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Abstract—In a social network group decision making process,
trust is a critical source of information. Trust transitivity is
necessary in many cases to evaluate experts’ trustworthiness
through referring paths. However, existing trust transitivity
models have hidden assumptions regarding the risk attitude of the
buyer. Moreover, some users are more conservative than others
regarding the risk bearing on referrals. To address this issue, this
paper proposes a risk-defined trust transitivity model for group
decision making in social networks with four tuple information,
namely, trust, distrust, uncertainty and inconsistency. Firstly,
a novel method of measuring knowledge degree is defined
and applied to trust ranting. Afterwards, we develop a risk-
defined trust propagation operator that can propagation trust
and distrust information based on risk bearing level. To aggregate
multiple possible paths, we propose a trust aggregation operator
based on path centrality. Finally, we demonstrate the effectiveness
of the trust model through an example of trusted service selection
and verify the effectiveness of the proposed method through
comparison with existing models.

Index Terms—Group decision making; Social network; Risk
attitude; Trust transitivity model; Closeness centrality analysis;
Four tuple information.

I. INTRODUCTION

Social network group decision-making (SNGDM) is a pro-
cess of selecting the best alternative where two or more experts
within the social network provide recommendations. The input
from the experts are then aggregated into a collective decision
[1, 2]. With the increasing influence of social networks and
E-commerce [3], it is more and more common that someones
decision is influenced by the opinions from his or her friends
with high reputation [4, 5], many online service decision
making problems can be regarded as SNGDM problems [6-
8]. For example, social network platform CouchSurfing [9]
(www.couchsurfing.com) is a home-share website where the
recommendation scores of lodging places are determined
by a group of users. Users can evaluate their experiences
with other logging providing users through filling an online
form that reflects trust and distrust scores on other users.
Indeed, the opinions from others who have experience with
the evaluatee are highly valuable information for individuals to
make decisions through a social network. SNGDM problems
have become a new key component of group decision-making
(GDM) and have raised a great deal of attention from scientific
researchers [1].

Compared to the typical GDM [10, 11], a main feature of
SNGDM is that the trust relationship between the members of
a group can offer a reliable source to determine the expert
weights of the members. Thus, it is necessary to research
trust modeling in SNGDM [12-15]. The first problem needed
to be solved is the preference values provided by group
experts. Many existing trust models use a crisp value (i.e.,
T ∈ [0, 1]) or a binary value (i.e., T ∈ {0, 1}) to represent
the trustworthiness of an evaluatee. However, the crisp values
and the binary value are unable to address the subjectivity and
uncertainty that characterize the social relationship occurring
among experts. More recently, many studies [1, 13-19] used
uncertainty mathematical methods to model trust such as fuzzy
sets [13-15], interval theory [1, 16], intuitionistic fuzzy sets
[17], linguistic terms [18, 19]. Although these methods can
describe the inherent subjectivity of trust, they are limited
to a single trust dimension. In our SNGDM model, experts
may provide the other types of information besides the trust
information, namely, the distrust information, the uncertainty
information and the inconsistency information, which we call
the four-tuple information.

The four-tuple information model has been used in the
literature. For example, Wu et al. [20-21] and Liu et al.
[22] model individual decision information with trust decision
making space, which include four tuple components: trust,
distrust, inconsistency and hesitancy. One of the foremost
research topics in the field of GDM is the trust transitivity
modeling [20-22]. However, existing works have overlooked
the fact that the decision makers (DM) may have different risk
tolerance levels. This is because in some practical trust tran-
sitivity environment, DMs with different risk tolerance may
produce different results when evaluate the trust relationship
between unknown experts. The lower the DMs risk tolerance,
the faster trust attenuates through transitivity. Therefore, the
risk tolerance of DMs should be regarded as an influence factor
in trust transitivity process.

