
Collaborative Computation Offloading for
Multi-access Edge Computing
Shuai Yu

LIP6
Sorbonne University

4 Place Jussieu, 75005, Paris, France.
shuai.yu@lip6.fr

Rami Langar
LIGM/UPEM

University Paris Est
Cité Descartes, 77454, Marne-la-Vallée, France.

rami.langar@u-pem.fr

Abstract—Computation offloading is a proven successful
paradigm for enabling resource-intensive applications on the
mobile devices in multi-access edge computing (MEC) network.
Moreover, in view of emerging mobile collaborative application
(MCA), the offloaded tasks can be duplicated when multiple users
are in the same proximity. This motivates us to design novel
collaborative offloading schemes. In this context, we first consider
the MEC offloading scenario, where multiple mobile users offload
duplicated computation tasks to the network edge servers, and
share the computation results among them. Our goal is to develop
the optimal fine-grained collaborative offloading strategies with
data caching enhancements to minimize the overall execution
delay at the mobile terminal side. Next, we extend the MEC
offloading to hybrid offloading (i.e., joint MEC and Device-
to-Device (D2D) offloading) with social relationship considera-
tion, and propose a hybrid D2D multicast-based task execution
framework to achieve an energy-efficient task assignment policy
for mobile users. To overcome the great complexity for the
deployment problems, we then formulate the offloading decision
problem as a multi-label classification problem and develop the
Deep Supervised Learning (DSL) method to achieve a rapid
offloading decisions making, as well as minimize the computation
and offloading overhead. Last but not least, we evaluate their
performance through extensive numerical study, which shows
the superior performance of the proposed scheme.

Index Terms—computation offloading, multi-access edge com-
puting, data caching, multicast communication, socially aware,
monte carlo tree search, deep learning.

I. INTRODUCTION

Accompanied by the emergence of near-to-eye display
technologies, such as Google Glass, a variety of mobile
resource hungry applications are developed to meet the user’s
requirements, such as augmented reality (AR) [1], collab-
orative gaming and mobile crowd sensing applications [2].
These applications make use of complex algorithms for camera
tracking, image processing and pattern recognition which
are resource-intensive and, hence, beyond the capabilities of
current mobile devices. A potential solution to address the
challenges is to offload the computation to nearby resourceful
cloudlet [3].

To this end, the European Telecommunications Standard-
s Institute (ETSI) proposed multi-access edge computing
(MEC) [4]. In the proposed architectures, substantial compute
and storage resources are placed at the edge of the Internet,

in close proximity to mobile devices, sensors, end users, and
Internet of Things devices. This physical proximity improves
latency, bandwidth, trust, and survivability, thus allowing a
large class of state-of-the-art applications, like Big Data and
the Internet of Things, to be deployed in a very effective way.

In addition, for certain types of mobile collaborative ap-
plication (MCA), multiple users in the same neighborhood
typically look at the same scene, track the same environment,
and need to recognize the same objects, so they can benefit
from collaboration and computation/data sharing [1]. A typical
example is emerging mobile crowd sensing applications [2],
where individual mobile user with sensing and computing
devices collectively share data and extract information to mea-
sure and map phenomena of common interest. Similarly, AR
applications [1] have the unique property that different users
with the same objective can share part of the computational
tasks and of the input and output data. This motivate us to
design novel collaborative computing offloading schemes for
multi-user MEC network.

In this paper, we will investigate fine-grained computation
offloading framework for MCA execution in MEC network.
Our work consists of three contributions that are summarised
as follows:

• In the first contribution, we propose a fine-grained collab-
orative computation offloading and date caching strategy
that optimizes the offloading decisions on the mobile
terminal side with data caching enhancement. The objec-
tive is to minimize the overall execution latency for the
mobile users within the network. We propose a concept
of the cooperative call graph to model the offloading and
caching relationship within multiple mobile users, and
then compute the delay and energy overhead for each
single user. Then, we explore the concept of the coalition
formation game for the distributed caching scenario in
multi-user multi-cell MEC network. This part of work
was first published in the proceedings of IEEE Interna-
tional Conference on Communications (ICC 2016) [5],
then, an extension version was published in the journal
of IEEE Transactions on Vehicular Technology [6].

