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Abstract—This work uses outlier ensembles to detect fraudu-
lent calls in telephone communication logs made on the network
of POST Luxembourg. Outlier detection on high-dimensional
data is challenging and developing an approach which is robust
enough is of paramount importance to automatically identify
unexpected events. For use in real-world business applications it
is important to obtain a robust detection method, i.e. a method
that can perform well on different types of data, to ensure
that the method will not impact that business in unexpected
ways. Many factors affect the robustness of an outlier detection
approach and this experimental analysis exposes these factors in
the context of outlier ensembles using feature bagging. Real-
world problems demand knowledge about possible candidate
approaches that address the problem, and decide for the best
performing method using a train-test split of labeled data. In the
unsupervised setup the knowledge about performance is missing
during the learning phase thus is difficult to decide during that
phase. Hence, in this setup it is important to know about how
the performance is affected before the learning phase. Hence, this
analysis demonstrates that despite the collective power of outlier
ensembles they are still affected by i) data normalization schemes,
ii) combination functions iii) outlier detection algorithms.

I. INTRODUCTION

Outlier detection is the process of identifying those obser-
vations that deviate substantially from the remaining data. In
particular, identifying outliers in high-dimensional data can
provide important insights into many real-world applications,
e.g., detection of frauds, sensor failures, or outlying gene
expressions. Choosing an unsupervised method such as outlier
detection over supervised or semi-supervised approaches is
influenced by the availability of labels [4].

In unsupervised approaches, every algorithm is based on a
model making specific assumptions on the nature of outliers.
Hence, every model is specialized for different characteristics
of observations and fits only to some aspects of the total
ground truth. Outlier ensembles overcome the subjectivity of
each model by integrating various different outlier detection
results to build more robust detectors. The authors in [20] point
out the challenges related to developing outlier ensembles. The
two major challenges are:
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i) How to deal with accuracy? Since there is nothing known
about the accuracy of outlier detectors during the learning
phase, evaluation is difficult.

ii) How to assess diversity? Diversity is the most important
ingredient for ensemble construction; homogeneous methods
cannot benefit enough from parameters optimization ensem-
bling approach [20].

Telecommunication frauds are malicious usage and/or ex-
ploitation of telephone connections for criminal purposes.
These can range from finance gain for fraudsters to damaging
public reputation of enterprises. More often than not, they
cause substantial financial loses for victims. Here, we focus
on unauthorized calls to international premium-rate numbers.
These calls can cause large costs within short time frames.
Quick and reliable detection and mitigation of fraudulent calls
is therefore extremely important.

Here, we deal with the detection of fraudulent private
phone exchange (PBX) phone calls made on the network of
the largest provider in Luxembourg, POST Luxembourg. We
identify fraudulent calls by developing outlier ensembles on
high-dimensional call record data. Compared to the super-
vised learning setup where the ground truth is used to tune
classifiers or regressors, the ground truth is not available in
the unsupervised setup to tune the outlier detection algorithm.
In the following we present the core elements used for the
construction of an outlier ensemble based on the literature of
outlier ensembles [1], [20]:

« Data normalization as a preprocessing step to scale each
attribute to [0,1] or N(0,1). The authors in [2] show
that outlier detection techniques on normalized datasets
perform better compared to unnormalized.

« Subspace outlier detection to avoid irrelevant attributes
and learn diverse models

« Normalization of outlier scores to make comparable the
scores from heterogeneous outlier detection algorithms

« Combination functions for the selected outlier scores.

At each step it is challenging to select the best performing
method without leveraging the ground truth. Throughout this



work, we will focus on the unsupervised scenario, with no
further information about the ground truth.

In our analysis we are motivated to experimentally in-
vestigate the effect of developing outlier ensembles with
competitive methods for each of the aforementioned core
elements. Hence, we utilize four normalization schemes, we
apply feature bagging [7] as the subspace outlier detection
technique, we normalize the outlier scores by employing the
Z-score method and finally, we use average and maximum to
combine outlier score vectors.

The analysis conducted here helps us identifying selection
criteria for robust ensemble unsupervised methods. Ultimately,
this analysis is an important and mandatory step towards the
automation of hybrid supervised learning approaches guided
by outlier ensembles without the involvement of domain
experts in the modelling phase.