To address the aforementioned issue, we propose a risk-
defined trust transitivity model (RDTTM) to provide a solution
to SNGDM problem based on four tuple information. The
main contributions of this paper are listed as follows: (1) we
propose a novel distance-based knowledge degree (KD) of
trust function (TF) model and apply it to compare TFs; (2) we
develop a novel risk attitudinal trust transitivity model to infer978-3-903176-15-7 © 2019 IFIP
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indirect trust relationships between experts; (3) we adopt a
trust based aggregation method to aggregate group preference
information; (4) we present a new approach to solve SN-GDM
problems with four tuple information.

The rest of the paper is organized as follows. In Section
2, we briefly review some relevant concepts of trust decision
making space and trust network centrality analysis. In Section
3, a risk attitudinal trust transitivity model is developed. In
Section 4, we propose our method for SN-GDM with four
tuple information. In Section 5, we provide a trusted service
selection example and comparision analyses to demonstrate
the feasibility of the proposed method. Section 6 conducts
some concluding remarks.

II. PRELIMINARIES

In this section, we present some basic concepts of trust
decision making space and trust network centrality analysis.

A. Trust decision making space

Atanassov et.al.[23] introduced Intuitionistic fuzzy sets (IFs)
in 1967. The model can be used to handle uncertainty and
ambiguity of decision-making problems in various scenarios,
including social networks. Let A = {< x, µA(x), vA(x) >
|x ∈ X} be an intuitionistic fuzzy set (IFS) in a universe
of discourse X , where µA(x) : X → [0, 1] and vA(x) :
X → [0, 1], with the condition µA(x) + µA(x) ∈ [0, 1].
µA(x) and vA(x) are, respectively, the membership degree
and non-membership degree of the element x in A. A derived
third parameter πA(x) = 1 − µA(x) − vA(x), x ∈ X
is called the hesitation degree of x in A [24]. Obviously,
πA(x) ∈ [0, 1], x ∈ X . For convenience, Beliakov et al.
[24] named the tuple α = (µα, vα) an intuitionistic fuzzy
value, where µα ∈ [0, 1], vα ∈ [0, 1], µα + vα ∈ [0, 1],
µα + vα + πα = 1. However, In some real-world scenarios
of IFs, µα + vα > 1 may appear in the context in which
decision making information is inconsistent. For example,
someone may rate an expert to be both highly trustable and
highly untrustable. The primary reason is that their knowledge
on a certain decision-making problem is limited or their
assessments are irrational. To overcome the aforementioned
limitation of Intuitionistic fuzzy value, we use the following
definition of trust decision making space [20].

Definition 1 (Trust Function (TF)). Let tuple λ = (t, d)
be a trust function where the parameters t and d indicate,
respectively, the trust degree and distrust degree of λ, with
0 ≤ t ≤ 1, 0 ≤ d ≤ 1. The set of trust functions will be
denoted by

Λ = {λ = (t, d)|t, d ∈ [0, 1]}

In order to better comprehend the concept of knowledge
degree of TF, the distance of two TFs is given as follows.

Definition 2 For two TFs λ1 = (t1, d1) and λ2 = (t2, d2),
we define the distance between the two TFs to be the Euclidean
distance between two tuples as follows:

D(λ1, λ2) =

√
(t1 − t2)

2
+ (d1 − d2)

2

2
(1)

According to Definition 1 and the properties of the intu-
itionistic fuzzy value, four types decision making information
can be derived to consist the trust decision making space as
follows.

Definition 3 (Trust decision making space (TDMS)). The
trust decision making space is made up of the following three
elements: the set of TFs (Λ), a trust hesitancy space (THS)
and a trust inconsistency space (TCS). It can be represented as
TDMS = (Λ, THS, TCS) with THS = (λ ∈ Λ|t+ d ≤ 1)
and TCS = (λ ∈ Λ|t+ d > 1).

Notice that information is conflicting if trust degree plus
distrust degree is greater than 1. For example, in an real online
service evaluation, the trustworthiness of a service provider
can be expressed by a TF (0.6, 0.7), which means that the
trust degree is 0.6, the distrust degree is 0.7. Correspondingly,
the hesitation degree of intuitionistic fuzzy value is a negative
value, which reflects the scenario of inconsistency.

