approximate search. The exact search is to find
a response that matches exactly the given key attributes while
approximate search gets the closest match of the requested
query in case there is no exact value [9].

Our main contribution is a novel distributed and efficient
indexing mechanism that allows indexing and discovery of IoT
resources in distributed environments. The proposed solution
provides efficient results with large dataset and is capable
to be updated efficiently. It also supports type/location and
approximate location-based queries.

The remainder of this paper is structured as follows: Sec-
tion II discusses the background and related work. Section III
details and discusses the proposed approach of spatial in-
dexing. Evaluation and experimental results against baseline
approach are discussed and analysed in Section IV. The
baseline and evaluation metrics are also detailed in the same
section. The conclusions, possible extensions and future work
are discussed in Section V.

II. BACKGROUND AND RELATED WORK

To allow efficient access and retrieval for data and services
published by distributed IoT resources, a distributed indexing
structure (a way of sorting and arranging) of these resources
must be constructed. Answering queries utilises the construc-
ted index to efficiently find the region and the location of the
resources that should be accessed. Different types of indexing
methods and solutions have been proposed such as [5, 10, 11,
12]. Ratnasamy et al. [13] propose Geographic Hash Table
(GHT). GHT is a distributed indexing that is constructed by
hashing types of events as keys and geographical coordinates
as values. However, GHT detects only presence/absence of
an event. Distributed Index for Features in Sensor Networks
(DIFS) [5] extends GHT to support range queries (query key
attributes are desired to be within a certain range of values).
Indexes are constructed in a tree-based structure, in which
each node stores information about a range of values within
a geographical area. Unlike traditional tree structures (e.g.
binary tree, quadtree), non-root nodes can have several parents.
However, the indexing structure allows child nodes to have
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parents in different geographic areas. Also, constructing and
updating indexes are computationally expensive to answer
complex queries of different range of values [14, 15].

Wang et al. [11] introduce R-Tree-based spatial indexing
approach to index Minimum Bounding Rectangles (MBRs).
Each node in the tree is associated with MBR that represents
the location range of its child nodes. However, R-tree is
not scalable if there are frequent changes in MBR [16]. To
address this problem, the authors index gateways in which
each of them is associated with MBR (the location range of its
registered services). Answering queries is based on selecting
gateways whose MBRs intersect with a given rectangular
query. Then, a semantic matching between the description of
the type of services that are registered to the selected gateways
and the queried type is applied. However, the approach does
not consider that the gateways might have the same type of
services. Also, the matching approach between given queries
and the description of the gateways is not efficient to answer
all queries.

Using traditional tree structures is computationally expens-
ive in dynamic environments where there are frequent updates.
To this end, Fox et al. [12] propose spatio-temporal indexing
on top of Apache Accumulo! which is a distributed storage for
(sorted) key-value pairs. The spatial location of each record in
the dataset is encoded using geohash? and is used as a part of
Accumulo key. However, the approach allows querying data
without identifying its data sources.

A Distributed Hash Table (DHT)-based network for dis-
covery service is another approach to retrieve the service
(node) that has an answer for a requested query [17]. The
connected nodes are distributed on the network, and each node
is represented as a (key, value) pair. DHT efficiently finds
an exact match (value) for a given key. To this end, Prefix
Hash Tree (PHT) [18] is proposed to enable more complex
queries on top of DHT. PHT is typically a binary tree. Each
node in the tree structure is identified by a prefix (label). PHT
requires traversing down to the leaf nodes where data is stored.
However, if the data or a reference to the data is filled in the
internal nodes, there will be no need to traverse the whole
tree, and this will accelerate the query processing.

There are also solutions for discovery IoT data such as
Dyser and SenseMap [19]. They rely on a centralised index-
ing mechanism which makes them not suitable for indexing
resources in ad-hoc and more dynamic networks. Generally,
scalability and/or effective updating for the indexes in dynamic
IoT environments are the main drawbacks of these solutions.
The state-of-the-art of indexing is therefore not capable of
dealing with the characteristics of IoT resources in distributed
and dynamic environments.

We propose a novel distributed geohash-based indexing
mechanism that allows discovery of IoT resources. The index
structure is constructed by encoding the spatial features of IoT
resources (i.e. locations) into geohashes. A quadtree is then

Thttp://accumulo.apache.org/
Zhttp://www.geohash.org/
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built on the minimum bounding box of the geohashes. This
allows shrinking the size of the index by aggregating resources
with similar geohashes. It is worth noting that wireless related
issues (e.g. transfer delay) are not within the scope of the
current work.