In the remainder of this paper, we will first have a look at
the research area of unsupervised outlier ensembles in Section
II. Afterwards, in Section III, we will describe the PBX
data sample produced on POST’s network. The methodology
followed in this work and the comparative evaluation of
different normalization schemes, algorithms and combining
functions will be presented in Section IV & V respectively.
Finally, we close with conclusions and future improvements
in Section VI

II. PRELIMINARIES & RELATED WORK

Outlier detection algorithms rely on subjective assumptions
of the underlying generative process to model the nature of
outliers. This subjectivity affects the obtained outlier results;
some parts of the data may be modeled well, whereas other
parts of the data may not. Furthermore, outlier detection
algorithms may sometimes be effective on a given data set,
but may not be effective on other data sets. We call this effect
data-centric robustness. Also, they may be extremely sensitive
to the choice of parameters, an effect called parameter-centric
robustness. Without robustness, it is difficult for a company
to trust a method to reliably solve a business problem with
varying data. Individual models fit only to some aspects of the
whole truth [1]. Hence, regarding these dependencies ensemble
analysis addresses the above limitations of individual outlier
detection algorithms and increases the robustness of the data
mining process.

High-dimensional data pose special challenges to outlier
detection algorithms; irrelevant attributes are concealing rel-
evant information. The authors in [22] highlight that in high-
dimensional spaces only subsets of relevant attributes provide
the meaningful information; the residual attributes are irrel-
evant for the outlier detection task. Therefore, it is efficient
to identify outliers from appropriate subspaces i.e. [5], [11],
[12], [15], [18]

III. DATASET DESCRIPTION

This work uses a dataset which consists of telephone
communication logs. Due to GDPR rules, aggregation by time
windows (10 minutes) and anonymization is applied before the

experimental analysis. Henceforth, D is our high-dimensional
dataset which includes information related to calling number,
calling time, calling duration, number of called parties, total
calling cost and destination countries of the called parties.
Such data are mainly used for billing purposes, but we leverage
the dataset for fraud detection and mitigation. Table I presents
the fields and notation of D.

TABLE I
NOTATION
Field Notation
Average number of distinct calls previous 3h AvgDc
Average calling times previous 3h AvgCount
Average cost previous 3h AvgCost

Number of distinct calls Dc

Destination countries Countries
Calling number ANumber
Number of calls Count

Call duration Duration
Call cost Cost
Time Time

Our dataset D consists of 64000 data points with the 10
columns listed in Table 1. The dataset has been manually
labeled by experts from the provider. Fraudulent calls have
been confirmed as fraudulent. Non-fraudulent calls are not nec-
essarily non-fraudulent, but may contain previously unnoticed
types of fraudulent calls. All call activities were made across a
time span of 1 month. There are 40930 unique calling numbers
(ANumber) in D. Only 0.04% of them have at least 1 fraud
calling activity. In the rest of this paper we will refer to a
calling number which has at least 1 fraud calling activity as
an fraud calling number. Conversely, we will refer to a calling
number which does not have any fraud calling activity as an
normal calling number. Furthermore, one fraudulent number
can have multiple fraudulent calls. The overall percentage of
fraud calling activities is 0.57% which makes D significantly
imbalanced. In outlier detection literature the outlierness per-
centage of the most used datasets [14] varies significantly
between 0.03% and 32% whereas the number of data points
varies between 129 and 567479 data points.

IV. METHODOLOGY

In this section we are giving details about the methodolog-
ical part of our analysis and we are guided by a primary
question: "What is the effect of preprocessing steps on the
performance of the developed ensemble variants?”