Nguyen et al. [25] pointed out that the distance of a fuzzy set
(FS) from the most FS can be used to define knowledge degree.
Inspired from their idea, we can use the level of knowledge of
a TF to be the distance between this TF and the TF with least
knowledge (i.e, when both trust and distrust are 0). Therefore,
we define a new TS and KD as shown in Definition 4.

Definition 4. Let λ = (t, d) ∈ Λ be a TF, then the TS and
KD of this TF are defined as follows

TS(λ) =
(t− d+ 1)

2
(2)

KD(λ) =

√
(t2 + d2)

2
(3)

are TS and KD of λ, where TS(λ) ∈ [0, 1], KD(λ) ∈ [0, 1].
The larger the TS(λ), the greater the TF λ. If the trust scores
of given two TFs are equal, the larger the KD(λ), the greater
the TF λ.

Definition 5. Let λ1 = (t1, d1) ∈ Λ and λ2 = (t2, d2) ∈ Λ
be two TFs, then

1) If TS(λ1) > TS(λ2), then λ1 > λ2.
2) If TS(λ1) = TS(λ2), then:

If KD(λ1) < KD(λ2), then λ1 < λ2;
If KD(λ1) > KD(λ2), then λ1 > λ2.

B. Trust network centrality analysis
In real SNGDM environment, a trust network G̃ = (E, R̃)

can be seen as social network consisting of an expert set E
and an edge set R̃ between experts. The closeness centrality
is the easy degree to get to other nodes which can be used
to assess nodes’ influence in a social network. We define the
closeness centrality on an expert as follows:

Definition 6. Given a trust network G̃ = (E, R̃), let lij be
the length of the shortest path from expert ei to ej , then the
closeness centrality of expert ei is defined as

Ce(ei) =
(n− 1)∑n
j=1 lij

(4)

where n is the total number of experts. We can see that the
larger Ce(ei), the higher the influence of expert ei in its social
network [26],
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We can see that an expert can indirectly derive the TF value
of a non-adjacent expert based on the influence of each expert
along the path [1]. Therefore, the larger the closeness centrality
of a recommending expert, the higher influence of the path in
which the recommend experts are located. Hereby we define
the concept of path centrality as follows.

Definition 7. Given a trust network G̃ = (E, R̃), Ce(ei)
is the closeness centrality of ei. If a path pk have t experts
e1, e2, · · · , et from e1 to et, then the path centrality of the
path pk is defined as

Cp(pk) =

∑t
i=1 Ce(ei)

t
(5)

For instance, consider a path p1 = (e3, e1, e2) in Fig. 1,
using Eq. (4), we get the closeness centrality of all experts
Ce(e1) = 0.44, Ce(e2) = 0.5, Ce(e3) = 0.57. From Eq. (5),
we get the path centrality Cp(p1) = 0.5.

Fig. 1. An example of experts’ trust network

III. A RISK DEFINED TRUST TRANSITIVITY MODEL

Trust transitivity is a process that a source user measures
the trustworthiness of a target user along paths between them.
To complete the transitivity process, it always consists of
two parts trust propagation and trust aggregation. The first
part performs trust propagation to derive each trust value
between two users along each path. In the second part, the final
estimated trust value between the source user and the target
user derived from multiple paths by aggregation operator.

A. Trust propagation

In most practical SNGDM situations, if there is no direct
interactive relationship between two experts, and one of them
needs to evaluate the trust of the other, trust of the evaluatee
can be propagated by recommending information from third
parties. A more recent work from Wu et al. [20] proposed
a uninorm propagation operator to propagate both trust and
distrust simultaneously. Although it can avoid trust information
loss effectively, both the attenuation of trust information and
the growth of distrust information are overly fast, reflecting
that the risk attitude of the decision maker (DM) is conser-
vative. This situation may limit the flexibility of propagation
operators applications. To overcome these problem, we pro-
pose a novel risk defined propagation operator and the details
follow.

