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Abstract—Most Service Function Chains (SFCs) in Network
Function Virtualization (NFV) are realized on the software or
offloading to the network interface card (NIC) and FPGA. How-
ever, the software introduces significant performance overhead
while the NIC and FPGA suffer from the limited processing
capability and the development complexity, respectively. In
response, we present P4SC, a system for implementing SFCs
on the P4-capable device. P4SC provides the high-performance
and flexible SFC implementation by combining the hardware
capability and the P4 programmability. It offers some high-level
primitives for operators to build the SFC requests and converts
the requests to a corresponding P4 program. Moreover, P4SC
merges several SFCs to implement them on the same target
while observing the P4 grammar. Besides, P4SC provides the
runtime management of SFCs by wrapping the low-level device
APIs. We evaluate the P4SC performance on various P4 devices,
including a Barefoot Tofino switch. Experimental results show
that compared to a state-of-the-art NFV framework, P4SC can
achieve a 96.98% SFC processing delay decrease on the P4-
capable device.

Index Terms—Service Function Chain, P4, Network Function
Virtualization, Software-Defined Networking.

I. INTRODUCTION

Network Function Virtualization (NFV) implements Net-
work Functions (NFs) on low-cost servers and provides
the flexibility of NF management, while Software-Defined
Networking (SDN) decouples the control plane and the data
plane and offers unprecedented network programmability.
Their combination introduces efficient deployment of NFs in
Service Function Chains (SFCs) [1, 2]. However, software-
based SFCs suffer unacceptable performance overhead in
terms of limited processing capability and high processing
latency [3, 4, 5]. For example, Ananta Software Muxes
introduces from 200 µs to 1 ms latency at 100 Kilo packets
per second (Kpps) due to heavy processing bottleneck [3, 5],
which is unsuitable for many low latency applications.

Recently, some research efforts choose to exploit advanced
technologies like Data Plane Development Kit (DPDK) [6]
to improve the performance of software-based SFCs. How-
ever, our experiment results in Section IV reveal that the
processing latency of DPDK-based solution is 33× of the
hardware-based solution in the worst-case scenario, which
is still unacceptable. Besides, some recent works have been
devoted to accelerate SFCs by offloading SFC operations to
network interface card (NIC) [7] or the Field Programmable

Gate Array (FPGA) [8]. Nevertheless, the limited processing
capability of NIC [9] cannot meet the performance require-
ments of SFCs. Moreover, although state-of-the-art FPGA
devices can achieve considerable performance compared
to dedicated Application-Specific Integrated Circuit (ASIC)
hardware [10], operators need to master a Hardware Descrip-
tion Language (HDL) (e.g., Verilog), which exposes the low-
level hardware architecture and the digital logic design, to
implement their SFCs on the FPGA devices [8, 11]. Such
unwelcome development complexity brings the inflexible and
inefficient SFC implementation.

Therefore, in this work, we exploit the benefit of P4 [12],
a domain-specific language for data plane programming, to
provide the high-performance and flexible SFC implementa-
tion on the P4-capable device. P4 exposes the inner packet
processing pipeline of the data plane device and enables
operators to customize the behavior of the programmable
data plane based on their policies. Unlike the development
of FPGA, operators can describe the SFC features in a
target-independent P4 program, which can be compiled to
various P4 devices, in a few hours. Meanwhile, the P4-
capable hardware device, such as Tofino [13], can achieve
up to 6.5 Tbps line rates while offering extra-low packet
processing latency [14]. Together, the hardware capability
and the P4 programmability conform to the requirements
of implementing SFCs, which need the high processing
performance and the deployment flexibility.

