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Abstract—The Internet of Things (IoT) allows us to connect
and monitor devices from virtually anywhere. Electric utility
companies have been replacing the outdated analog meters with
the new smart meter versions to automatically capture infor-
mation about electricity consumption at a fine time granularity
and transmitting it back to the utility provider. Energy demand
forecasting is essential for Smart Grid operations. Ability to per-
form data analytics on the collected smart meter measurements
and then predicting the electricity demands plays an important
role in the utility companies’ decision making for their system
planning and operations. While fine granularity measurements
could be useful for getting deeper insights into electricity usage
patterns of different households, they might be not optimal for
energy demand forecasting. We demonstrate the importance of
considering and selecting different time scales in performing
data analytics and demand forecasting of residential buildings.
Using smart meters measurements collected from 114 residential
apartments at 1 minute granularity over one year, and weather
information for the same period, we design an automated process
for building an efficient ensemble of linear regression models
to forecast the future energy demands. This process identifies
the linear portions of the daily usage patterns and creates the
apartment clusters with similar usage profiles to optimize the
forecasting accuracy of the designed linear regression models. It
could be applied to different residential areas and geographical
regions to produce the customized ensembles of fast and efficient
linear regression models. Experimental results demonstrate that
the proposed approach and designed performance models achieve
good accuracy with 7%-19% of prediction error, and therefore
could be used for optimizing the future energy distribution across
the utility grid and making related critical pricing decisions.

Index Terms—Smart Grid, smart meters, data analytics, de-
mand forecast, linear regression models.

I. INTRODUCTION

The Smart Grid initiative [1], [2] represents an unprece-
dented opportunity to modernize the energy industry and its
infrastructure for more efficient and reliable generation and
transmission of electricity, while reducing the operation and
management cost. One of the enabling components of Smart
Grid is the Advanced Metering Infrastructure (AMI) [3]. AMI
is an integrated system of smart meters [4], [5], communica-
tions networks, and data management systems, that supports
two-way communication between utilities and customers. The
system enables new useful functions that were not previously
possible or had to be performed manually, such as the ability
to remotely measure electricity use, connect and disconnect
service, detect tampering, identify and isolate outages, etc.

In 2017, about 39% of total U.S. energy consumption was
due to the residential and commercial buildings [6] (with resi-
dential sector energy usage being at approximately 54% [7]).

Installations of smart meters have more than doubled since
2010 — almost half of all U.S. electricity customer accounts
now have smart meters. By the end of 2016, U.S. electric
utilities had installed about 71 million advanced metering
infrastructure (AMI) smart meters, covering 47% of the 150
million electricity customers in the United States [8].

Smart meters are a critical component of the Smart Grid.
They support automated collection of fine-grained energy
consumption data. This data provides invaluable insights in the
electricity usage patterns of different households over time.
This collected data may enable utility companies to offer
new time-based rate programs and incentives that encourage
customers to reduce peak demand and better manage energy
consumption and costs. For example, energy providers may
offer electricity pricing schemes, where the consumers are
charged higher prices during the peak hours. This will stimu-
late the customers to shift some of non-critical time activities
(e.g., laundry, dishwashing) to other hours. In such a way, the
utility companies can manage and reduce their peak demand.
In recent years, the energy industry is witnessing increased
research efforts and initiatives along smart meter data analytics
(see a detailed survey in [9]). The United States’ National
Science Foundation (NSF) provides a standard grant for cross-
disciplinary research on smart grid big data analytics [10].

Prediction of energy consumption in both residential and
commercial buildings is an increasing area of research in
recent years [11]–[20]. The methods for predicting the building
energy consumption can be categorized into engineering,
statistical, and artificial intelligence approaches.

