
Distributed Orchestration in Cloud Data Centers
Bill McCormick∗, Hassan Halabian∗, Carol J. Fung†

∗Canada Research Center, Huawei Technologies, 303 Terry Fox Dr., Kanata, ON, K2K 3J1, Canada
†Computer Science Department, Virginia Commonwealth University, Richmond, Virginia, USA

Emails: ∗{hassan.halabian,bill.mccormick}@huawei.com, †cfung@vcu.edu

Abstract—Orchestration systems in cloud platforms are re-
sponsible for creating, managing and assigning the computational
and network bandwidth resources to the requesting services.
Conventional orchestration approaches in data centers are based
on centralized solutions where they are a single point of failure,
and a potential performance bottleneck. In this paper, using the
notions of Markov approximation method and auction theory,
we propose a fully distributed resource management scheme
for data centers. The proposed solution takes into account the
operational and economic constraints of the services and the
servers in the data center and maximizes a global system utility
function in a fully distributed manner. Simulation results show
the effectiveness of the proposed solution in terms of speed of
convergence, accuracy and resource utilization for applicability
in next generation cloud systems.

Index Terms—Cloud orchestration, data centers, distributed
algorithms, Markov approximation

I. INTRODUCTION

The emergence of new computing services over cloud
computing data centers has resulted in transformation of
many conventional business services into cloud-based services.
Cloud-based services have the advantage of lower cost, agility
and flexibility, hardware and location independence, easier per-
formance monitoring and improved security and maintenance.
Different business sectors are defining their next generation
services into cloud models. In telecommunications, two cloud-
based projects are CORD (Central Office Rearchitected as a
Data Center) [1] and CRAN (Cloud Radio Access Network)
[2] defined for 5G mobile networks.

A cloud system consists of a number of physical computa-
tion (CPU, RAM, etc.) and communication resources (network
bandwidth) which are shared among the requesting services.

In resource management for cloud orchestration, different
objective functions as well as different placement approaches
can be considered. The examples of attributes considered
in the objective functions are energy consumption, resource
utilization and traffic engineering [3].

Conventional resource management architectures in data
centers use a central controller which is responsible for
receiving requests for resources, assigning resources to the
services and implementing the resource assignments in the
form of VMs or containers. This approach is used by both
commercial cloud systems and open-source platforms such as
Kubernetes [4] and OpenStack [5].

In centralized orchestration systems, the orchestrator be-
comes a potential bottleneck and single point of failure.

Another disadvantage of centralized solutions is that if the
objective function includes the service utility functions, the
services need to disclose their (economic) utility functions
to data centers which is not a preferable solution for service
providers.

On the other hand, distributed systems have a storied history
on the internet. Interior gateway protocols such as OSPF
[6] and IS-IS [7] are fully distributed without any central
control. Distributed file sharing applications such as BitTorrent
[8] have made a substantial impact in content distribution.
Session initiation protocol [9] is a distributed implementation
of telephony and BlockChain [10] implements a distributed
trust framework. All of these technologies have the funda-
mental aim of improving their core performance by removing
centralized entities.

In this paper, we investigate a distributed orchestration sys-
tem for data centers that can avoid the single-point-of-failure
and scalability issues of centralized orchestration solutions. We
model the resource allocation problem as a mixed integer non-
linear problem with the objective of maximizing the global
system utility function. We then propose a distributed solution
to solve this optimization problem based on the notions of
Markov approximation and auction theory. The solution is
designed such that each service acts independently of the
others with local knowledge of the system while the actions
of all the services result in maximizing the total system utility.
Our simulation results demonstrate that our proposed solution
can effectively find near optimal resource allocation solutions
in a distributed manner, and the solution is robust and scalable.

The rest of this paper is organized as follows: In Section
II, we go over related projects and publications in the litera-
ture; we formally define our system model and the resource
allocation problem in Section III and propose our distributed
resource allocation solution in Section IV; we present our
experimental results in Section V; finally, we discuss and
conclude our work in Section VI.

II. RELATED WORK

Cloud platforms come in two flavours - the big commercial
platforms offered by Amazon [11], Google [12] and Microsoft
[13] (and others), and open source tools that allow an or-
ganization to run its own cloud platform. The commercial
platforms use a proprietary implementation and there is not
much information publicly available about their internals.