We present P4SC (the abbreviation of “P4 Service Chain-
ing”), a system for implementing SFCs on the P4-capable de-
vice. We conclude the following challenges in our design: (1)
To avoid the development complexity introduced by substrate
details, we are challenged to enable operators to describe the
SFC features with the high-level policies; (2) To implement
several SFCs on the same target, we are challenged to observe
the P4 grammar [15] when maintaining all the SFC features
on the output program; (3) For the runtime management
of SFCs, we are challenged to provide operators with a
convenient way to control the SFC behaviors. In response,
P4SC provides some high-level primitives for operators to
construct the SFC requests, meanwhile, converts the input
SFC requests to a P4 program. It leverages a Longest
Common Subsequence (LCS) [16] - based algorithm to merge
several SFCs on the output P4 program, while introducing a
small program overhead in terms of duplicate P4 tables for978-3-903176-15-7 c© 2019 IFIP
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observing the P4 grammar. P4SC also provides the runtime
management of SFCs, which enables the implementation of
SFC policies and the scheduling of SFCs. Besides, due to
the target-independent feature of P4, P4SC can be easily
accommodated to various P4 devices, ranging from the
software switch to the ASIC-based switch.

In this paper, we make the following contributions:
• We introduce P4SC, a system for implementing SFCs

on the P4-capable device that combines the hardware
capability and the P4 programmability to provide the
high-performance and flexible SFC implementation.

• We present the design and implementation of P4SC.
We design several high-level primitives for operators to
construct SFC requests. We design a converter and a
generator in P4SC to generate P4 program according to
input SFC requests. We design a LCS-based algorithm
in the converter to merge several SFCs in a P4 program
with a small program overhead. We design the generator
to wrap device APIs for providing the runtime manage-
ment of SFCs.

• We implement three real-world SFCs on various P4-
capable devices to validate P4SC. Experimental results
demonstrate that by integrating the hardware capability
into the SFC implementation, P4SC achieves significant
SFC performance improvement, including a 96.98%
delay decrease compared to the DPDK-based solution.

The remainder of this paper is organized as follows.
Section II elaborates the background of implementing SFCs
on the P4-capable device and the design challenges of P4SC.
The design of P4SC is articulated in Section III. We present
the implementation of P4SC and evaluations in Section IV.
We summarize the related work in Section V, and conclude
this paper in Section VI.

II. BACKGROUND AND DESIGN CHALLENGES

In this section, we start with the background of implement-
ing SFCs on the P4-capable device, and then we reveal the
design challenges, which guide the design of P4SC.

A. Implementing SFCs on the P4-Capable Device

A SFC enables the high-level creation and composition of
network services and applies value-added services to selected
flows [1]. The graph structure of a SFC may be composed of
many branches, corresponding to different Service Function
Paths (SFPs). In a SFC, a SFC classifier identifies incoming
flows and distributes them to different SFPs. A NF of a
SFC executes dedicated operations on flows, for example,
a firewall validates the flow security to prevent malicious
intrusions. Moreover, the metadata is used to exchange the
processing information between NFs. At runtime, operators
can dynamically select the SFP to process flows based on
their policies. Thus, a system for implementing SFCs on the
target device is supposed to shield low-level details when de-
scribing SFCs, maintain the SFC features, including the SFC
classifier, SFPs and the metadata, on device configurations,
and enable the runtime management of SFCs.

Fig. 1: Operator issues the SFC requests, which are converted
to the corresponding P4 program. After compiling and im-
plementing the P4 program, P4SC provides operators with
a convenient way to control the SFCs running on the P4-
capable device at runtime.

Simultaneously, P4 [12] is a domain specific language,
which describes the packet processing pipeline of the data
plane device. A P4 program is composed of headers, parsers,
metadata, match-action tables, actions, and control flows. A
match-action table matches the packet and selects an action
to execute that can be used as a part of NF operations
or a flow classifier. The metadata is used to exchange the
processing information between tables, and a control flow
realizes NFs by ordering tables and the processing logic.
Therefore, a P4 program is capable of describing a SFC by
using a P4 table as the SFC classifier, composing NFs with
tables and control flows, exploiting metadata to exchange the
processing information between NFs, and defining SFPs in
control flows. A P4 compiler loads the program to target
devices and exposes the device APIs for operators to populate
rules at runtime.

Fig. 1 presents an overview of our P4SC system, which
implements SFCs on the P4-capable device. Operators de-
scribe the SFC features in the high-level SFC requests. After
that, P4SC converts these requests to the corresponding P4
program and implements it on the target device. At runtime,
operators manage SFCs by controlling the device behaviors
via this system.