Definition 8. Given two TFs λ1 = (t1, d1) and λ2 =
(t2, d2) on a propagation path, the risk defined trust propaga-

tion operator Pθ on ∆ is a mapping function P : ∆×∆→ ∆
which can be expressed using:

Pθ(λ1, λ2) =(logθ(1 +
(θt1 − 1)(θt2 − 1)

θ − 1
),

1− logθ(1 +
(θ1−d1 − 1)(θ1−d2 − 1)

θ − 1
))

(6)

where θ > 1 denotes the DM’s risk attitude. The larger θ
is, the more conservative the DM’s risk attitude. When the
DM’s risk attitude is more conservative, both the decrease of
trust degree and the increase of distrust degree are faster for
Pθ. According to definition 5, for two given λ1 and λ2, the
propagated trust becomes weaker when the DM’s risk attitude
becomes more conservative.

Let λ1 = (t1, d1) be TF of expert e1 to expert e2, and
λ2 = (t2, d2) be TF of expert e2 to expert e3, then the TF of
expert e1 to expert e3 can be derived by Pθ. Next we are going
to demonstrate that our proposed trust propagation operator Pθ
follows some desirable properties in trust propagation.

Property 1. (Trust non-accumulation) For any θ > 1,
the trust degree of Pθ does not increase, i.e., logθ(1 +
(θt1−1)(θt2−1)

θ−1 ) ≤ t1 and logθ(1 + (θt1−1)(θt2−1)
θ−1 ) ≤ t2.

Property 2. (Distrust non-reduction) For any θ ∈
[0, 1], the distrust degree of Pθ does not decrease, i.e.,
1 − logθ(1 + (θ1−d1−1)(θ1−d2−1)

θ−1 ) ≥ d1 and 1 − logθ(1 +
(θ1−d1−1)(θ1−d2−1)

θ−1 ) ≥ d2.
Property 3. (Commutativity) Pθ(λ1, λ2) = Pθ(λ2, λ1).
Property 4. (Associativity) Pθ(Pθ(λ1, λ2), λ3) =

Pθ(λ1, Pθ(λ2, λ3)).
Property 5. (Fully distrust) If λ1∨λ2 = (0, 1), then Pθ =

(0, 1).
Obviously, the above Properties are easy to prove. Accord-

ing to Property 1 and Property 2, after propagation the trust
will not increase and the distrust will not decrease. Property
5 implies that if one expert fully distrusts another expert, then
e1 will fully distrusts e3 no matter what the DM’s risk attitude
is.

In a real social network GDM problem, there are often
more than three experts in a propagation path. For instance,
a path ρ1 = (e4, e3, e1, e2) between e2 and e4 in Figure 1
contains two other experts e3 and e1. Under this situation,
using the associativity property, a generalized risk defined trust
propagation operator can be derived as follows.

Pθ(λ1, λ2, · · · , λn)
=Pθ((t1, d1), (t2, d2), · · · , (tn, dn))

=(logθ(1+

∏n
i=1 (θ

ti−1)

(θ − 1)n−1 ), 1−logθ(1+

∏n
i=1 (θ

1−di−1)

(θ−1)n−1
))

(7)

This generalized risk defined trust propagation operator (7)
can be proved by mathematical induction on n as follows:

Proof.
(1) For n = 2, Eq. (7) deduces to Eq. (6).
Hence, Eq. (7) is correct.
(2) Suppose Eq. (7) holds for n = k , that is
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Pθ((t1, d1), (t2, d2), · · · , (tk, dk))

=(logθ(1+

∏k
i=1 (θti − 1)

(θ−1)
k−1

), 1−logθ(1+

∏k
i=1 (θ1−di − 1)

(θ−1)
k−1

))

then, when n = k + 1 , we have

Pθ((t1, d1), (t2, d2), · · · , (tk+1, dk+1))

= (logθ(1 +

∏k
i=1 (θti − 1)

(θ − 1)
k−1

),

(1− logθ(1 +

∏k
i=1 (θ1−di − 1)

(θ − 1)
k−1

), (tk+1, dk+1))

= (logθ(1 +

∏k
i=1 (θti − 1)

(θ − 1)
k−1

(θtk+1 − 1)

(θ − 1)
),

1− logθ(1 +

∏k
i=1 (θ1−di − 1)

(θ − 1)
k−1

(θ1−dk+1 − 1)

(θ − 1)
)

=(logθ(1+

∏k+1
i=1 (θti−1)

(θ−1)
k

), 1−logθ(1+

∏k+1
i=1 (θ1−di−1)

(θ−1)
k

))

i.e. Eq. (7) holds for n = k + 1. Thus, Eq. (7) is correct for
all n.