Two mainstream open source projects are OpenStack [5]and
Kubernetes [4]. OpenStack is an open-source cloud com-978-3-903176-15-7 c© 2019 IFIP

346



puting platform for managing virtual machines. Kubernetes
is an open-source container orchestration system originally
designed by Google. Both systems use a greedy centrallized
resource scheduler where resources are assigned to services
on a first come/first server basis.

Apart from the industrial platforms for resource schedul-
ing/orchestration in data centers, resource management for
cloud-based data centers has been well studied in academic
literature in the past few years [14], [15]. For instance,
Ngenzi et al. [16] proposed a dynamic centralized resource
management algorithm based on bin-packing algorithms to
improve the utilization of CPU and memory in data centers.
Byde et al. [17] proposed to allocate resources based on
market demand and supply and used a bidding mechanism
to determine resource allocation. Zhang et al. [18] propose
a distributed Stackelberg game to determine the price of
resources dynamically among service subscribers and data
center operators. Nezarat et al. [19] use a repetitive auction
game with incomplete information in a non-cooperative en-
vironment to determine the pricing of resources. The service
utility function in [19] is service specific and defined as the
inverse of the cost value of each service. There is no notion
of global system utility maximization in any of the solutions
presented above. The model considered in our paper is a
more comprehensive one which covers both operational and
economic system constraints.

The closest work to our paper is from Metwally et al. [20]
which proposes an auction-based resource allocation solution
in geographically distributed data centers. The difference be-
tween our work to [20] is that our approach is fully distributed
and run over all servers of the data center regardless of their
geographical location while the solution of [20] is running
separate auctions per data center domain. Moreover, no notion
of service utility optimization is used in [20].

III. PROBLEM SPECIFICATION

In this section, we describe the architectural model for
distributed orchestration and also formulate the global system
utility optimization problem based on the system constraints.

A. Architectural Model

Our system model consists of a data center with K servers
and a number of services denoted by N depicted in Fig. 1. For
this initial work, services negotiate for compute resources and
we assume adequate memory, storage and network capacity
exists. Each service has a set of constraints that define its
operating envelope.

Each service n is assigned a budget Bn to purchase re-
sources from the data center. Each server k has a minimum
price for its compute resources called the reserve price of
server k and is denoted by θk. We define sn,k as the amount
spent by service n over server k. Due to budget limit Bn, we
have the following inequality satisfied for any service n.∑

k

sn,k ≤ Bn ∀n (1)

Service 1

Service 2

Service N

Server 1

Server 2

Server k

Fig. 1: System model - services, servers,and their relationship

Each service n has a constraint on the number of servers
it can run on. We denote this limit by Ln also called max
server limit for service n. The indicator variable In,k is defined
to be “1” if service n gets resources from server k and “0”
otherwise. Therefore, any feasible allocation should satisfy the
following inequality for any service n.∑

k

In,k ≤ Ln ∀n (2)

On the server side we have the following capacity constraint
which states that the total amount of resource allocation on
each server cannot exceed the total number of resource units
available within the server.∑

n

bn,kIn,k ≤ rk ∀k (3)

The total amount of processing allocated to each service is
calculated through the following equation.

bn =
∑
k

bn,kIn,k ∀n (4)

We also assume that each service n demand is limited to
Dn, i.e., the maximum aggregate amount of resource units
required by service n is Dn units. Thus,

bn ≤ Dn ∀n. (5)

In terms of the resource pricing, we follow the idea of
Johari-Tsitsiklis auction [21]. Therefore, the unit price of each
resource unit over each server k denoted by pk is determined
by the total spending amount from the services and the total
available resource, written as

∑
n sn,kIn,k
rk

. However, since each
server also has a reserve price on its resource units, the
resource unit price on server k is determined by

pk = max

{∑
n sn,kIn,k
rk

, θk

}
. (6)

Therefore, if service n spends sn,k on server k, its total
allocation from server k would be

bn,k =
sn,kIn,k
pk

. (7)

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference 347



B. Problem Formulation

The goal of distributed orchestration is to determine how
to allocate compute from the servers to the services with the
objective of maximizing the global system utility function U(·)
while satisfying the constraints mentioned above. The utility
function U(·) is defined as the summation of all the services’
utility functions Un(·), ∀n, i.e.,