Engineering methods [11], [15] are based on complex
modeling of structural and thermal parameters of buildings
and require comprehensive engineering methods and detailed
building description, that are not always easily available.
Statistical methods use historical data to predict energy con-
sumption as a function of most significant variables. These
models require less physical buildings understanding and offer
models with a smaller number of variables. In many cases, auto
regressive moving average models like ARMA and ARIMA
have produced good results [17], [18]. However, the quality
of the models designed by using statistical methods critically
depends on the quality and quantity of historical data, the mea-
surements granularity, and the collection of related important
data, e.g., weather information. Finally, artificial intelligence
methods based on neural networks, support vector machine,
and fuzzy logic were applied to capture complex non-linear
relationships between inputs and outputs [19], [20].
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the residential sector is crucial for utility companies to prop-
erly support and provision their current and future services.
The accuracy of demand prediction depends on the ability to
characterize energy demand patterns and recognize trends for
expected changes in future demands.

In this paper, we consider the issues of workload analysis,
performance modeling, and demand forecasting based on
collected historical data. We analyze the UMass Apartments
dataset – smart meters measurements collected over 1 year at
a fine granularity of 1 minute [21]. We demonstrate the effect
of different time scales on average energy consumption and
motivate the importance of incorporating these multiple time
scales in building the prediction model.

The UMass Apartments dataset is augmented with detailed
weather temperature reports, which makes it possible to an-
alyze and model the energy consumption as a function of
temperature. By modeling the dataset along critical time scales
and clustering the ”similar-usage” apartments, we build an
efficient ensemble of linear regression models to forecast fu-
ture power demands. Experimental results demonstrate that the
proposed approach and designed performance models achieve
good accuracy with 7%-19% of prediction error, and therefore
could be used for optimizing the future power distribution
across the utility grid.

The rest of this paper is organized as follows. Section II
describes the dataset used in our study, analyzes the effect
of different time scales on energy consumption, and identifies
critical weather features and energy usage patterns essential for
modeling. Section III presents the energy forecasting model
design and provides its formal definition. Section IV assesses
the quality of the forecasting results to evaluate the accu-
racy and effectiveness of our approach. It also discusses the
computing requirements of the proposed solution. Section V
outlines related work. Finally, Section VI presents conclusion
and future work directions.

II. DATA ANALYSIS: EFFECT OF DIFFERENT TIME SCALES

In this section, we describe the experimental dataset used in
the study, analyze the effect of different time scales on average
energy consumption, and identify the weather features most
significantly associated with the energy consumption.

A. Experimental Dataset
The dataset used in our study is based on the Apartments

dataset released as a part of the UMass Trace repository [21].
The created data collection infrastructure (built as part of the
Smart* project) records the smart meter data from real homes
in Western Massachusetts. It contains one minute granularity
electricity usage from 114 residential apartments collected
over a period of 2016. Moreover, the UMass Apartments
dataset includes the weather station data reports with key
weather variables such as humidity, pressure, temperature,
wind speed, rainfall, and visibility.

B. Importance of Different Time Scales
First, we aim to analyze the effect of different time scales

on average energy consumption. The energy consumption is
known to vary significantly from minute to minute, hour to
hour, day to day, and month to month. Figure 1 shows the

energy consumption of an arbitrarily selected apartment at a
minute granularity during a day. We observe that at a minute

Fig. 1. Energy consumption of an apartment over a day at 1-minute scale.

granularity the energy usage is very bursty: the proportion of
intervals with high and low energy values is very high, making
it practically impossible to accurately forecast future energy
usage values at this scale.

Figure 2 shows the energy consumption for the same
apartment aggregated at an hourly scale.

Fig. 2. Mean energy consumption of an apartment per hour over a day.

The plot is much smoother and exhibits more predictable
daily usage patterns. One can see an increased energy con-
sumption during the morning and evening hours (which are
typical to ”before” and ”after” work daily activities).

Figure 3 shows the energy consumption aggregated for all
114 apartments at an hourly scale.

Fig. 3. Mean energy consumption across all 114 apartments on an hourly
scale for a day.