B. Design Challenges

We reveal three major challenges in the design of P4SC.
SFC development complexity avoidance: An efficient SFC

development requires minimizing the development complex-
ity. However, the substrate details, such as the P4 gram-
mar, introduce the non-trivial complexity when implementing
SFCs on the P4-capable device. Therefore, we are supposed
to provide a simple approach for operators to implement
SFCs without involving any complex substrate knowledge.
In response, we design several high-level primitives in P4SC,
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TABLE I: The primitives for constructing the SFC requests

Primitives Descriptions

NF 1 before NF 2 The execution priority of NF 1 is higher than NF 2.
NF 1 then NF 2 or NF 3 [or NF i] There are two (or more) branches after the processing of NF 1. The first branch processes

the packets with NF 2 while the second branch processes the packets with NF 3.
NF 1 then NF 2 or NF 3 [or NF i]
and branch end=NF N

Unlike the second primitive, these branches are ending with the processing of NF N.

NF 1 first The processing of NF 1 is placed in the beginning of SFC.
NF 1 last The processing of NF 1 is placed in the end of SFC.
NF 1 loop After the execution of NF 1, the processing restarts from the beginning of SFC.
End of Request This primitive marks the end of a request. It is used as the delimiter between two

individual SFC requests.

in order to shield substrate details and enable operators to
describe the SFC requests based on their high-level policies.
(Section III-B1)

Correct and efficient conversion mechanism: The con-
version mechanism, which converts the input SFC requests
to the corresponding P4 program, should precisely merge
all the SFC features and correctly express them on the
output program. However, this conversion may violate the P4
grammar due to the dependency conflicts between different
NFs and multiple NF invocations. The strawman solution
for merging SFCs introduces lots of duplicate P4 tables
for ensuring the program correctness, which is inefficient
and unacceptable. Therefore, care must be taken in the
conversion mechanism of P4SC. To this end, P4SC ensures
the correctness of the conversion from the SFC requests to
the P4 program, while using a LCS-based algorithm to merge
SFC requests efficiently. (Section III-B2)

Convenient runtime management: At runtime, operators
need to control the SFCs running on the P4-capable device.
Therefore, we are challenged to provide the runtime manage-
ment for operators to control the SFC behaviors. However,
the device APIs used to populate the control rules are coupled
with the details of the P4 program, which brings unwelcome
management difficulties. In response, P4SC encapsulates the
low-level device APIs to provide a convenient way for the
runtime management of SFCs. (Section III-C2)

III. DESIGN OF P4SC
In this section, we describe the architecture of P4SC and

elaborate two key components of P4SC, the converter and
the generator.

A. Overview
Fig. 2 plots the architecture components of P4SC. The

converter of P4SC enables operators to describe the SFC
features in high-level requests without involving any substrate
details. It extracts the SFC features from input requests
and convert them to an intermediate representation (IR).
Moreover, in the scenario of implementing several SFCs, the
converter uses a LCS-based algorithm to merge SFCs while
observing the P4 grammar by introducing a small number
of duplicate P4 tables. The generator of P4SC generates the
output P4 program based on the IR. Meanwhile, it provides
the runtime management for operators to control SFCs on
the P4-capable device.

Fig. 2: P4SC architecture components

We further define a P4SC block, which is composed of the
NF name, the P4 file that stores P4 codes, and the codes of
P4 ingress/egress control flows, as shown in Fig. 2. A P4SC
block corresponds to a specific NF. Instead of writing a P4
program, operators only need to write their NFs using P4
and import them into P4SC. P4SC will automatically convert
the P4 NFs to reusable P4SC blocks. Besides, operators can
also utilize 20+ built-in P4SC blocks that are extracted from
switch.p4 [17] to build SFCs.

B. The Converter of P4SC

The converter of P4SC offers some high-level primitives
for constructing the SFC requests. A request, which is
composed of NF names and primitives, describes the SFC
features. The converter converts each input request to a
directed acyclic graph (DAG). It uses a LCS-based algorithm
to merge these DAGs to an IR, and delivers the IR to the
generator of P4SC.