U(·) =
∑
n

Un(·) (8)

Depending on the choice of the service utility functions, we
can control the resource allocation result, in terms of fairness
and resource utilization efficiency. Choosing the logarithmic
function as the utility function of each service results in
proportionally fair allocation of the resources to the services.
Proportional fairness is a well-accepted notion of fairness
in resource allocation problems in networking and wireless
systems [22], [23]. We use a weighted logarithmic function
which results in a weighted proportional fair allocation of
the resources weighted by the service budgets, i.e., Un(bn) =
Bn log (bn) Therefore, the resource allocation can be formu-
lated in the following optimization problem:

Maximize:
In,k,bn,k, ∀n,k

U(b) =
∑
n

Bn log (bn) (9)

Subject to: Constraints in (1) – (7)

Problem (9) is a mixed integer nonlinear optimization prob-
lem which is not easy to solve even via centralized approaches.
Moreover, a centralized solution requires detailed information
about the resource capacities of all the servers as well the
service utility functions. In the following section, we propose
a fully distribution scheme for solving this problem.

IV. DISTRIBUTED ORCHESTRATION IN DATA CENTERS

In this section, we present our distributed approach for allo-
cating computational resources in data centers to the services.
The proposed solution provides a distributed mechanism for
solving the optimization problem in (9).

We use the Markov approximation method in conjunction
with the concept of auction theory to introduce a fully dis-
tributed orchestration architecture for solving resource alloca-
tion in data centers.

A. Markov Approximation Theory

Markov approximation was first proposed in [24] as a
randomized method for approximating the solution to combi-
natorial optimization problems. In [24] Chen et al. showed that
using the log-sum-exp function as an approximation for the
objective function of a network utility maximization problem,
we can build a time-reversible Markov chain whose steady
state distribution solves the optimization problem. If we define

gβ(U) =
1

β
log

∑
f

exp

(
β
∑
n

Un(f)

) , (10)

where f denotes a specific resource allocation configuration
and Un(f) denotes the utility of user n given configura-
tion f , then the log-sum-exp function gβ(U) approaches
maxf∈F (

∑
n Un) as β → ∞. By taking the conjugate of

function gβ(U) twice, we obtain Eq. (11) as

max
p

∑
f

pf
∑
n

Un(f)−
1

β

∑
f

pf log pf (11)

where
∑
f pf = 1. Since the conjugate of a conjugate

function returns the original function, Eq. (10) and Eq. (11)
are equivalent, so that a solution to one is equivalent to a
solution to the other. Eq. (11) is a concave function of variables
pf . We can analytically solve problem (11) using the Karush-
Kuhn-Tucker equations to develop an “optimal” probability
distribution as

p∗f (U) =
exp(β

∑
n Un(f))∑

f ′ exp(β
∑
n Un(f

′))
. (12)

p∗f (U) in (12) specifies the probability of being in each
allocation configuration f . Since Eq. (11) is an approximation
of combinatorial problem (10), the probabilities in (12) are
such that they concentrate the probability into the optimal
configuration. As β gets larger, the solution becomes closer to
the optimal value. In practice, β is limited by the numerical
precision that can be achieved with the exponential function.

If the probabilities in (12) are treated as the stationary
probability distribution of a continuous-time time-reversible
ergodic Markov chain, the design idea would be to build
such a Markov chain and determine its transition probabilities.
Existance of such a Markov chain was proven in [24].

Detailed balance equations provide the rules that we can use
to develop transition rates between the states of the Markov
chain from the equilibrium probabilities (12). The detailed
balance equations state that for any two states f and g the
transition rates between them are governed by the relationship
pfqfg = pgqgf where qfg is the transition rate from state f to
state g and pf and pg are the stationary probabilities of states f
and g, respectively. Any transition rate solution that satisfies
the local balance equations for all configurations will result
in a valid continuous-time Markov chain. The Markov chain
is then created by starting from a feasible initial state and
then generating independent events which cause transitions
to subsequent states. In this manner, instead of modeling
the entire Markov chain, the distributed actors (i.e., services)
need to implement transitions that conform to the transition
rates described by the balance equations. This property of the
Markov approximation method makes it a suitable candidate
in design of a distributed orchestration system.
B. Computation of Stationary Probability and Transition
Rates