III. PROPOSED APPROACH

We have designed an architecture for distributed indexing
of IoT resources. Figure 1 shows the key elements of the
proposed architecture. The following describes a step-by-step
description of the indexing and discovery process:

(1) IoT resources publish their data and services.

(ii) IoT data resource has often a type (e.g. temperature, wind
direction, relative humidity and wind speed).

Spatial features (i.e. longitude and latitude) of IoT re-
sources are represented as geohash codes.

The query is often composed of type, location (spatial),
and time (temporal) attributes.

Published data can be archived in Information Repositor-
ies (IRs) or accessed directly from the resources.
Distributed indexing identifies the region and the location
of requested resources given a requested query.
Discovery Services (DSs) receive user queries and DS
either accesses the data from IR if the location of the
data is known (e.g. already cached) or forwards it to the
distributed indexing.
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Figure 1. A higher-level architecture for distributed indexing

A. Spatial indexing

Building indexing structure for single-dimensional data is
a straightforward task. However, indexing multi-dimensional
data is not. Many techniques have been proposed to map
multi-dimensional spatial data into single-dimensional data
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where locality is preserved between data-points such as space-
filling curves [20], e.g. Z-order space-filling curve (often called
Morton order) [21]. Space-filling fundamentally splits a space
or a plane (e.g. the globe) into (square) regions and then a line
gets squiggled in a specific order (forming Z or U shape) by
traversing iteratively from one square to another until it fully
fills the two-dimensional space. Other approaches are based on
MBR such as R-tree [22], kd-tree (k dimensional tree) [23] and
quadtree [24]. In the tree structure, each non-root node in the
tree structure represents MBR that covers the total range of
locations (MBRs) of its child nodes, while the root node covers
the entire area of the tree. R-tree and quad-tree have been
used extensively in different indexing mechanisms [25]. R-tree
has been recommended as indexing structure in Oracle spatial
database [26]. Although R-tree is more efficient for querying
data than quadtree in Oracle spatial database, quadtree has
relatively low complexity in updating indexing structure [25].
In addition, R-tree might overlap between rectangles. In this
paper, we utilise quadtree to construct spatial indexing based
on geohash codes.

The proposed approach in this paper is based on using
geohash to represent spatial coordinates due to its ability to
represent the two-dimensional spatial coordinates (longitude
and latitude) such as (—118.0,33.0) into a one-dimensional
(encoded) string (9mgev7w7z8j7). Latitude and longitude have
been commonly used as a pair of coordinates to represent
a location in the globe. Longitude has a value in the range
of [—180°,180°], while latitude has a value in the range of
[—90°,90°]. Geohashes are generated in Z (Morton order).
Morton order is based on interleaving bits of the binary repres-
entation of spatial coordinate values (longitude, latitude). Inter-
leaving bits is performed by converting the spatial coordinate
(longitude, latitude) values into binary and then alternating bits
from each coordinate. Interleaving the bits results in one binary
string representation for a given spatial coordinates in which
one coordinate goes to odd bits and another coordinate goes to
even bits. The resultant binary representation is then encoded
into a set of characters. Overall, geohash is a hierarchical
structure that divides the globe recursively into bounding
boxes until the required resolution/precision is achieved (see
Figure 2 for 32-bit resolution). For example, if a geohash is
represented by 32-bit precision, 16-bits for each coordinate
should be interleaved. It is worth noting that longer geohash
represents more precise location. The main advantage of using
geohash is its locality where adjacent locations share the
similar prefix. This simplifies searching for spatial locations
by matching their prefix.

Geohashes can be indexed without applying any spatial
indexing technique. One would think that querying all nearest
neighbours of a given geohash over the worldwide longitude-
latitude rectangles can be simple; it is easy to extract the neigh-
bouring bounding boxes around a particular region (query
region) in each direction (i.e. North, South, East, and West).
However, if there is a large number of IoT resources that are
deployed in different locations that do not cover the entire
globe, getting all nearest neighbours that cover a query region
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Figure 2. Earth’s surface is split into 32 blocks

is a quite complex task. It is a necessity to find the smallest
prefix of geohash that can cover a query region and get all the
geohashes that have the same prefix (where their bounding
boxes intersect with a query region). To this end, we build
a quadtree [24] of geohashes that allows finding all nearest
neighbour geohash ranges and can be extended to cover the
entire globe.