1) Converting the SFC Requests to DAGs: The converter
provides the primitives listed in Table I and available NFs for
operators to construct the SFC requests. The converter checks
the structure of SFC indicated by a request and rejects non-
DAG SFCs with the construction failure. Note that a request
can indicate a non-DAG SFC for two reasons: (1) A NF can
appear multiple times in a request, or (2) the SFC has loop
conditions. In response, the converter requires operators to
rename the NF, which is invoked again with a serial number
as writing requests, and uses a node attribute to indicate the
start of a loop. It allocates an unique SFC ID to each request
and creates NF nodes. Each NF node is associated with some
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Algorithm 1 Merging two DAGs
1: function MERGING(DAG1, DAG2)
2: Get order1 and order2 by sorting DAG1 and DAG2
3: sharedOrder ← LCS(order1, order2)
4: if sharedOrder is None then
5: return AND(DAG1, DAG2)
6: end if
7: Get Base and Attach from order1 and order2
8: Split Attach to mainSgmt, first, follow
9: Insert first and follow to Base

10: p← the place after first on Base
11: for each node in mainSgmt do
12: if node in sharedOrder then
13: p← the place of node on Base
14: id1, id2← Base[p].sfcID, node.sfcID
15: Base[p].sfcID ←MERGE(id1, id2)
16: else
17: Insert node to Base
18: end if
19: p++
20: end for
21: IR← ADDLINK(Base,DAG1, DAG2)
22: return IR
23: end function

attributes, including the NF name, the node length, which is
equal to the number of P4 tables occupied by the NF, a SFC
ID array for identifying the DAGs that utilize this node, and
a pointer list used to connect to other nodes. Meanwhile,
the converter strips out serial numbers from NF names and
connects the NF nodes based on the node order acquired from
the input request to produce the DAG.

2) Merging DAGs to the IR: When merging DAGs to the
IR, we consider two problems of maintaining the correct-
ness: (1) NF successor dependency conflicts: As specified
in [12, 15, 18], there may exist NF successor dependency
conflicts between two different DAGs. For example, “NF1
before NF2” in DAG A violates “NF2 before NF1” in DAG
B. Such situation brings the failure of SFC implementation.
(2) Multiple NF invocations: The P4 grammar forbids the
multiple invocations of a P4 table. In this case, a NF node can
only be accessed once in a P4 program. However, different
DAGs may visit the same NF node, which violates the P4
grammar when merging DAGs.

The parallelism method: The strawman solution for merg-
ing DAGs called the parallelism method introduces a pre-
visiting node to distribute flows and connects this node with
original DAGs in parallel. To resolve the above-mentioned
problems when merging DAGs, this solution creates duplicate
P4 tables for each DAG to observe the P4 grammar. However,
as a compromise, lots of resources are wasted due to the
exponential number of P4 tables.

Our solution: In response, to ensure the program correct-
ness while avoiding the heavy P4 program overhead, we
develop a LCS-based algorithm in the converter of P4SC,
as described in Algorithm 1. The converter iterates this
algorithm to merge DAGs and produces an IR in the end. We
compare our solution with the parallelism method in Section
IV-E.

The converter takes two DAGs as the input of Algorithm
1. First, it acquires the topological sequences of the DAGs
(line 2). By referring to NF node length, the LCS produces

Fig. 3: An example of Algorithm 1

“sharedOrder”, which is a NF node sequence that occupies
the maximum P4 tables (line 3). If “sharedOrder” is empty,
the converter connects the two DAGs to a pre-visiting node
and ends up the procedure (lines 4-6). Otherwise, it combines
the shorter node sequence “Attach” to another longer se-
quence “Base”. The node sequence between the first node and
the last node of “sharedOrder” on “Attach” is named “main
segment”. Meanwhile, “first” is the node sequence before
“main segment” and “follow” is the node sequence after
“main segment” (line 8). The converter copies “first” and
inserts the replica before the first NF node of “sharedOrder”
on “Base”. Similarly, the replica of “follow” is placed after
the last NF of “sharedOrder” (line 9). The converter uses a
pointer “p” to point to the place after “first” on “Base” (line
10). For each node on “main segment”, it determines if this
node exists in “sharedOrder” or not. If true, the converter
combines the SFC ID array of this node with that of the
same node on “Base” (lines 12-15). If false, the replica of
this node is inserted to the place indicated by “p” (lines 16-
17). Then “p” is moved to the next node on “Base” (lines
19). Finally, the converter recovers the structures of the input
DAGs on “Base” (line 21) and produces the IR.