Using the resource allocation formulation in (9) and also
the Markov stationary probabilities in (12), we can determine
the stationary probabilities of the Markov chain associated to
our allocation problem as

p∗f (U) =
exp (β

∑
nBn log (

∑
k bn,k))∑

f ′ exp (β
∑
nBn log (

∑
k bn,k))

. (13)

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference348



Using the detailed balance equations, the ratio of transition
rates from the current state to a new state is given by

exp
(
β
∑
nBn log

(∑
k b
′
n,k

))
exp (β

∑
nBn log (

∑
k bn,k))

, (14)

where b′n,k terms are defining the new allocation reflecting
the new state we transition to in the Markov chain. In a fully
distributed system, we have no mechanism to synchronize
actors, i.e., the services. The services are expected to operate
independently with no knowledge of the operation of the other
services. Therefore, if only service n changes its state at a
particular time, then most of these terms drop out, leaving us
with a simplified transition rate

exp
(
βBn log

(∑
k b
′
n,k

))
exp (βBn log (

∑
k bn,k))

. (15)

The numerator and denominator of Eq. (15) can both become
very large. In practice, this expression should be evaluated as(∑

k b
′
n,k∑

k bn,k

)βBn
. (16)

Eq. (16) determines the ratio of transition rates between two
states. For a viable implementation of the Markov chain, we
need to provide an absolute implementation of the transition
rates between two states. If we set the transition rate from
allocation bn to allocation b′n according to (17), we can observe
that the ratio of the transition rates between allocations bn
and b′n satisfies (16) and the Markov chain converges to the
stationary probabilities in (13).(∑

k b
′
n,k∑

k bn,k

) βBn
2

(17)

C. Resource Allocation Auction Design

At this point, we have designed a Markov chain that
approximates our resource allocation problem whose accuracy
is controlled by β. The challenge is that bn,k must be locally
controller to implement a distributed system. To solve this
problem, we propose to run Johari-Tsitsiklis auctions [21] on
each server along with the requesting services from which
the resource allocation variables bn,k are derived based on the
services’ spend values on each server. According to Johari-
Tsitsiklis auction [21], the allocation bn,k is determined by
the spend value from service n and the server resource price,
written as bn,k =

sn,k
pk

where pk is calculated using (6).
Assuming that all services are informed of the resource price
on each server, we design our resource allocation auction using
the following rules:
Service Rules:
• Each service n implements a local Markov event gener-

ator that determines the increase/decrease of the service
spend value sn,k on each server k and the transition rate
to new spend values according to (17).

• Each server checks transition feasibility according to the
constraints (1), (2) and (5).

• Service n initiates an auction on server k by sending an
auction request message and spent sn,k on that auction.

• After the auction is over, service n receives a resource
update message from server k containing its new alloca-
tion and the updated resource unit price of server k.

• The server resource unit price is then used by the services
in Eq. (17) to determine the transition rates for increas-
ing/decreasing the spend values.

Server Rules:
• When a server receives an auction request message from

any service, it starts an auction by sending an auction
start message to all participating services and asks for
their latest spend values.

• After receiving the spend values, the server first de-
termines the resource unit price according to (6) and
then determines the allocation to each service using (7).
The new allocations together with the new resource unit
price are then sent to the services using resource update
messages.

D. Price Estimation Methods

As explained in Sub-section IV-B, each service needs to
know the resource unit price at each server when generating
the Markov transitions. We consider four different methods for
a service to estimate the resource unit price on a server listed
in the order of increasing accuracy below:

1) The server’s reserve unit price is used if the service is not
currently purchasing resources from that server, otherwise
it uses the price it is currently paying for resources. This
is called “Naive” price estimation.

2) The servers distribute their current unit price to all the
services on an ongoing basis using a broadcast or a gossip
protocol. This is called “Price taker” price estimation.

3) The servers distribute their current unit price to all
services and each service estimates the effect of its spend
on the unit price. This is called “Anticipative” estimation.

4) All the services are instantaneously aware of the accurate
unit price on all servers and make decisions based on the
accurate price. This is called “Perfect” estimation.