• In the second contribution, we propose a framework of
socially aware D2D computation offloading (SAHCO)
and then compute the energy overhead for each ap-978-3-903176-15-7 c⃝ 2019 IFIP

689

Fig. 1: Mobile computation offloading in MEC scenario

plication cluster. In order to enhance the performance,
we solve the computation offloading problem for all
the components of an application at the same time. To
address the problem for the set of MCA components, we
propose a new optimal task assignment approach based on
Monte-Carlo search tree (MCTS) [7], named TA-MCTS.
Our proposed solution, TA-MCTS, achieves an optimized
computation offloading policy. This part of work was first
published in the proceedings of IEEE Global Commu-
nications Conference (GLOBECOM 2016) [8], then, an
extension version was submitted to the journal of IEEE
Transactions on Mobile Computing [6], and under major
revision now.

• In the last contribution, we propose a deep supervised
learning (DSL) based computation offloading framework.
Our objective is to achieve a rapid offloading decision,
and minimize the offloading cost for the MEC network at
the same time. The offloading actions taken by a mobile
user consider the local execution overhead as well as
varying network conditions (including wireless channel
condition, available communication and computation re-
sources). Our method provide a pre-calculated offloading
solution which is employed when a certain level of
knowledge about the application and network conditions.
We formulate the continuous offloading decision problem
as a multi-label classification problem. This modelling
strategy largely benefits from the emerging deep learning
methods in the artificial intelligence field. Our method
approaches the optimal solution obtained by the exhaus-
tive strategy performance with a very subtle margin. This
part of work was published in the proceedings of the
IEEE International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC 2017) [9].

• The URL to the thesis text is shown in [10].

The reminder of this paper is organized as follows. Section
II presents the system model. Section III introduce our first
contribution, followed by descriptions of our second and third
contributions in Section IV and Section V, respectively. Simu-
lation results are presented in Section VI. Finally, conclusions
are drawn in Section VII.

Fig. 2: Collaborative call graph with caching enhancement.

II. SYSTEM MODEL

As illustrated in Fig.1, we consider a small cell-based MEC
system, which is also known as small cell cloud. The basic idea
is to enhance small cell base stations (e.g., pico, femto) by an
additional computation and storage capabilities. In this article,
the novel base station is called Small Cell cloud-enhanced e-
Node B (SCceNB).

We consider our MEC system consists of a set M =
{1, 2, ...,M} of mobile users and a set N = {1, 2, ..., N}
of SCceNBs. Assume that each SCceNB can serves at most q
mobile users. The maximum achievable uplink and downlink
rate (in bps) over an additive white Gaussian noise (AWGN)
channel for user m (m ∈ M) to offload its application to
SCceNB n (n ∈ N) can be expressed as ruln,m and rdln,m,
respectively.

A. Application Model

We assume that a mobile application can be split into
multiple components which in the granularity of either method
or thread (i.e., a fine-grained partitioning) [11]. Then, we
model the relationship between components as a weighted
directed graph G = (V, E), where V denotes the set of com-
ponents, and E the data dependencies between components.
We assume each edge Eu,v (Eu,v ∈ E) represents the data
communication (computation result) between two components.
We let ϕv (v ∈ V) denotes the weight of component v, which
specifies the workload (CPU cycles) for the component v. For
a given input data size Eu,v , ϕv = ω · Eu,v , where the ω in
CPU cycles/byte (cpb) indicates the number of clock cycles
a microprocessor will perform per byte of data processed in
an algorithm. The parameter depends on the nature of the
component, e.g., the complexity of the algorithm.

Then, we propose a concept of the collaborative call graph
for multi-user MCA execution scenario, as shown in Fig. 2.
When a group of mobile users connect to the same SCceNB,
they can cooperate through sharing their input data and compu-
tation results in the server. For example, Fig. 2 shows that UE1
and UE2 offload their computation to the edge server and share
the corresponding computation results. They can benefit from
the fact that the result of component “Recognizer” is already
cached in the edge server to reduce the execution latency. Or
if there is no such result cached in the edge server, they can

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Dissertation Sessions690

collaboratively execute the component in the edge server for
one time, instead of two times separately.

B. Execution Model

For the MEC deployment, each component can be executed
either on the mobile device or offloaded to a SCceNB. The
offloading decision is based on the workload of components
V , data communication E , data rate rdln,m and ruln,m.