Fig. 3 plots an example that presents the mechanism of
Algorithm 1, which is a three step process: (1) Algorithm
1 acquires the topological sequences using the topological
sorting, and feeds the sequences to LCS to produce “share-
dOrder”. (2) By referring “sharedOrder”, Algorithm 1 splits
the shorter node sequence, “Attach”, into three subsequences,
“first”, “main segment”, and “follow” (“follow” is none in
this case), and individually merges the three subsequences
into the longer node sequence, “Base”. For handling the
“first” and “follow”, Algorithm 1 directly copies them and
inserts the replicas into “Base”. For handling “main seg-
ment”, Algorithm 1 iterates each node of “main segment” and
determines whether the current node exists in “sharedOrder”.
If so, Algorithm 1 skips this node, e.g., “NF1” and “NF3”
in “main segment”. Otherwise, Algorithm 1 copies this node
and inserts the replica into the “Base”, e.g., “NF2” in “main
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(a) The workflow for handling IR A

(b) The workflow for handling IR B

Fig. 4: The generator workflow for handling IR examples

segment”. (3) Finally, Algorithm 1 recovers the original DAG
structures on the merged sequence and produces the IR.

C. The Generator of P4SC

The generator of P4SC generates the P4 program based
on the IR. Meanwhile, it wraps the low-level device APIs to
provide the runtime management of SFCs.

1) Generating the P4 Program based on the IR: Above
all, the generator handles the NF nodes that appear multiple
times in the IR. It searches the P4SC blocks with the name
of duplicate nodes and creates an unique block replica for
each duplicate node in the IR. The name of block replica
is appended with a serial number to distinguish it from the
original name.

Thereafter, the generator produces the NF node sequence
of the IR using topological sorting and records IR branches
in the linked lists. A linked list is assigned a path ID that
corresponds to a SFP, and each node in the NF node sequence
is assigned the codes of P4 control flows that are recorded in
relevant P4SC blocks. The generator uses if-else statements
for SFC IDs to indicate the boundary between different SFCs

TABLE II: The primitives for SFC management

Primitive names Descriptions

Show SFCs() Show all the SFCs.
Show SFPs(sfcID) Show all the SFPs of a SFC.
Show SFC Configs(sfcID [pathID]) Show the configuration of a SFC/SFP.
Select SFC(sfcID [pathID]) Select a specific SFC/SFP.
Delete SFC(sfcID [pathID]) Delete a specific SFC/SFP.

on the codes of P4 control flows. Subsequently, the generator
introduces an empty control flow pair for ingress and egress
control flows. It selects the nodes that exist in all the linked
lists and marks them in the NF node sequence. Then it
traverses the NF node sequence and identifies whether a node
is marked. If so, the generator directly populates the codes of
P4 control flows recorded in this node to the control flow pair.
Otherwise, it acquires path IDs of the linked lists in which
this node exists, and inserts the codes of P4 control flows
into the control flow pair as well as using if-else statements
for path IDs to set the boundary of SFPs. If a node has an
attribute that indicates a loop, the generator adds the loopback
action to the last P4 table cited by this node.

Fig. 4 shows the generator workflow for handling two IR
examples. Fig. 4a shows that to process the duplicate node
“NF1 copy1”, the generator creates a block replica, which
is associated with “NF1”. Fig. 4b shows that the boundary
between SFC1 and SFC2 is set by using if-else with SFC
IDs on the control flows. Fig. 4b also shows that the codes
for “NF1” are directly populated because “NF1” exists in all
the SFPs, while other codes are limited by path IDs.

Finally, the generator inserts a P4 table used to classify
flows and distribute path IDs and SFC IDs in the beginning
of the ingress control flow. It produces the output program
by combining the control flow pair with a target-dependent
backbone program, which provides the target-dependent def-
initions, such as the definition of intrinsic metadata. The
operators can change this backbone program to accommodate
to other P4 devices.