Among these estimation methods only the “Naive” one is
really practical. In “Price taker”, it takes some time for servers
to distribute their resource unit prices across the system. Thus,
there is always the risk that the price information is out of date.
For “Anticipative” one, building knowledge of the server’s
resource allocation method into each service would be a poor
design choice as this would make it difficult to change server
resource allocation behavior. Finally “Perfect” price estimation
cannot be implemented in a distributed manner, as this would
require perfect knowledge of the entire system.

V. SIMULATION RESULTS

In this section, we present the simulation results demonstrat-
ing the effectiveness of the proposed scheme. Our simulation
results present the performance of our solution in terms of con-
vergence, resource utilization and accuracy. In the following
sub-sections, we consider one fixed over-committed scenario

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference 349



TABLE I: Service configurations for Scenario 1

Service
name

Max
servers

Max
resources

Budget Target proportional
fair allocation

Service-1 15 100 100 80
Service-2 5 40 40 32
Service-3 5 40 40 32
Service-4 10 60 60 48
Service-5 10 60 60 48

and two operational dynamic scenarios. In all scenarios, we
set β = 4.

A. Scenario 1: Over-committed requirements

In the first scenario, we consider a system with 20 servers
from two server classes (10 servers of each class). Server class
1 has 8 compute units with a reserve price of 2 and server class
2 has 16 compute units with a reserve price of 1. There are 5
services as specified in Table I.

This is an over-committed scenario as the services request
a total number of 300 resource units while only 240 resource
units are available. This problem can be solved analytically,
yielding the last column of Table I.

Our simulations implement the four different price estima-
tion methodologies, namely “Naive”, “Price taker”, “Antici-
pative” and “Perfect”. We have implemented and simulated
these four methods in a proprietary event-driven simulator
developed in Java. Fig. 2a shows the resource allocation results
only for Naive price estimation using β = 4. It is observed
that after about 700 Markov transitions, the Markov chain
reaches its steady state where the allocations would not change
considerably. We observe that in the steady state, the services
reach their proportionally fair share of resources, i.e., last
column of Table I. Note that the the length of the simulation
in this scenario is 2000 seconds and the first 1000 events map
to 57 seconds of the simulation which demonstrates very rapid
convergence of the proposed scheme in terms of elapsed time.

Average resource allocation for each service is shown in
Table II. Since the system is over-committed - a total of
300 resource units have been requested, but only 240 are
available - we can see that the proposed solution is performing
within a few percent of target. We next investigate how well
system resources are being utilized. Since the system is over-
committed, we would like to see close to 100% resource
utilization. Similarly, we can track performance via the values
of the objective function. These results are shown in Fig. 2b
and Fig. 2c. The “Perfect” method tracks target performance
nicely, achieving around 95% resource allocation. The other
methods results are functionally close to the “Perfect” method.

B. Scenario 2: Adding new services

For these simulations we modify our base configuration in
Scenario 1 to start the five services at different times. Service-
1 starts at time 0, Service-2 starts at time 400, Service-3
starts at time 800 and so on. The data center configuration
is unchanged. The results are shown in Fig. 3a for the Naive

0 100 200 300 400 500 600 700 800 900 1000

Event Count

0

10

20

30

40

50

60

70

80

90

R
e
s
o
u
rc

e
 U

n
it
s

Service 1 Resource

Service 2 Resource

Service 3 Resource

Service 4 Resource

Service 5 Resource

(a) Resource allocation

0 100 200 300 400 500 600 700 800 900 1000

Event Count

0

10

20

30

40

50

60

70

80

90

100

110

U
ti
liz

a
ti
o
n
 (

%
)

Naive

Price taker

Antipicative

Perfect

(b) Resource utilization

0 100 200 300 400 500 600 700 800 900 1000

Event Count

0

200

400

600

800

1000

1200

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n

Naive

Price taker

Antipicative

Perfect

Maximum Value

(c) Objective function

Fig. 2: Scenario 1 Simulation Results

TABLE II: Allocations for different price estimation methods

Service
name

Naive Price
taker

Anticipative Perfect Target

Service-1 79.4 79.5 81.9 81.9 80
Service-2 31.8 31.1 29.4 31.9 32
Service-3 31.6 31.3 29.4 31.7 32
Service-4 47.3 48.0 49.2 48.3 48
Service-5 48.1 48.3 49.7 47.0 48

price estimation. The system behaves in a manner consis-
tent with the steady state simulations we have just studied,
i.e., the system adjusts to the increased load consistently,
ultimately achieving the target objective. Fig. 3b shows the
system objective function as well as the resource utilization
for this scenario. It is observed that by adding the services,
the resource utilization and the objective function increase up