A. Feature Engineering

In the unsupervised setup we do not leverage the ground
truth to find the best performing set of features thus business
knowledge is significantly important to extract composite
features that will not be noisy. As a result, the set of those
features described below, is the result of using POST’s domain
knowledge aiming to expose more informative patterns:

« Month, Day, Weekday, Hour

« Continent percentage: What fraction of countries called

belong to Europe, Africa, Asia, etc.?
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« What is the difference of continent percentage between 2
calling events from the same ANumber?
o Duration difference of two consecutive calls (Calculated
by ANumber and ANumber & Dc)
« How much time passed between two calls? (Calculated
by ANumber)
o How many times called distinct calling numbers
« Duration per distinct call
o Cost for each Continent
o Average cost per call
o Average cost per destination calling number
o Count of call for each Continent
« Call duration duration by Continent
The above composite features have been calculated ignoring
the time variable. Hence, in order to reveal patterns related to
time we calculated lag features which are described below.
Those features are used when time series problems are trans-
formed into machine learning problems.
« Rolling Average of Duration for the last 3 calls made by
each ANumber
« Rolling Average of Duration for the last 3 calls made by
each ANumber per hour of the day
« Rolling Average of Cost for the last 3 calls made by each
ANumber
« Rolling Average of Cost for the last 3 calls made by each
ANumber per hour of the day
« Rolling Average of Dc for the last 3 calls made by each
ANumber
« Rolling Average of Dc for the last 3 calls made by each
ANumber per hour of the day
In the rest of this paper, S is our high-dimensional dataset
which is consisted of the attributes in D, plus all the above
handcrafted features.

B. Outlier Ensembles

Developing an outlier ensemble approach is challenging
when it comes to decide what will be the best performing
methods or components. In this section we construct variants
of bagging outlier ensembles which contain the following four
components.

1) Data normalization: One of the main preprocessing
steps for many statistical learning tasks is normalizing the
data. The authors in [2] show that outlier detection methods on
normalized datasets perform better compared to unnormalized
datasets. We normalize all the numerical variables in S dataset
based on the following schemes.

1) Minimum and maximum normalization (Min-Max)

Each column x is transformed to % where
min(z) and maz(x) are the minimum and maximum
values of x respectively

2) Mean and standard deviation normalization (Mean-SD)

Each column x is transformed to %&"(m) where

mean(x) and sd(x) are the mean and standard deviation

values of x respectively
3) Median and the IQR normalization (Median-IQR)

. —medi
Each column x is transformed to Z=7cdian(z)

TOR(x where

median(xz) and IQR(x) are the median and the in-
terquartile range of x respectively

4) Median and median absolute deviation normalization
(Median-MAD)
MAD(z) = median(|]  — median(z) |) and each

. z—median(z)
column x is transformed to “MADG

As a result, we end up with four variants of the S dataset
where S; is the S dataset normalized based on Min-Max
formula, S5 on Mean-SD, S3 on Median-IQR and S; on
Median-IQR.

2) Subspace Outlier Detection: In this work, we employ
feature bagging [7] to discover relevant subspaces. In feature
bagging, an outlier detection algorithm is applied to various
random lower dimensional projections, i.e. using only a subset
of the available features. At each projected space outlier scores
are produced. Then, all the outlier scores are combined to
produce the final results. In the rest of this paper we will refer
to an outlier detection algorithm as detector or base detector

3) Normalization of Outlier Scores: Different outlier de-
tectors may often report outputs on different numeric scales.
Therefore, before combining the outlier scores we have to
apply normalization. Otherwise, some algorithms might dom-
inate in the combination score. In addition, it is important to
convert minimization scores to maximization ones and vice
versa.

The authors in [1] suggest that using Z-scores turns out to
be quite effective in many settings. When a detector produces
smaller scores as indicators of greater outlierness the negative
of the Z-value is used in the case. In this work, we also
normalize the outlier scores by utilizing the Z-score scheme.

4) Combination functions: In this section, we are describ-
ing at which cases we apply combination functions to build
the ensembles and which are those functions.

We apply combination functions to unify the outlier scores
of different executions of one detector type obtained by using
feature bagging and different parameter values. In addition to
feature bagging, we employ the same detector with different
parameter values at each lower dimension projection. Once
we combine the scores of a detector, which are generated as
we described previously, we end up with the desired outlier
ensemble.

The combination functions that we are using are the mean of
scores and the maximum of scores. The authors in [1] explain
the benefits of using the mean and maximum as combinations
functions.

C. Assessing Diversity

The goal of our strategy to select detectors is to obtain
great diversity among the produced outlier scores from each
detector. The benefit of diverse outlier scores that are generated
by multiple detectors is the restriction of the space of where
the true result most probably lies. Our work takes the findings
of [16], [20] into consideration for selecting the detectors in
order to generate scores that are dissimilar.