If a component v is executed on mobile device, the com-
pletion time is tlocalv . Conversely, if component v is offloaded
to a Virtual Machine (VM) in a SCceNB, the mobile device
is idle before receiving the computation results. We denote
tremote
v as the completion time of component v executed on

the SCceNB.
When component v is offloaded to SCceNB and the input

data Eu,v from its previous component u is stored locally (i.e.,
stored in the mobile device), Eu,v must be sent to SCceNB
before the execution of component v. Therefore, the time for
UE m sending input data from component u to component v
in SCceNB n is t su,vn,m =

|Eu,v|
rul
n,m

. Conversely, if component v
is executed locally, and its previous component u is executed
in SCceNB, the output data Eu,v of component u must be
sent back to mobile device before the execution of component
v. Therefore, the delay for UE m receiving output data from
component u to component v in SCceNB n is t ru,vn,m =

|Eu,v|
rdln,m

.

III. COMPUTATION OFFLOADING WITH DATA CACHING
ENHANCEMENT

In this section, we present our first contribution. We focus
on the reduction of average latency for MCA collaborative
execution with data caching enhancements.

A. Problem Formulation

In order to minimize the average delay for UEs, we first
formulate the single-user single-cell offloading problem as an
optimal offloading strategy under given caching lists of the
SCceNBs, which is a simple 0-1 programming problem that
aims at selecting the optimal number of components to be
offloaded at SCceNB n for UE m. Let Kn,v (Kn,v ∈ K∗

n)
denotes the binary computation results caching variable: which
is equal to one, if UE m cannot find the computation results
of component v cached in SCceNB n, and zero, if UE m can
find the results in the corresponding SCceNB n through local
caching. In,m,v is the offloading decision variable, which is
equal to one, if component v is processed remotely, or zero,
if the component is executed locally.

We define the optimal offloading decision I∗n,m =
{In,m,v, v ∈ V} under caching list K∗

n as Optimization
Problem 1:

I∗n,m(K∗
n,G) = argmin

Il
n,m,v

Tn,m, (1)

where Tn,m denotes the total execution delay for UE m
through offloading his components to SCceNB n.

Algorithm 1: Optimal Network Partition for MEC network

Initial network:
initial network partition for the UEs: {{∅}, {1}, {2}, ..., {M}}.

Step 1: Component Offloading Decision
UEs work in a Non-cooperative manner

Input of Step 1: Parameters M , N , K∗
n, tlocalv , tremote

v , G, t su,vn,m,
t ru,vn,m.

1) Each UE builds a top preferred SCceNB list I∗n,m according to
Optimization Problem 1.

2) Each UE selects its best preferred SCceNB as its serving SCceNB
and submit its offloading requests.

3) For the UEs whose list is empty, they join S0.
Output of Step 1: I∗n,m.

Step 2: Coalition Formation
UEs work in a cooperative manner

Input of Step 2: Parameters I∗n,m.
4) Each SCceNB receives the requests. Due to the limited compu-

tation capacity of SCceNBs, each SCceNB keeps the top UEs, and reject
the rest.

5) The rejected UEs will re-apply to their next best SCceNB of their
list I∗n,m, and each SCceNB updates its serving UEs list.

6) Repeat 5), until convergence to a final Nash-stable partition π∗.
For the UEs who cannot be allocated to a SCceNB, they execute the
application locally and join S0.

Output of Step 2: optimal network partition π∗

In the multi-user multi-cell MEC scenario, different SC-
ceNBs have different data caching contents. Therefore, the
caching policies K∗

n are different if one user attach to different
SCceNBs, which can change their offloading decisions. On
the other hand, users’ offloading request can affect the local
caching content of its serving SCceNB, and thus affect the
offloading decision of other users who attach to the same
SCceNB. Therefore, when UEs make offloading decisions in a
collaborative manner, and we can minimize the average delay
for the UEs as Optimization Problem 2:

min
1

M
·

M∑
m=1

Tn,m

(
I∗n,m,K∗

n

)
. (2)

B. Algorithm Design

Then, we present our proposed optimal offloading with
caching-enhancement scheme (OOCS) for the Optimization
Problem 2. In order to identify which SCceNB can serve
the attached users and execute the offloading decisions, we
explore the concept of coalition formation game [12] to solve
the problem. Note that the attachment of mobile users to a
particular SCceNB can be seen as a coalition formation game
in partition form with transferable utility. Specifically, let M
UEs be players, and π be the set of existing users in the
network. We assume that UEs in each coalition connect to
a single SCceNB and form a coalition. Let Sn denotes the set
of UEs that are served by SCceNB n, and S0 denote the set of
UEs that execute the application locally, i.e. without offload-
ing. Based on this, the optimal network partition (coalition
formation) is given by Algorithm 1. It is worth noting that
UEs who can not be allocated to a SCceNB will execute their

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Dissertation Sessions 691

application locally and join the coalition S0. The final network
partitions will be thus given as π∗ = {S0, S1, ..., SN}.