While the aggregate consumption plot is smoother, it has
pronounced usage peaks around the same time periods com-
pared with the individual apartments’ usage peaks (shown in
Figure 2). It suggests that many apartments in the collected
dataset have similar daily energy usage patterns. Most people
spend active time at home during the mornings (before they
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leave for work) and in the evenings (after they get back
home from work or school). Therefore, they tend to use the
electrical appliances more often during the morning/evening
ramp resulting in the increase in energy usage between 5:00
am and 8:00 am followed by an early evening time window of
3:00 pm to 8:00 pm. Two peaks shown in Figure 3 demonstrate
this pattern.

Additionally, the energy consumption curve has different
seasonal usage patterns, i.e., it changes with the season of
the year. The climate in Massachusetts is a humid continental
climate, usually warm during the summer and snowy during
the winter. Figure 4 shows the mean energy consumption
across 114 apartments plotted for different months.

Fig. 4. Mean energy consumption for 114 apartments on monthly scale.

We clearly see the reflection of seasonal changes in the
energy usage patterns across the year. There is a high energy
usage during winter months, as people tend to consume more
energy in a winter with a shorter daytime, to stay warm using
electric blankets and room heaters. As the daylight gets longer
and the outdoor temperature rises during the summer, the
energy demand becomes smaller, given that it is a moderately
warm state. (However, this usage pattern might be different
for a different apartment complex. If apartments have an
air conditioning system then the energy consumption pattern
during the hot summer periods might be higher).

Another set of useful insights can be derived from the cumu-
lative distribution of energy consumption shown in Figure 5.
From this graph, we can see that there is a significant range of
annual energy consumption values (up to 9 times difference)
across the apartments in the set, i.e., some apartments use very
little energy, while the other ones being ”high-spenders”.

Fig. 5. CDF of energy usage.

It is an interesting observation: the apartments in the set
have very different energy consumption values, in spite of
having similar usage patterns over time.

C. Analyzing Weather Related Features
The goal of the study is to predict the energy demand

with respect to weather temperature, season of the year, and
daily time intervals. However, the weather data provided by
UMass trace repository includes variables like precipitation,
humidity, pressure, wind speed, etc. To identify the variables
most significantly associated with the energy consumption, we
plot the correlation matrix to measure the degree of correlation
between them.

Python Data Analysis Library Pandas [22] provides a
method corr() to derive the correlation coefficients and estab-
lishes the degree of pairwise correlation between the variables.
We plot the matrix of weather and energy features’ comparison
in Figure 6. This figure shows how the selected variables are
linearly related. Correlation coefficient r assumes value in the
range between −1 to +1 with the interpretation as follows:

• r = +1 indicates strongest possible linear correlation
(shown as yellow in the color bar).

• r = −1 indicates strongest possible inverse linear corre-
lation (shown as navy blue in the color bar).

• r = 0 represents no linear relationship (a light blue and
green color ranges in the color bar).

Fig. 6. Correlation matrix of energy consumption vs. weather variables.

Using analysis shown in Figure 6, we can conclude that
there exists high negative correlation between temperature
and energy consumption. However, the other variables like
pressure, wind speed, precipitation, etc., do not correlate well
with energy. Therefore, we include the weather temperature as
a critical feature in our demand forecasting model.

Figure 7 shows the association between the contributing fac-
tors, i.e., a weather temperature during the month of January
(12 am to 5 am time interval) and the mean hourly energy
consumption during this period. The regression line running
down the cloud of data points shows a good linear relationship
between the weather temperature and the energy consumption.

III. AN ENSEMBLE OF LINEAR REGRESSION MODELS FOR
ENERGY DEMAND FORECASTING

This section describes the problem definition, critical fea-
tures of interest, and our linear regression-based approach for
modeling and predicting the energy demands as a function of
a given weather temperature, season, and time of the day.
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Fig. 7. Linear regression model fit for the mean hourly energy consumption
data during the month of January, 12 am to 5 am time interval.