2) Runtime Management: Another function of the gen-
erator is encapsulating the device APIs generated by the
P4 compiler, as well as providing wrapped functions for
operators to manage the SFCs running on the target device.
In the design of the generator, we focus on two aspects of
the runtime management, NF rule management, and SFC
management.

NF rule management: The universal approach for popu-
lating the NF rules to a P4-capable device is to leverage the
device APIs generated by the P4 compiler. However, these
APIs are tightly coupled with the details of the P4 program,
such as the name of a P4 table. These unwelcome details are
supposed to be transparent to operators, who only care about
the SFC policies and the NF rules. For example, operators
care about the rules of their NF, “Firewall”, rather than the
table entries of the P4 table “firewall t”. Accordingly, we
design the generator to encapsulate the device APIs into
the wrapped functions for populating the NF rules without
involving any low-level details. Operators can easily invoke
these functions in a script written in a high-level program-
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TABLE III: Real-world SFCs and the features of output P4 programs

The name of SFC Scenario The SFC request No. of
tables

No. of
matches

No. of
actions

SFC1 for DC Data Center IDS before Firewall before NAT before L3fwd 17 47 40
SFC2 for HTTP services Mobile Network LB then L3fwd or Firewall and branch end=Firewall, Fire-

wall before NAT
9 48 31

SFC3 for Gi-LAN Gi-LAN NAT before L2fwd before LB before L3fwd before Firewall 15 61 50

(a) Throughput of SFC1 (b) Throughput of SFC2 (c) Throughput of SFC3

(d) Execution delay of SFC1 (e) Execution delay of SFC2 (f) Execution delay of SFC3

Fig. 6: Performance of real-world SFCs

ming language like Python to populate their NF rules. They
can also use the CLI provided by the generator for the NF
rule management.

SFC management: In addition, the generator also provides
some primitives, as listed in Table II, for managing the
SFCs running on the P4-capable device. Unlike the wrapped
functions for managing NF rules, these primitives are de-
signed to control SFPs on the target device. For example, it
is necessary to provide operators, who determine the SFC
to process the packets based on policy intents, with the
primitive of selecting SFC running on the target device, i.e.,
“Choose SFC”.

IV. IMPLEMENTATION AND EVALUATION

A. Implementation

The implementation of P4SC is composed of two parts: (1)
The converter and the generator of P4SC are implemented
as a plugin of the P4 compiler, P4C [19]. The compiler
compiles the P4 program produced by P4SC and generates
the target configurations. And then P4SC configures the target

device with the target configurations to accomplish the SFC
implementation. (2) The generator of P4SC relies on the
Apache Thrift framework [20] and P4Runtime [21], which
is a state-of-the-art P4 control framework, to communicate
with the SFC target devices and populate control rules at
runtime. Moreover, we implement the following NFs to
evaluate P4SC:

L2fwd: A packet forwarder that matches the destination
MAC address of the packet using exact match to determine
the output port with 100 rules.

L3fwd: A packet forwarder that matches the source and
destination IP addresses of the packet using longest prefix
match to determine the output port with 100 rules.

Firewall: A 5-tuple firewall configured with 100 rules.
NAT: A stateless NAT that translates the source IP address

of the packet according to 100 rules.
LB: An ECMP-based load balancer that hashes the 5-tuple

of the packet to balance the load with 100 rules.
IDS: A simple NF similar to the Bro intrusion detection

system [22] with 100 rules.
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Fig. 5: The experiment topologic

We have published the source code of P4SC system as
well as relevant experimental details including the P4 codes
of these NFs, the parameter and the benchmark workload
used in our experiments, etc., at [23].

B. Evaluation Overview

Our evaluation answers three important questions: (1)
Can P4SC provide a high-performance SFC implementation
compared to existing SFC solutions? (Section IV-C) (2) Can
P4SC efficiently generate the P4 program and control the SFC
target devices? (Section IV-D) (3) Can P4SC merge SFCs
in a short time while introducing small program overhead?
(Section IV-E)

We run the P4SC system in Ubuntu 16.04 system on a
server, which is configured with two Intel(R) Xeon(R) E5-
2630 v4 CPUs (2.20GHz, 10 physical cores) and 128GB
RAM. The topologic for evaluation is depicted in Fig. 5.
On the whole, the experiment results reveal that (1) P4SC
provides the high-performance SFC implementation on a P4
hardware target compared to both the software solution and
the DPDK-based solution, (2) the converter and the generator
can quickly generate the P4 program based on the given SFC
requests, while avoiding the heavy P4 program overhead in
terms of duplicate P4 tables, and (3) the additional latency
introduced by the runtime management of P4SC is accept-
able.