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference350



0 500 1000 1500 2000 2500

time (s)

0

10

20

30

40

50

60

70

80

90

100

R
e
s
o
u
rc

e
 U

n
it
s

Service-1

Service-2

Service-3

Service-4

Service-5

(a) Resource allocation

0 500 1000 1500 2000 2500time (s)

0

500

1000

1500

O
b

je
c
ti
v
e
 F

u
n
c
ti
o

n

0 500 1000 1500 2000 2500time (s)

0

50

100

150

U
ti
liz

a
ti
o

n
 (

%
)

(b) Objective and Utilization

Fig. 3: Scenario 2: Sequential Service Activation

to the point the system becomes over-committed at which point
the resource utilization reaches to 100% and the objective
function approaches its maximum. Moreover, we can observe
how fast the resource allocation converges to its optimal value
after adding each service.

C. Scenario 3: Decommissioning servers

For these simulations, we added an extra 10 servers to the
base configuration of Scenario 1 so that the data center starts
with 20 servers in class 2. At time 1000, we decommission
10 of these servers and return to the base configuration.
Simulation results are shown in Fig. 4a. The scenario starts
with an under-committed system so that all services are able
to buy resources for the reserve price. When 10 of the class 2
servers are decommissioned, the system rapidly returns to the
proportional fair allocation we observed in Section V-A. Fig.
4b shows the system objective function as well as the resource
utilization for this scenario. We observe that by decommis-
sioning the extra servers the system becomes over-committed
again and the resource utilization gets back to 100% again. We
also observe that decommissioning the extra servers decreases
the objective function slightly. This occurs as the scenario
transitions undercommitted where service requirements are
met, to overcommitted where service requirements cannot be
met.

0 500 1000 1500 2000 2500

time (s)

0

10

20

30

40

50

60

70

80

90

100

R
e
s
o
u
rc

e
 U

n
it
s

Service-1

Service-2

Service-3

Service-4

Service-5

(a) Resource allocation

0 500 1000 1500 2000 2500
time (s)

0

500

1000

1500

O
b
je

c
ti
v
e

 F
u
n

c
ti
o

n

0 500 1000 1500 2000 2500

time (s)

0

50

100

150

U
ti
liz

a
ti
o

n
 (

%
)

(b) Objective and Utilization

Fig. 4: Scenario 3: Server decommissioning

VI. DISCUSSION AND CONCLUSIONS

In this paper, we proposed a fully distributed orchestration
system based on the notions of Markov approximation and
auction theory. In the proposed scheme, the services/servers
act independently and their actions collectively result in maxi-
mization of a global system utility function. Using simulations,
we showed the effectiveness of the solution in different scenar-
ios in terms of convergence, resource utilization and accuracy.

We are currently building a medium sized prototype system
in our lab, consisting of 20 servers. This will allow us to
study the impact of network messaging with non-zero delays
and processing times, and to assess the impact of high rate
events during system startup and reconfiguration.

Another area of interest is to study the efficacy of the
method in more complex scenarios, where a service is im-
plemented as a set of microservices. Resource dependencies
between the individual microservices will place more demand-
ing constraints on the system, and it will be important to
understand how the method performs as the constraint set
increases.

Finally, in the Markov approximation approach the actors
cooperation results in the global optimal solution. An alter-
native assumption is that the actors are competitive instead
of cooperative. Studying the impact of misbehaving actors on
the overall system performance and also designing a robust
solution that still provides global optimal solution would be
the focus of future work in this are of research.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference 351



REFERENCES

[1] L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das,
J. Hart, G. Palukar, and W. Snow, “Central office re-architected as a
data center,” IEEE Communications Magazine, vol. 54, no. 10, pp. 96–
101, October 2016.