A. Energy Forecasting Model Design
Our goal is to predict the mean future energy demand

per apartment per hour. In Section II, we have shown the
importance of modeling the energy demands at different time
scales. Therefore, we aim to build an ensemble of linear
regression models characterizing the energy demand as a
function of weather temperature in specific time intervals
defined by a month of a season and time of the day. We design
this ensemble of the models in the following way:

1) Building the season specific models: Residential energy
sector shows the high seasonal variation in energy use, with
significant demand spikes during the late autumn, winter, early
spring. To capture this seasonal variation, we build 12 models,
one for each month of the year.

2) Clustering apartments based on the energy usage profile:
Energy consumption is mainly triggered by the user activities.
Every home is different and the household’s energy usage
profiles differ from each other based on their energy demand
characteristics. The variation depends on the types and number
of appliances used, the frequency of use, family members
working or staying at home. Hence, we cluster the apartments
based on their usage pattern1. In this way, the model captures
the differences across the demand profiles of individual homes.
In our case of 114 apartments, we broadly cluster the apart-
ments into k (0 ≤ k ≤ n) groups using k-means clustering.
K-means provides an easy method of grouping together a set
of apartments in a way that apartments in the same cluster
are more like each other than to apartments in other clusters.
By automatically iterating the model construction for different
values of k, we select the number of clusters k with the best
modeling accuracy.

3) Building the models based on time of the day energy
usage patterns: As shown in Section II there are specific
energy usage patterns (peaks and lows) at a daily scale which
require careful modeling. We use an automated way to detect
peaks and lows of energy consumption over 24 hours of a
typical day (obtained by averaging the hourly demands across

1We believe that the proposed clustering step might be especially useful
in case of diverse energy usage patterns due to building type specifics. For
example, the apartment complex with air conditioning vs without it, resi-
dential buildings vs commercial ones, etc. These different clusters will have
customized models built for them. The energy usage profiles of residential
and commercial buildings are very different, and therefore, would require
separately trained and built models.

the same hour in the dataset). In the UMass apartment dataset,
we identified five daily classes according to peaks and lows
shown in Figure 3 (see Section II): 1) 12:00 am - 05:00 am,
2) 06:00 am - 08:00 am, 3) 09:00 am - 03:00 pm, 4) 04:00
pm - 08:00 pm, and 5) 09:00 pm - 12:00 am. For each of the
five daily intervals, we build a prediction model reflecting the
energy usage in the given time interval.

Therefore, we aim to build (in automated way) an ensemble
of linear regression models for different time scales:

Mi,j,k(monthi, hours of dayj , apts clusterk)

where 1 ≤ i ≤ 12, 1 ≤ j ≤ 5, 1 ≤ k ≤ 2 based on the data
properties of the UMass apartment dataset.

Note, that each model Mi,j,k will be built by using the
corresponding subset Datai,j,k of time series data from the
original dataset.

B. Regression Model
Each model Mi,j,k is built as a function of energy consump-

tion and weather temperature using the subset of time series
data Datai,j,k from the original dataset. Note, that each data
point in this subset has two values: average hourly weather
temperature and mean hourly energy usage for a corresponding
clustered subset of apartments.

Therefore, we can form the following set of equations:

Ei,j,k
n = ci,j,k0 + ci,j,k1 × T i,j,k

n ,where

• Ei,j,k
n is the energy usage for hour n in Datai,j,k;

• T i,j,k
n is the weather temperature for the same hour n;

• ci,j,k0 and ci,j,k1 are the regression coefficients.
To solve for (ci,j,k0 , ci,j,k1 ), one can choose a regression method
from a variety of known methods in the literature (a popular
method for solving such a set of equations is a Least Squares
Regression). Once the model is trained and deployed in a real
world scenario, its forecasting accuracy might be dependent
on the weather temperature coverage (ranges) available in the
training data. As we gather more data over the years, and have
a broader coverage of weather conditions, the model should
get better at predicting energy usage even under odd weather
conditions.