C. Performance of Real-World SFCs

In this experiment, we choose three real-world SFCs to
evaluate the performance of P4SC:

SFC1 for Data Center (DC): There are two kinds of
traffic in the DC, the east-west traffic between servers, and
the north-south traffic from the outside of the DC. We present
a SFC that provides security for the north-south traffic [24].
At the beginning of SFC, IDS and Firewall performs security
check on incoming traffic to defend against malicious attacks.
Thereafter, NAT converts between a public address domain
and a private address domain, while L3fwd routes the traffic
and connects the DC with the Internet.

SFC2 for HTTP Services: We illustrate a SFC for HTTP
services [24]. This SFC is composed of LB, firewall and NAT.
At runtime, LB distributes the HTTP traffic and the non-
HTTP traffic to two branches. To enhance the performance,
one branch forwards the HTTP traffic to go through a per-
formance enhancement proxy (PEP). The non-HTTP traffic
in another branch skips the operations of PEP. Thereafter,
firewall applies security strategies, and NAT executes the
private-to-public address transition.

SFC3 for Gi-LAN: The Gi interface is a major mobile traf-
fic carrier between the external packet data network and the
gateway general packet radio service (GPRS) support node

(a) Execution time (b) Runtime overhead

Fig. 7: Efficiency of P4SC

[25]. Considering the requirements of service-level agreement
(SLA), the Gi-LAN requires the dynamical deployment of
SFCs to accommodate the traffic growth. We extract a SFC
for Gi-LAN from [25] that schedules flows to go through
NAT, L2fwd, LB, L3fwd, and firewall in this order.

We write corresponding SFC requests of these real-world
SFCs, while using P4SC to implement these SFCs on a
typical P4-capable device, a Barefoot Tofino switch [13].
Table III presents the SFC requests and the features of P4
programs produced by P4SC. Moreover, we choose the BMv2
switch [26] as the software target to implement the same
SFCs as a comparison. We also use a DPDK-based SFC
target, Berkeley Extensible Software Switch (BESS) [27, 28]
v0.3.0, to implement these SFCs. We use MoonGen [29] to
generate the test traffic at 10 Gbps. We use 64B to 1500B
packets to evaluate the throughput of SFC and measure the
packet processing latency.

Fig. 6 shows that the processing capability of Tofino can
improve the performance of P4SC-based SFCs significantly.
Compared to the software-based SFCs, the P4SC-based SFCs
achieve orders of magnitude performance improvement on
both throughput and packet processing delay. Meanwhile,
although the DPDK-based SFCs could achieve as high
throughput as the P4SC-based SFCs, the P4SC-based SFCs
outperform the DPDK-based SFCs on the packet processing
delay with up to 96.98% decrease. These results demonstrate
that P4SC is competent to achieve high-performance SFC
implementation.

D. Efficiency of P4SC

To qualify the efficiency of P4SC, we write ten different
SFC requests and send them to P4SC to generate P4 programs
for measuring the execution time of P4SC. The execution
time of P4SC depends on the length of SFC so that we vary
the length of the SFCs from 1 to 10 in these requests.

At first, we measure the execution time of P4SC when
converting the requests to P4 programs. Fig. 7a shows that
the execution time increases slowly when the length of SFC
increases, which could demonstrate the effectiveness of the
conversion mechanism of P4SC.

Moreover, we evaluate the additional runtime overhead in-
troduced by P4SC. We use the wrapped functions to populate
a NF rule and measure the latency. We repeat the experiments
for 100 times. As shown in Fig. 7b, P4SC introduces an
average of 0.05 ms delay, which is acceptable.
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Fig. 8: P4SC’s effect of merging SFCs

E. Effect of Merging SFCs

We evaluate P4SC’s effect of merging SFCs. We randomly
generate the SFC requests with 15 different NFs based on the
following criteria: (1) The SFC described in a request has 3
branches at most; (2) The NF number of a SFC is less than
15; (3) A NF occurs only once in a request.