IV. A SOCIALLY AWARE HYBRID COMPUTATION
OFFLOADING FRAMEWORK FOR MEC

In this section, we present our second contribution. We
propose a novel socially aware hybrid (D2D/MEC) com-
putation offloading (SAHCO) for MEC, where a crowd of
mobile devices at the network edge leverage network-assisted
device-to-device (D2D) collaboration for wireless distributed
computing (MDC) and outcome sharing.

A. Description of the Proposed Framework

At the beginning of each offloading decision making, the
mobile devices upload the information required for offloading
decision to the base station. This information relates to both
the offloading data as well as the mobile device and network
characteristics.

Based on the received information, the base station first
classifies the mobile users into multiple application clusters as
shown in Fig. 3 (a). Each cluster is formed by users executing
the same application and sharing their inputs to each other. The
outputs (i.e., computation results) can be also shared among
them.

In order to establish reliable D2D communications among
the mobile users, the latter is allowed to share the resources
and computation results to its trusted users. Thus, the base
station builds a social trust graph (as showed in Fig. 3 (b))
for the mobile users based on the received social relationship
information. Then, it observes the current network state,
computes the immediate costs of each component assignment
strategy. Afterwards, based on these costs, it triggers the
offloading decision process. The objective of the decision
action is to select either: i) the MEC server (i.e., Base station)
or ii) the set of mobile users, able to compute the components.
To this end, we propose a Monte Carlo Tree Search based algo-
rithm, named, TA-MCTS for the task assignment problem. For
example, Fig. 3(c) shows that UEs 2, 7 and the base station are
selected. Next, based on the offloading decision, the remaining
mobiles users offload their computation (i.e., input data) to
their corresponding servers. Note that the latter can be either
the base station (i.e., MEC offloading) or a nearby mobile user
(D2D offloading). Accordingly, the selected mobile users are
responsible for processing and sending computation results to
the other users (i.e., the transmitter in each multicast cluster).
Thus we refer to this kind of mobile users as offloadee in this
paper, and the corresponding receivers as offloader (e.g., UEs
1 and 3 in the coverage of offloadee UE 2).

This process is repetitively executed until either reaching
the energy budget threshold or exiting the component phase. In
that case, the application has been executed in the application
cluster. The output of our hybrid offloading framework is a
sequence of fine-grained components assignment strategy for
each component of an application.

Fig. 3: Proposed socially aware hybrid computation offloading
(SAHCO) system.

V. A DEEP LEARNING BASED COMPUTATION OFFLOADING
FOR MEC

In this section, we present our last contribution. We tackle
the key issue of achieving rapid offloading decision for single-
user single cell MEC network (as shown in Fig. 1). Our objec-
tive is to minimize the offloading cost in time-varying wireless
environment, with network resource usage consideration.

A. Problem Formulation

Our problem can be described as reinforcement learning
scenario or Markov Decision Processes (MDPs). The objective
is to find an agent which makes optimal offloading policy for
each application. A composite state for the current system state
of computation offloading can be denoted by S, which consists
of mobile user’s task profiles and network resource status. For
the current decision period, we define immediate cost C(S, av)
as follows:

C(S, av) =

{
Cl(S) = Tl(v), av = 0

Cr(S), av = 1
(3)

where Cl(S) is the immediate local execution cost (equals
to the local execution delay), and Cr(S) is the immediate

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Dissertation Sessions692

Fig. 4: Deep learning-based offloading framework.

offloading cost which consists of communication and compu-
tation resource usage cost, the SCceNB computation cost and
the data transmission cost for offloading. av denotes an action
decision of either executing the component v locally on the
mobile device (denoted av = 0) or offloading to the SCceNB
(denoted as av = 1).

Thus, the optimal offloading policy denoted by π∗(π∗ ∈ π)
can minimize the system cost given by:

γ∗ = argmin
∑
v∈V

C(S, av). (4)

Note that in our work, the system cost
∑

v∈V C(S, av) is a
long-term cost, which is not provided immediately, but until all
the components been processed. This cost is formally named
as delayed cost.