IV. MODEL EVALUATION AND RESULT ANALYSIS

When building our prediction model, the primary goal is to
predict the future energy usage. We train the model with data
from the initial 25 days of the month and predict the energy
usage for the last 5 days.

In order to formally evaluate the prediction accuracy of each
generated model Mi,j,k we compute for each data point in
our 5 days test dataset a prediction error. That is, for each
hourly measured mean energy consumption value Emeasrd

n ,
we compare it with the predicted value Epred

n . The relative
error is defined as follows:

prediction errorn =
|Emeasrd

n − Epred
n |

Emeasrd
n

We calculate the relative prediction error for all the data points
in the test dataset.

To assess the quality of the built model (i.e., how well
the built model fits the training or test data), we use RMSE
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measure. RMSE is the square root of the variance of the
residuals. Lower values of RMSE indicate a better fit. The
RMSE can be obtained by using the equation:

RMSE =

√
1

N
ΣN

n=1

(
Emeasrd

n − Epred
n

)2
,where

N is the total number of observations used to build a model.
Table I shows the prediction error of the regression models

(using the test dataset) and the 95% confidence interval as well
as the goodness of the regression model fit with RMSE (using
both training and testing data).

TABLE I
ERROR ESTIMATION

Month Model Performance Metrics
Mean Prediction 95% Confidence Test Train

Error Interval RMSE RMSE
Jan 0.07 0.0096 0.18 0.17
Feb 0.13 0.0186 0.22 0.21
Mar 0.10 0.0122 0.21 0.21
Apr 0.11 0.0260 0.25 0.17
May 0.16 0.0288 0.18 0.15
Jun 0.17 0.0239 0.11 0.11
Jul 0.18 0.0209 0.10 0.09

Aug 0.17 0.0240 0.09 0.09
Sep 0.18 0.0273 0.10 0.09
Oct 0.16 0.0191 0.11 0.12
Nov 0.16 0.0157 0.30 0.15
Dec 0.19 0.0223 0.43 0.30

The prediction errors are between 7%-19% which reflect a
high quality of the regression results. Note, that the RMSE
measure highly depends on the numerical values of the re-
sults. For months with colder temperature the absolute energy
consumption values are higher, resulting in a slightly higher
RMSE values.

Note that the modeling and prediction errors are higher for
warmer months (because of weather temperature being less
correlated with energy usage). While the relative prediction
errors are higher for these months, the RMSE values are
smaller (indicating that the absolute value of modeling errors
are small).

Figure 8 shows the actual vs predicted energy usage for
last 5 days of January, 2016. The predicted values of energy

Fig. 8. Actual vs predicted energy usage for last 5 days of January, 2016.

consumption closely follow the real measurements (with 7%
of mean error).

The data analysis, regression modeling, and the experiments
are performed using the following computing environment:

• Lenovo ThinkPad T440S laptop, with on Intel(R)
Core(TM) i7-4600U CPU @ 2.10GHz, 2 Core(s), 4
Logical Processor(s), 12 GB RAM, running Microsoft
Windows.

– The piecewise linear regression model was im-
plemented using Python 3.4.3 and the related li-
braries/tools.

Solving linear regression equations on the modern hardware
is fast. The obtained models are simple and explainable. We
have performed the modeling described in the paper in less
than 2 minutes time. In addition to energy demand forecasting,
the designed regression models can be also used for what-if
analysis. For example, one can model the energy consumption
in winter months assuming colder or warmer than usual
temperature in order to project possible ranges for energy
demands. Utility companies might use this analysis across
different regions to design possible management scenarios
across the Grid for optimizing the desirable outcome and cost.