Fig. 8a shows that P4SC is capable of merging a hundred
of SFCs in less than a second, which is fast and acceptable.
In addition, we compare Algorithm 1 of P4SC with the
parallelism method that inserts a pre-visiting node to merge
SFCs. If one SFC has n NFs while another SFC has m NFs,
then the output IR produced by the parallelism method has
n+m+1 nodes. We individually use the two approaches to
merge SFCs. We assume that each NF node of the output
IR occupies one P4 table. As Fig. 8b shows, compared
to the parallelism method, Algorithm 1 introduces a small
number of duplicate P4 tables to observe the P4 grammar
when merging several SFCs. For example, in the case of
merging 128 SFCs, the program produced by Algorithm 1
only uses 13.15% of the tables of the program produced by
the parallelism method.

The experiment results demonstrate that the Algorithm 1
of P4SC can quickly adapt to massive requirements of SFC
deployment, while avoiding the heavy P4 program overhead.

V. RELATED WORK

SFC Acceleration: Several recent works have been pro-
posed to improve the performance of SFCs. They focus
on NF acceleration [8, 30, 31], packet delivery acceleration
[4, 6, 7], NF modularization [32, 33], and NF parallelism
[34, 35], respectively. Moreover, some efforts attempt to
maintain SFCs on the programmable data plane to achieve
SFC acceleration. SLA-NFV [36] and HYPER [37] imple-
ment SFCs on the hybrid substrate composed of software
targets and hardware targets, in order to support a variety
of NFs and enable SLA requirements. And NF-Switch [38]
presents a switch architecture that reduces additional match
stages and operations between NFs. P4SC is complementary
to above research efforts. It combines the hardware capability
and the P4 programmability to achieve the high-performance
and flexible SFC implementation.

NF Orchestration: Many recent works [35, 39, 40, 41]
propose the NF orchestration techniques for SFC imple-
mentation. Moreover, some research efforts [42, 43, 44] are

proposed to reasonably allocate physical resources to NFs
when orchestrating NFs to compose SFC. In addition, some
recent works [17, 45, 46, 47, 48, 49] also orchestrate and
customize NFs using P4. Hyper4 [46] and HyperV [47] focus
on virtualizing the P4 programmable data plane to provide
network virtualization services. However, they lack of design
considerations for building SFCs on the P4-capable device.
P5 [48] identifies the dependencies among the P4 tables and
creates an efficient switch pipeline by removing unnecessary
features between P4-based NFs. ClickP4 [49] refers to the
module design and modularizes P4-based NFs to enable the
on-demand orchestration. Unlike P5 and ClickP4, P4SC is a
comprehensive system that organizes the P4 program based
on the SFC features described in the SFC requests.

Besides, [50, 51] propose policy-based NF orchestration.
PGA [50] provides a graph-based abstraction for expressing
network policies and makes an attempt to support SFCs. It
composes a conflict-free graph by parsing high-level policies
and uses the composed graph to generate SFC configurations.
Similarly, P4SC also provides several high-level primitives
for operators to construct SFCs based on policy intents.
However, P4SC focuses on converting the SFC requests to
the P4 program and implementing SFCs on the P4-capable
device, in order to provide the high-performance and flexible
SFC implementation.

VI. CONCLUSION

In this paper, we presented P4SC, a system for maintaining
SFCs on the P4-capable device. P4SC offers some high-
level primitives for operators to describe SFCs and converts
the SFC requests to a corresponding P4 program. It merges
several SFCs while observing the P4 grammar and provides
the runtime management of SFCs by wrapping the low-level
device APIs. We have implemented some real-world SFCs on
various P4 devices via P4SC. Our experiment results show
that P4SC can improve the performance of SFC significantly
compared to the existing SFC solutions. In the future, we will
step further to enrich the primitives for constructing SFCs to
support more complex SFC implementation.
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