B. Algorithm Design

In this section, we describe our proposed deep supervised
learning based offloading scheme (DOS) for decision making.

We formulate the fine-grained offloading problem as a
multi-label classification [13] framework. Specifically, given
an application G which contains |V| components, the input
of our model is the observation of the network states of all
components. Our decision is a |V|-dimensional vector. If a
component is offloaded, its value is 1, otherwise 0. We evaluate
our output with respect to the optimal output by multi-label
accuracy, which is defined as the proportion of the predicted
correct labels to the total number of labels for that application.

Our algorithm operates in three steps, i.e. initial phase,
training phase, and action or testing phase. In the following,
we describe these three phases.

1) Initial Phase: The objective of the initial phase is to
obtain the raw data for training our deep supervised learning
framework. We run 10,000 times the random and exhaustive-
based optimal offloading strategy. Note that we used an
exhaustive algorithm to search the optimal offloading policy
from all the 2|V| offloading possibilities. In each execution, we
vary the network conditions. Specifically, we record network
state S and the corresponding optimal offloading strategy. This
data is further randomly split into Ktr for training phase and
Kte for testing phase.

Fig. 5: Average applica-
tion execution delay vs.
ω.

Fig. 6: Average applica-
tion execution delay vs.
UE density.

2) Training Phase: In this phase, the features of training
data are trained using deep neural network. We cross validate
our training data to define the number of hidden layers to be 2,
and the number of neurons to be both 128, as shown in Fig.4.
Conventionally, we use rectified linear unit (ReLU) as the
activation function, dropout as the regularization and sigmoid
as the output. This network takes the state of S as input,
and the offloading decision av as output. The objective is to
minimize the multi-label accuracy with respect to the optimal
decisions. Since this is a multi-label classification problem, we
conventionally set the loss function as binary cross entropy.
For optimizing the neural network, we use Adam optimizer.
The neuron number of the output layer is set to |V|. If one of
the output neurons is greater than 0.5, it is decided to offload,
otherwise it is not offloaded.

3) Testing Phase: Once the training phase of the deep
neural network is finished, we can apply it onto any unseen
application. This step is called testing phase. At this time, the
deep neural network takes the state as the input and outputs
the decision for all components in the application. We evaluate
the performance of our network based on the outputs of the
testing phase.

VI. PERFORMANCE EVALUATION

We first illustrate the performance of our OOCS scheme
for the first contribution and compare it with respect to the no
offloading scheme (NOS). Figs. 5 and 6 show the multi-user
delay performance versus ω and UE density λu, respectively.
Note that our multi-user OOCS performs better in delay
reduction when ω grows as shown in Fig. 5. The reason is
that the offloading probability increases with ω since more
users can reduce their delay through joining our coalition game
performed in OOCS. Fig. 6 shows that our multi-user OOCS
performs better as UE density grows from 10−3 to 8×10−3. A
peak is observed when λu = 5× 10−3, which corresponds to
11.71% and 40.61% delay reduction, compared to single-user
OOCS and NOS, respectively. When λu > 8× 10−3, single-
user OOCS performs better. The reason is that, when λu grows
larger (> 5 × 10−3), the SCceNBs cannot afford such many
UEs (we assume that each SCceNB can handle 6 UEs in our
simulations), and thus a large number of UEs will be rejected
and run the application locally. As a result, the average delay
increases and will be close to the local execution delay.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Dissertation Sessions 693

Fig. 7: Average ener-
gy consumption vs. UE
density λ (10−3)

Fig. 8: Average delay vs.
UE density λ (10−3)

Fig. 9: Offloading accu-
racy vs. Kte.

Fig. 10: Offloading accu-
racy vs. distance d.

For the second contribution, we illustrate the performance
of our TA-MCTS scheme and compare it with respect to the
NOS, Random Component Assignment Scheme (RCAS), TA-
MCTS without social-award Scheme and Minimum Weighted
Bipartite Matching-based Scheme (MWBMS) [8]. Fig. 7 and
Fig. 8 show the average energy consumption and average delay
for different mobile user density, respectively. We notice that
our proposal TA-MCTS outperforms the related benchmark
policies in term of energy saving. Note that this is observed for
both cases: with or without social consideration. Consequently,
our approach guarantees the delay constraints.