Apparently, the propagated value satisfies the conditions of
Definition 1. Thus it is also an TF.

It is easy to prove that the general risk defined trust propa-
gation operator Pθ(λ1, λ2, · · · , λn) also satisfies the above 5
properties.

B. Trust aggregation

Generally, within a trust network there could be multiple
paths between two non-adjacent nodes. To aggregate multiple
paths, many classical methods have been applied to deal with
trust and distrust information, such as Matrix multiplications
[25], Min-Max criterion [9], and method based on shortest path
[1, 20]. In our work we use a weighted average aggregation
(WAA) operator.

Definition 9. For a set of TFs λi = (ti, di) ∈ Λ (i =
1, 2, · · · , n), w = {w1, w2, · · · , wn}T is associated weight
vector, where wi ∈ [0, 1] and

∑n
i=1 wi = 1. The WAA

operator is defined as:

WAA(λ1, λ2, · · · , λn) = (
∑n

i=1
witi,

∑n

i=1
widi) (8)

Given the fact that large path centrality means greater influence
from the path, path centrality is used to measure the weight
of an expert. For k path pi(i = 1, 2, · · · , k) between ei and
ej , if wi = δi = (1/Cp(pi))

/∑k
i=1 1/Cp(pi), then the path

centrality based WAA (PCWAA) is defined as follows:

PCWAA(λ1, λ2, · · · , λn) = (
∑n

i=1
δiti,

∑n

i=1
δidi) (9)

IV. RISK DEFINED TRUST TRANSITIVITY MODEL FOR
GDM

The trust transitivity model and trust aggregation can be
used to derive the trust of expert pairs who do not have
direct interaction with each other but are connected by social
paths. In this section, we propose a group decision making
method utilizing our proposed risk defined trust propagation
and aggregation methods.

A. Determine expert weights

After the complete social trust matrix is derived by our
proposed risk defined trust transitivity model, the TS of each
individual expert can be computed as follows:

Definition 10. In a group trust network G̃ = (E, R̃), S =
(Slh)n×n is trust relationship matrix, in which Slh is the TF
from el to ek. The TS of expert ek is computed as

TS(eh) =
1

n− 1

∑n

1
TS(λlh) (10)

In a GDM process, People tend to follow the opinions from
highly trusted experts. In other words, the greater the TS
value of an individual expert, the larger the expert’s influence.
Consequently, the expert weight can be computed as follows:

wi =
TS(eh)∑n
i=1 TS(eh)

(11)

B. Proposed algorithm for SN-GDM

Based on the aforementioned model and analysis, we de-
signed an algorithm for SN-GDM with four tuple information
and the process contains the following steps:

Step 1. Form an initial trust social matrix by known expert
trust relations.

Step 2. Input the DM’s risk attitude and compute the TSs
of indirectly connected experts using the risk defined trust
transitivity model including propagation operator Eq. (7) and
aggregation operator Eq. (9). This step completes when a
complete trust sociomatrix is obtained.

Step 3. Compute the TS of each expert using Eqs. (2) and
(10). Then we can obtain the expert weights using Eq. (11).

Step 4. Aggregate the evaluation matrices into a collective
overall weight for each expert according to Eq. (9).

Step 5. Choose the best one by Definition 5 and conduct a
sensitivity analysis with the DM’s risk attitude θ.

V. NUMERICAL EXAMPLE

In this section we first use a numerical example of trusted
service selection to illustrate the process of our proposed
trust model and SNGDM method. Suppose John intends
to buy a computer and there are four possible suppli-
ers {o1, o2, o3, o4}. To evaluate the trustworthiness of these
suppliers, four attributes (whose weighted vector is Ω =
(0.32, 0.26, 0.18, 0.24)T ) are considered: service quality (a1),
product quality (a2), shipping speed (a3) and product value
(a4).