We increase the diversity by using different parameters of
the same detector, i.e. different values of k for the neighbor-
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hood size. In addition, we select detectors that fall into families
that learn dissimilar results. Finally, feature bagging [7] is an
unstable technique which aids to produce very uncorrelated
results and, thus, to improve ensembles [21]

D. Detectors

The strategy for selecting the detectors and perform our
experimental analysis discussed on IV-C section. In principle,
however, one could choose any detector to perform a similar
analysis as long as the strategy is the same. Hence, the fol-
lowing algorithms will be the base detectors of each ensemble
variant.

i) Kernel Density based detector, KDEOS [17], computes a
kernel density estimation over a user-given range of k-nearest
neighbors. The gaussian kernel is used for estimation.

ii) Local Outlier Probabilities, LoOP [6], detector computes
a local density based on probabilistic set distance for observa-
tions, with one parameter the k-nearest neighbors. The density
is compared to the density of the respective nearest neighbors,
resulting in the local outlier probability.

ii) iForest [8] detects anomalies in a tree ensemble fashion.
It isolates observations by randomly selecting a feature and
then randomly selecting a split value between the maximum
and minimum values of the selected feature. We skip further
mathematical details of each detector due to lack of space.

E. The Pipeline of constructing Bagging Ensembles

In this section we are describing the steps followed to
construct the outlier ensembles used for experimental analysis.
First, we normalize data based on the discussed formulas to
obtain four datasets S; and we apply feature bagging as the
subspace outlier detection technique. Then, we normalize
the outlier scores by employing the Z-score method and fi-
nally, we use the average and maximum functions to combine
outlier score vectors and construct the outlier ensembles.

Therefore, we construct eight outlier ensembles for each
of the three detectors (KDEOS, LoOP, iForest). A detector
is employed on each S; and feature bagging is performed to
discover subspaces and induce diversity. Then we unify outlier
scores by using maximum as the combining function. As a
result, we end up with four outlier ensembles; one on each
S;. In addition, the same steps are followed but average is the
combining function.

In the rest of this work, we will refer to an outlier ensemble
constructed on a S;, having as detector one of the KDEOS,
LoOP, iForest and unifying outlier scores with maximum
or average combining function as Bagging Ensembler. Our
experimental analysis is composed of 24 in total Bagging
Ensemblers

V. EXPERIMENTAL ANALYSIS

A. Setup

The experiments were performed using R and Python. We
used R for the feature engineering part with the dara.table
package [3] and implemented KDEOS and LoOP detectors by

using the DDoutlier package [9]. We used the iForest detector
implemented in Python’s scikit-learn library [13].

All four high-dimensional datasets .S; contain 64000 events
and consist of 91 numerical attributes. Since the construction
of each Bagging Ensembler is independent to the rest of the
Bagging Ensemblers we developed them in parallel.

B. Results

In our analysis, the widely used area under the ROC curve
(AUC) measure is used to evaluate the outlier detectors.
Additionally, we use the precision measure based on our
intuition of the outlierness percentage in the dataset. The first
400 events with the greatest outlier score are used as threshold
to calculate the precision which is denoted as P@400.

In Figures 1- 4 we present the results of all the bagging
executions of the detectors discussed in IV-D which are
applied on each S; dataset. These data sets are described in
detail in Sect. IV-B1. More specifically, box plots of AUC
performances for the executions of the detectors for all S; are
shown. Each box plot summarizes 100 different executions
of a base detector created by different parameter values and
random projections to lower dimensions.

In Figure 5 we present the results of all the possible Bagging
Ensemblers that we defined in IV-E. To unify the outlier scores
produced by the feature bagging technique, we use average and
maximum as the combination functions.

LoOP detector performs slightly better than random guess
and iForest shows the highest values of the AUC. iForest
managed to detect all the fraud calling numbers.