For the last contribution, Fig. 9 shows the impact of the
number of data used to train our system (i.e. Ktr) on the
offloading accuracy metric. We can observe that the accuracy
of our DOS scheme increases as Ktr grows, whereas Ktr has
little influence on the other schemes. This means that our deep
learning scheme has a more powerful learning capacity than
the other schemes. Fig.10 reports the impact of the distance
between UE and SCceNB on the offloading accuracy metric.
We can see that DOS scheme always performs better than
the coarse-grained offloading schemes (i.e. TOS and NOS). In
addition, we observe that the distance d has little influence on
our DOS scheme. This means that our DOS scheme supports
UE’s mobility and remains stable under various network
conditions.

VII. CONCLUSION

In this paper, we addressed the issue of collaborative
computation offloading in MEC. We considered the execution
of emerging mobile collaborative applications through MEC
offloading and hybrid offloading. To this end, we split the

applications into several loosely coupled software components
and studied fine-grained computation offloading strategies for
the components in MEC network. In the first contribution,
we considered the MEC computation offloading scenario. Our
objective is to develop the optimal fine-grained offloading
strategies with caching enhancements to minimize the overall
execution delay at the mobile terminal side. In the second
contribution, we considered the hybrid offloading scenario
that combines of MEC offloading and D2D offloading. A key
objective of the hybrid offloading is to achieve an energy-
efficient task assignment policy for mobile users. In our final
contribution, we developed a dynamic offloading framework
for mobile users, considering the local overhead in the mobile
terminal side, as well as the limited communication and
computation resources in the network side. We formulated
the offloading decision problem as a multi-label classification
problem and develop the Deep Supervised Learning (DSL)
method to minimize the computation and offloading overhead.

REFERENCES

[1] T. Verbelen, P. Simoens, F. D. Turck, and B.Dhoedt, “Leveraging
cloudlets for immersive collaborative applications,” IEEE Pervasive
Comput., vol. 12, no. 4, pp. 30-38, Oct. 2013.

[2] G. Merlino, S. Arkoulis, S. Distefano, C. Papagianni, A. Puliafito, and
S. Papavassiliou, “Mobile crowdsensing as a service,” Future Gener.
Comput. Syst., vol. 56, no. C, pp. 623-639, Mar. 2016.

[3] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Comput., vol.
8, no. 4, pp. 14-23, Oct. 2009.

[4] ETSI. (2018) “Multi-access edge computing (mec),” [On-line].
Available: https://www.etsi.org/technologies-clusters/technologies/multi-
access-edge-computing

[5] S. Yu, R. Langar, W. Li, and X. Chen, “Coalition-based energy efficient
offloading strategy for immersive collaborative applications in femto-
cloud,” in Proc. IEEE International Conference on Communications,
(ICC16), Kuala Lumpur, Malaysia, May 2016.

[6] S. Yu, R. Langar, X. Fu, L. Wang, and Z. Han, “Computation offloading
with data caching enhancement for mobile edge computing,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 11, pp. 11098-11112,
Nov 2018.

[7] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Trans. Comput.
Intell. AI in Games, vol. 4, no. 1, pp. 1-43, Feb. 2012.

[8] S. Yu, R. Langar, and X. Wang, “A d2d-multicast based computation
offloading framework for mobile edge computing,” in Proc. IEEE Global
Communication Conference, (GLOBECOM16), Washington, DC, USA,
Dec. 2016.

[9] S. Yu, X. Wang, and R. Langar, “Computation offloading for mobile
edge computing: A deep learning approach,” in Proc. 2017 IEEE 28th
Annual International Symposium on Personal, Indoor, and Mobile Radio
Commnications, (PIMRC17), Montreal, QC, Canada, Oct. 2017.

[10] S. Yu, “Multi-user Computation Offloading in Mobile Edge Computing,”
[Online]. https://www.researchgate.net/publication/328629402 Multi-
user Computation Offloading in Mobile Edge Computing

[11] E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman, S. Saroiu, R.
Chandra, and P. Bahl, “Maui: Making smartphones last longer with code
offload,” in Proc. the 8th international conference on Mobile systems,
applications, and services, (MobiSys10), ACM, New York, NY, Jun.
2010, pp. 49-62.

[12] W. Saad, Z. Han, M. Debbah, A. Hjrungnes, and T. Basar, “Coalitional
game theory for communication networks,” IEEE Signal Process. Mag.,
vol. 26, no. 5, pp. 77-97, Sep. 2009.

[13] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,”
Int J Data Warehousing and Mining, vol. 2007, pp. 1-13, 2007.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Dissertation Sessions694