V. RELATED WORK

Energy demand forecasting has been broadly studied due
to the problem importance and its significance for utility
companies. The methods for predicting the building energy
consumption can be categorized into three main categories:
engineering, statistical, and artificial intelligence approaches.

Engineering methods [11], [15] are based on complex
modeling of structural and thermal parameters of buildings
and require comprehensive engineering methods and detailed
building description that are not always easily available.
To reduce the complexity of detailed engineering methods,
some simplified, approximation approaches have been pro-
posed [23].

Statistical methods use historical data to predict energy
consumption as a function of most significant variables. These
models require less physical buildings understanding and offer
models with a smaller number of variables.

The detailed survey on regression analysis for prediction
of residential energy consumption is offered in [24]. The
authors believe that among statistical models, linear regression
analysis has shown promising results because of satisfactory
accuracy and relatively simple implementation compared to
other methods. The authors discuss top-down and bottom-
up approaches to modeling energy consumption. Top-down
approach identifies factors defining changes in energy con-
sumption of residential sector in the long-term. As an example,
a multilevel regression (MR) model [25] is used to calculate
the magnitude and significance of household features on
residential energy consumption, such as housing type, house
size, usage of space heating equipment, household size, and
use of air-conditioning, etc. Bottom-up approach [27] aims
to characterize the energy consumption at the house level
and then apply this model for a segment of residential sector
with similar characteristics. In many cases, the choice of the
framework and the modeling efforts are driven by the specifics
of the problem formulation. In [26], linear regression is used
to predict the country annual energy use as a function of GDP,
GDP per capita, population, population growth, and industrial
growth rate.
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Our modeling approach with linear regression differs from
the described above: we automatically identify the time-related
(linear) daily usage patterns in the overall energy usage as well
as apply seasonal sub-modeling. Additionally, we optimize
this process by forming similar by energy usage clusters of
apartments.

In general, the quality of the models designed by using
statistical methods critically depends on the quality and quan-
tity of historical data, the measurements granularity, and the
collection of related important data, e.g., weather information.

Finally, machine learning and artificial intelligence meth-
ods based on neural networks [19], [20], support vector
machines (SVM) [28], [29], fuzzy logic [30], and Decision
Trees (DT) [31] were applied to capture complex non-linear
relationships between inputs and outputs. While overall, as
a black-box approach, these models might produce an ac-
ceptable forecast, they lack the ”explainability” of the results.
Moreover, computing requirements of many artificial intelli-
gence methods are much higher compared to regression-based
models. The training phase of model building might require
the cluster of GPU-based computers and could take hours.
Therefore, the efficient application of these methods is still a
challenge for demand forecasting problems.

VI. CONCLUSION AND FUTURE WORK

In this work, we consider the hourly energy demand model-
ing and forecasting for the residential sector. Due to progress
in smart meter technology, fine granularity measurements
are possible and available. We show that for modeling and
forecasting of energy consumption a coarser time scale is
required: aggregated, hourly data lead to more accurate and
reproducible results. The energy consumption in the residential
sector exhibits pronounced seasonal and daily patterns. We
designed an automated method for grouping the apartments
with similar usage profiles and finding ”peaks” and ”lows”
in daily data patterns to partition the data into a set of
segments, which can be modeled with linear regression. Using
the strong correlation of weather temperature and the energy
usage, we design an ensemble of linear regression models
which are built for different seasons (month) and time of the
day. The prediction errors are between 7%-19%, reflecting
a high quality of the regression results. We believe that by
considering additional calendar events (e.g., weekends and
holidays) the accuracy could be further improved. In our future
work, we plan to compare performance of our linear regression
models to forecasting models built using ARIMA and LSTM
approaches. We aim to apply our modeling approaches to
commercial buildings and analyze the differences in the energy
consumption patterns and forecasting accuracy. We also plan
to include the pricing information as one of the features in
the model building process. This will help in designing the
management strategies to optimize the energy efficiency of
commercial buildings.
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