In addition, Tables II, III show the standard deviation of
AUC for Bagging Ensemblers with two different kinds of
granularity. Table II shows that the AUC of KDEOS detec-
tor with the maximum combination function has the largest
standard deviation. Also, the same detector with the average
combination function has the second highest standard devia-
tion. Overall, using either maximum or average combination
function across all data normalization schemes, KDEOS has
the largest deviation. Hence, KDEOS detector is the affected
the most by data normalization approaches.

C. Discussion

One key benefit of outlier ensembles is their ability to
take advantage of diversity between individual executions of
base detectors in order to construct better detectors. Especially
well-performed subspace techniques induce diversity in the
resulting models and make the ensemble perform better. In our
analysis KDEOS detector has no execution that performs better
than 0.7 AUC as it is shown in figure 1. However, figure 5
presents that Bagging Ensembler with the average combination
function produces AUC values higher than higher than 0.8.

Furthermore, constructing the Bagging Ensembler of LoOP
detector has the least improvement compared to its individ-
ual executions. LoOP detector performs the best when it is
applied on S3 dataset (Median-MAD) and using the average
combination function.

40 IFIP/IEEE IM 2019 Workshop: 4th IEEE/IFIP International Workshop on Analytics for Network and Service Management



iForest is the only detector that is not affected at all by data
normalization schemes and shows steadily AUC values close
to 1.0. This detector is an ensemble by its nature compared
to KDEOS and LoOP and that is the major reason why it is
accurate and robust.

In Figure 6 we present the Precision (P@N) results of all the
Bagging Ensemblers and the combination of all the Bagging
Ensemblers using the average and maximum combination
function. In addition, in the same figure it is shown that
the combination of all the Bagging Ensemblers either with
average or maximum function improves the performance of
each individual Bagging Ensemblar except of iForest; the
best performing algorithm. Furthermore, the average combina-
tion function outperforms the maximum combination function
when all the Bagging Ensemblers at the three out of four S;
except S; Min-Max dataset.

Fig. 1. AUC Performance of KDEOS, LoOP and iForest on data normalized
by Mean-SD while performing Feature Bagging
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Fig. 2. AUC Performance of KDEOS, LoOP and iForest on data normalized
by Min-Max while performing Feature Bagging

1.0

0.9-

0.8-

AUC

0.7

0.6

0.5-

iForest KDEOS LoOP

Fig. 3. AUC Performance of KDEOS, LoOP and iForest on data normalized
by Median-MAD while performing Feature Bagging
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Fig. 4. AUC Performance of KDEOS, LoOP and iForest on data normalized
by Median-IQR while performing Feature Bagging
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Fig. 5. AUC Performance of all the Bagging Ensemblers
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Fig. 6. Precision (P@400) of all the Bagging Ensemblers and their combi-
nation. On the left, the Maximum combination function is used for iForest,
KDEOS, LoOP, and, the ultimate combination of all Bagging Ensemblers. On
tthright the Average combination function is used.
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TABLE II
STANDARD DEVIATION OF AUC MEASURE ACROSS ALL S; FOR EACH
BAGGING ENSEMBLER

[ Detector | Combination Function [ Std. ]
iForest Maximum 0.0001
KDEOS Maximum 0.1718
LoOP Maximum 0.0494
iForest Average 0.0001
KDEOS Average 0.1116
LoOP Average 0.0626

TABLE III
STANDARD DEVIATION OF BAGGING ENSEMBLERS ACROSS ALL S;
[ Detector | Std. |
iForest 0.0001
KDEOS 0.1555
LoOP 0.0755

VI. CONCLUSIONS AND FUTURE WORK

Constructing outlier ensembles on high-dimensional data is
challenging and this paper highlights the difficulty in selecting
the best core components of an outlier ensemble pipeline.
Addressing a real-world problem with unsupervised techniques
requires overcoming these challenges to obtain both robust
and accurate predictions. Researchers often develop novel
unsupervised methods in artificial environments using toy data
sets and therefore do not need to analyze the sensitivity of their
approach. In contrast, problems encountered by companies
need to address the problem of results varying significantly in
order to deploy a robust and reliable solution based on these
methods.

Our future work aims to take advantage of the limited
knowledge of fraud activities made on the network of POST
Luxembourg to develop imbalanced supervised learning ap-
proaches guided by outlier detection algorithms. [10], [19]
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