A quadtree is a tree structure whose non-leaf nodes have
exactly four child nodes (called quadrants). A quadtree is
constructed using the divide and conquer strategy in which the
root node represents the entire spatial range (longitude has a
range of [—180°,180°], latitude has a range of [—90°,90°].).
The space is recursively subdivided into four quadrants (see
Figure 3). Figure 4 shows an example of how quadtree can
recursively subdivide a spacial space.

We build our quadtree based on geohash codes. The original
quadtree has been updated and extended for spatial indexing.
Initially, the root of the tree has a bounding box that covers
the entire globe [—180,180] and [—90,90] (the range of
worldwide longitude and latitude). Each node in the quadtree
is represented in the form of (Identifier, bbox), where the
identifier is a geohash and the bbox is the MBR of a given
geohash. The MBR of a given geohash is obtained by reducing
the precision (resolution) of the geohash. Duplicate identifiers
are not allowed in the tree. To find a region query, the
algorithm starts from the root and examines the MBR of each
child nodes and checks if its MBR intersects with the region
being queried. If it does, the algorithm examines each child
node of each selected nodes whose their MBRs intersect with
the query region until the leaf node is reached. The algorithm
returns a sorted list of identifiers (geohashes) of each MBR
that intersects with the area being queried.

As mentioned earlier, the query is often composed of loca-
tion (geohash or area of interest) and type (e.g. temperature)
attributes. We have explained how to get the areas of spatial
coordinates that can intersect with the area being queried.
Instead of examining all resources whose location is in one
of the selected MBRs, another tree structure which has n
child nodes, where n is the number of types is constructed
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per MBR. Each child nodes contains a reference to a resource
(to connect to a resource and get its real-time observation and
measurement data) and a path to a repository (i.e. IR) where
the data values are stored given the location and type key
attributes. The main advantages of our approach comparing
to using R-tree with geohash in [11] is that we identify the
MBR of each geohash in a simple way taking into account that
the indexing is extendible to cover the entire globe (longitude
has a range of [—180°,180°] and latitude has a range of
[—90°,90°]). This eliminates the necessity of frequent updates
for the indexing structures and allows to discover the resources
based on their types and locations. It is worth mentioning that
MBR’s coordinates (i.e. bottom-left and top-right coordinates)
for a given geohash are calculated by obtaining the maximum
and minimum longitude and latitude that are corresponding
to (west longitude, south latitude) and (east longitude, north
latitude) coordinates.
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Figure 3. How quadtree can be structured
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Figure 4. An example of how a spatial space is structured using quadtree
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B. Real-world Dataset

We use Automated Surface Observing System (ASOS)?
weather dataset. The weather sensory data is gathered from
different weather stations that are located in different countries.
We are currently using a dataset with roughly 5.5 million
resources from 7 countries; United Kingdom, Belgium, Japan,
Canada, Australia, Egypt, and the United States. Each resource
in the dataset has the following attributes; a source identifier,
geographical co-ordinates longitude (e.g. —1.32) and latitude
(e.g. 51.8369), country (e.g. UK), station-name (e.g. Oxford)
and time-stamp (e.g. 2014-07-02 07:50:00) on which the value
is obtained. The resource has also a service type such as
relative humidity (e.g. 63.82%), wind direction in degrees from
north (e.g. 220.0), wind speed in knots (e.g. 4.0), and dew
point temperature in Fahrenheit (e.g. 53.6). Dew point is used
to measure atmospheric moisture.

We remove the invalid values based on the meta-data of the
dataset and apply interpolation to fill missing values. We also
convert each pair of (longitude, latitude) into a geohash code
(e.g. gcpncuwgcf89).

IV. EVALUATION

As mentioned earlier in Section II, most of the existing
approaches and solutions are based on centralised indexing
mechanisms. We use a centralised approach as our baseline.
In the centralised approach, a single centralised index of all
IoT resources is constructed where there no identification for
the region and/or the location of requested resources given a
required query. In this case, the centralised indexing has to
scan all data resources to respond to user queries. The queries
are randomly generated. The key element for evaluating our
approach is to find successfully a list of nearby MBRs that
intersect with the region being queried and that contain a
resource that might have the requested attributes.