Due to the lack of knowledge on technology, John may want
to consult his friends within his social network and see them
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as experts. Therefore, the trusted service selection becomes
a SNGDM problem, in which the trust network of experts
is described in Figure 1 and their evaluation matrices Xk =
(xkij)4×4 are shown in Table I, where each tuple in the table
represents the trust function provided by each expert regarding
certain supplier and attribute.

TABLE I
THE EVALUATION MATRICES OF FOUR SUPPLIERS.

Experts Suppliers a1 a2 a3 a4
e1 o1 (0.6,0.5) (0.7,0.1) (0.8,0.1) (0.8,0.3)

o2 (0.8,0.2) (0.8,0.1) (0.5,0.2) (0.7,0.2)
o3 (0.8,0.3) (0.8,0.1) (0.6,0.5) (0.5,0.3)
o4 (0.5,0.5) (0.5,0.6) (0.6,0.1) (0.6,0.2)

e2 o1 (0.6,0.4) (0.7,0.1) (0.8,0.2) (0.8,0.4)
o2 (0.7.0.4) (0.8,0.3) (0.5,0.4) (0.6,0.5)
o3 (0.8,0.3) (0.6,0.4) (0.7,0.4) (0.7,0.3)
o4 (0.5,0.2) (0.8,0.1) (0.6,0.3) (0.8,0.1)

e3 o1 (0.7,0.2) (0.7,0.1) (0.8,0.3) (0.8,0.2)
o2 (0.8,0.2) (0.4,0.4) (0.8,0.1) (0.6,0.3)
o3 (0.7,0.4) (0.6,0.2) (0.8,0.1) (0.7,0.2)
o4 (0.7,0.3) (0.5,0.3) (0.4,0.6) (0.7,0.3)

e4 o1 (0.6,0.4) (0.5,0.4) (0.7,0.4) (0.7,0.2)
o2 (0.6,0.1) (0.6,0.3) (0.6,0.2) (0.7,0.2)
o3 (0.7,0.2) (0.6,0.3) (0.7,0.3) (0.8,0.2)
o4 (0.8,0.3) (0.7,0.3) (0.7,0.1) (0.6,0.3)

e5 o1 (0.6,0.4) (0.9,0.2) (0.7,0.5) (0.7,0.3)
o2 (0.7,0.4) (0.7,0.3) (0.6,0.2) (0.4,0.3)
o3 (0.7,0.2) (0.7,0.4) (0.7,0.3) (0.5,0.5)
o4 (0.9,0.1) (0.4,0.2) (0.5,0.2) (0.6,0.1)

In order to use the collected information to make a decision,
the following steps are used to process information:

Step 1. The experts trust sociomatrix R is constructed
according to Figure 1 as follows. Each tuple in the matrix
represent the trust function between experts.

R =
− (0.6, 0.2)

− (0.4, 0.5)
(0.6, 0.1) − (0.6, 0.3)

(0.5, 0.4) − (0.6, 0.2)
(0.8, 0.1) −


Step 2. Note that a typical sociomatrix is sparse since most
people may not have direct experience with most others in the
network. The missing TF of the sparse matrix can be filled
by using our proposed trust transitivity model. For example,
assuming John’s risk bearing level is θ = 3, there are three
possible paths ρ1 = (e4, e3, e1, e2), ρ2 = (e4, e5, e2) and
ρ3 = (e4, e3, e5, e2) from e4 to e2. By Eq. (7), we have
rρ1 = (0.13, 0.60), rρ2 = (0.46, 0.29) and rρ3 = (0.20, 0.66).
Using Eq. (4), we get the closeness centrality of all experts
Ce(e1) = 0.44, Ce(e2) = 0.5, Ce(e3) = 0.57, Ce(e4) = 0.67
and Ce(e5) = 0.4. From Eq. (5), we get the path centrality of
three paths Cp(p1) = 0.55, Cp(p2) = 0.53, Cp(p3) = 0.52.
Then, their weights are δ1 = 0.34, δ2 = 0.33, δ3 = 0.33.
Using the PCWAA operator, we obtain r42 = (0.26, 0.52).
Likewise, the complete trust sociomatrix R can be filled as

follows:

R =


− (0.60, 0.20)

(0.08, 0.77) −
(0.60, 0.10) (0.40, 0.34)
(0.27, 0.47) (0.26, 0.52)
(0.06, 0.80) (0.80, 0.10)

(0.08, 0.80) (0.21, 0.62) (0.07, 0.80)
(0.17, 0.73) (0.40, 0.50) (0.16, 0.72)

− (0.10, 0.67) (0.60, 0.30)
(0.50, 0.40) − (0.60, 0.20)
(0.12, 0.77) (0.30, 0.56) −


Step 3. Based on the above sociomatrix, the TSs of each

expert are found to be TS(e1) = 0.358, TS(e2) = 0.617,
TS(e3) = 0.271, TS(e4) = 0.332, TS(e5) = 0.426. By Eq.
(11), we can derive the weights of the five experts as w1 =
0.179, w2 = 0.308, w3 = 0.135, w4 = 0.165, w5 = 0.213.

Step 4. According to Eq. (8), when θ = 3, the collec-
tive overall evaluation of each supplier is derived as o1 =
(0.699, 0.290), o2 = (0.658, 0.265), o3 = (0.691, 0.282),
o4 = (0.653, 0.245).

Step 5. By Definition 5, the order relation of the four
suppliers and the best supplier for different risk attitude are
also listed in Table II. From Table II, the orders of the suppliers

TABLE II
THE ORDERS OF THE SUPPLIERS FOR DIFFERENT METHODS

Method Order Best
Our method θ = 1.25 o1 � o3 � o4 � o2 o1

θ = 2 o3 � o1 � o4 � o2 o3
θ = 2.5 o3 � o1 � o4 � o2 o3
θ = 10 o4 � o3 � o1 � o2 o4

Wu et al ’s method [20] o1 � o3 � o4 � o2 o1
Wu et al ’s method [21] o3 � o1 � o4 � o2 o3

are remarkably different in various risk tolerance level. When
θ = 1.25, the order is o1 � o3 � o4 � o2 and the best supplier
is o1; when θ = 2, the order is o3 � o1 � o4 � o2 and the best
supplier is o3; when θ = 10, the order is o4 � o3 � o1 � o2
and the best supplier is o4. We can see that if consumer is more
conservative, the supplier o4 should be chosen; if consumer
is more risk taking, the supplier o1 should be chosen. The
change of ranking for different suppliers under different risk
tolerance degree is shown in Fig.2. We can see that when
the DM is increasingly risk taking (a.k.a. 1/θ → 1), the
ranking of o1 also increases. DM with different risk attitude
may choose different suppliers, while in the results of the
method [20, 21], only a fixed supplier is chosen. This is
because our proposed method takes the DM’s risk tolerance
into consideration, while existing methods neglect this factor.
Thus, our proposed method is more flexible and practical.

VI. CONCLUSIONS

In this paper, we propose a risk-defined trust transitivity
model for group decision making in social network with four
tuple information. The significant advantages of the proposed
SNGDM method are summarized as follows:
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Fig. 2. Ranking of suppliers with different risk attitude

(1) We define a new distance-based KD and apply it to
compare TFs that enrich the theories and approaches of trust-
based decisions.

(2) We develop a risk defined trust transitivity model, which
consists of two parts: trust propagation and trust aggregation.
We present a new considering risk attitudinal propagation
operator. Moreover, we study some desirable properties for the
propagation operator. Based on social network analysis, we use
an aggregation operator to merge multiple paths between two
unknown individuals. Thus, the model can effectively avoid
path information loss.

(3) Combining the proposed risk defined trust transitivity
model with the ranking method of TFs, we develop a new SN-
GDM method with four tuple information. Finally, we demon-
strate the effectiveness of the trust model through an example
of trusted service selection and verify the effectiveness of the
proposed method through comparison with existing models.

As our future work, we will propose a method for large
scale SNGDM problems with multiple tuple information.
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