[2] Huawei. Cloud RAN & the next-generation mobile network
architecture. [Online]. Available: https://www-file.huawei.com/-
/media/CORPORATE/PDF/mbb/cloud-ran-the-next-generation-mobile-
network-architecture.pdf

[3] S. Challita, F. Paraiso, and P. Merle, “A study of virtual machine
placement optimization in data centers,” in 7th International Conference
on Cloud Computing and Services Science, CLOSER’17, Porto, Portugal,
April 2017.

[4] kubernetes.io. Production grade container orchestration - kubernetes.
[Online]. Available: https://kubernetes.io

[5] openstack.org. Open source software for creating public and private
clouds. [Online]. Available: https://www.openstack.org

[6] J. Moy, “Ospf version 2,” Internet Requests for Comments, RFC
Editor, STD 2328, April 1998, http://www.rfc-editor.org/rfc/rfc2328.txt.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc2328.txt

[7] “Intermediate system to intermediate system intra-domain routeing in-
formation exchange protocol for use in conjunction with the protocol
for providing the connectionless-mode network service,” International
Organization for Standardization, Standard, 2002.

[8] B. Cohen. The bittorrent protocol specification. [Online]. Available:
http://www.bittorrent.org/

[9] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “Sip: Session initiation
protocol,” Internet Requests for Comments, RFC Editor, RFC 3261,
June 2002, http://www.rfc-editor.org/rfc/rfc3261.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc3261.txt

[10] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. [Online].
Available: https://bitcoin.org/bitcoin.pdf

[11] aws.amazon.com. Aws well-architected framework. [Online].
Available: https://d1.awsstatic.com/whitepapers/architecture/AWS Well-
Architected Framework.pdf

[12] cloud.google.com. Google cloud platform. [Online]. Available:
https://cloud.google.com/docs/compare/

[13] microsoft.com. (2018) Azure application architecture guide.
https://docs.microsoft.com/en-us/azure/architecture/guide/.

[14] V. Anuradha and D. Sumathi, “A survey on resource allocation strategies
in cloud computing,” in 2014 International Conference on Information
Communication and Embedded Systems (ICICES), Chennai, India, Feb.
2014.

[15] K. Wang, Q. Zhou, S. Guo, and J. Luo, “Cluster frameworks for efficient
scheduling and resource allocation in data center networks: A survey,”
IEEE Communications Surveys & Tutorials, Jul. 2018, early Access.

[16] A. Ngenzi, S. R, and S. R. NAIR, “Dynamic resource manage-
ment in cloud datacenters for server consolidation,” arXiv preprint
arXiv:1505.00577, May 2015.

[17] A. Byde, M. Sallé, and C. Bartolini, “Market-based resource allocation
for utility data centers,” HP Lab, Bristol, Technical Report HPL-2003-
188, Sep. 2003.

[18] H. Zhang, Y. Xiao, S. Bu, R. Yu, D. Niyato, and Z. Han, “Distributed
resource allocation for data center networks: A hierarchical game
approach,” IEEE Transactions on Cloud Computing, April 2018, early
Access.

[19] A. Nezarat and G. Dastghaibifard, “Efficient nash equilibrium resource
allocation based on game theory mechanism in cloud computing by
using auction,” PloS one, vol. 10, no. 10, p. e0138424, Oct. 2015.

[20] K. Metwally, A. Jarray, and A. Karmouch, “A distributed auction-based
framework for scalable iaas provisioning in geo-data centers,” IEEE
Transactions on Cloud Computing, Feb. 2018, early Access.

[21] R. Johari and J. N. Tsitsiklis, “Efficiency loss in a network resource
allocation game,” Math. Oper. Res., vol. 29, no. 3, pp. 407–435, Aug.
2004.

[22] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for com-
munication networks: shadow prices, proportional fairness and stability,”
Journal of the Operational Research Society, vol. 49, no. 3, pp. 237–252,
Feb. 1998.

[23] G. Miao, J. Zander, K. W. Sung, and B. Slimane, Fundamentals of
Mobile Data Networks. Cambridge University Press, 2016.

[24] M. Chen, S. C. Liew, Z. Shao, and C. Kai, “Markov approximation for
combinatorial network optimization,” IEEE Transactions on Information
Theory, vol. 59, no. 10, pp. 6301–6327, Oct. 2013.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference352