Both of the proposed and centralised solutions are tested un-
der the same conditions and implemented in Python. We apply
both solutions on the same dataset and run the algorithms on
an OS X machine with 16 GB memory and a 2.6-GHz Intel
Core i7 processor. The following describes the metrics that are
used in our evaluations and the results are also presented and
discussed.

A. Response Time

The response time is defined as the total amount of time
that an indexing scheme takes to answer queries. We measure
the response time of both our proposed distributed indexing
and the baseline method. Figure 5 presents the comparison
between the two schemes regarding response time. It is evident
that the proposed distributed indexing is more efficient than
the centralised and requires less time for all sets of different
queries. The distributed approach enables efficient indexing
and query with nearly 65% better response time comparing
to the centralised baseline approach. This demonstrates how
the data resources are well distributed in our hierarchical tree
structure.

3http://mesonet.agron.iastate.edu/ASOS/
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Figure 5. Comparison between response time of our proposed distributed
indexing and baseline centralised schemes

B. Success Rate

A key advantage of our proposed indexing and discovery
mechanism is that it supports approximate queries (i.e. queries
for approximate locations and exact type). We have evaluated
the success rate by evaluating the number of attempts that
is required to find a response to a query. DS receives a set
of queries whose key attributes are a location (e.g. longitude,
latitude) and a type (e.g. humidity). DS forwards the query to
the distributed indexing (see Figure 1). Distributed indexing
gets a list of nearby MBRs that intersect with the region being
queried. However, there is a probability that the list does not
contain the queried type (humidity). If the first attempt is not
successful; the selected region does not have the queried type,
a second region in the list should be examined. The process
continues either by finding the region that has a resource that
publishes the same (queried) type or by reaching the maximum
number of (predefined) attempts. Figure 6 shows the number
of attempts that are required to answer a different set of
queries. The range of numbers [1, 10] represents the number
of attempts (maximum number of attempts is 10) to answer
a set of queries. It is evident that the 60% of queries can be
answered in the first attempt, while 20% can be answered by
the second attempt. Overall, the majority of queries (90%) can
be answered by the first three attempts. It is worth noting that
all sets of different queries can be successfully answered by
reaching the maximum number of (predefined) attempts.

Although the centralised approach guarantees answering
the query by sequential search for the dataset, our proposed
indexing provides the same answer and requires less time
to find responses for a set of queries. Our approach can
successfully answer all sets of different queries comparing to
the proposed solution in [11] which can not find responses to
all requested queries (this work is discussed in Section II).

With regards to the other similar works in this area, recent
experiments that have been conducted in [11] using R-tree with
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Figure 6. Ratio of success rate to answer queries

geohash can answer successfully roughly 712 queries (12%)
of the total number of requested queries on a dataset with a
size of 10,000 resources. However, our approach can answer
successfully roughly 60% of queries in the first attempt and
overall, 90% of requested queries (see Figure 6) are answered
in the first few attempts on a dataset with a size of 5.5 million
resources.

V. CONCLUSIONS AND FUTURE WORK

IoT applications often require fast access, and retrieval
methods for very large smart connected resources and their
underlying data and services in IoT distributed environments.
The high- volume, velocity and variety of IoT resources
and data add more constraints and complexity to discovery
and access methods compared with the conventional Web
access/discovery solutions. Large-scale IoT distributed envir-
onments require novel distributed, efficient and reliable access
and discovery solutions and methods that are able to find the
right resource at the right time that might have a response to
a request from higher-level applications and services. In this
paper, we propose a higher-level architecture for distributed
indexing and develop and implement a distributed indexing
mechanism that is capable of defining the region and finding
the requested data given a requested query (based on location
and type) with a high success rate and with 65% better
response time than a centralised approach. We also discuss
how our approach outperforms recent experiments conducted
on indexing mechanism based on using other similar geohash
and tree structure solutions.

Our current implementation considers a finite set of types
(e.g. temperature, humidity, wind speed). A future extension
will focus on how the indexing method can fold-in with new
type of data (e.g. air pollution) that is not predefined and can
include complex data types which can be a combination of
various raw data types. We will also examine the effect of

IFIP/IEEE IM 2017 Special Track on Management of loT



different parameters of the tree structure (e.g. depth and a
maximum number of items per quad node) on the indexing
scheme. We will also consider developing crawlers and also
providing open APIs for third parties to find and/or add
existing IoT data resources and their links in our indexing
mechanism. This will also require to build a mechanism to
rank resources if there are resources with the same type of
service (e.g. temperature) in a selected region.
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