
QoE Performance for DASH Videos in a Smart
Cache Environment

Sheyda Kiani Mehr and Deep Medhi
University of Missouri–Kansas City, USA

Abstract—During the past decade, Internet has seen dramatic
increase in video traffic. Users expect a high quality of experience
with online video streaming. For video delivery, the DASH
(Dynamic Adaptive Streaming over HTTP) standard is one of the
common approaches for streaming used by content providers. In
order to give users a higher quality of experience, in-network
caching and prefetching are useful to reduce video delivery
latency with DASH-generated videos. In this paper, we present
a Smart Cache framework that uses a cache prefetching scheme
that prefetches segment bitrate based on forecasted throughput
at the cache entity by using previous throughput values from
clients. For our study, we have implemented our framework on
the GENI testbed, and our results for single-client and two-client
interactions show that Smart Cache increases the byte-hitrate
and reduces the number of unused prefetches for cache. We also
consider the impact on Quality of Experience (QoE) for each
client during contention.
keywords: Cache, DASH, forecasting, prefetching, QoE

I. INTRODUCTION

Video streaming traffic accounts for a significant amount
of traffic on the Internet; it has seen a sustained growth due
to the increase in user demand. Cisco estimates that video
streaming and downloads will make up for 80% of the world’s
Internet traffic by 2019 [1]. It is expected that the online
video streaming service could eventually replace the standard
television sets. Users of online video services expect optimum
quality, regardless of network or server conditions.

Dynamic Adaptive Streaming over HTTP (DASH) has be-
come the de facto standard for video streaming. Video content
providers such as YouTube, Hulu, and Netflix use DASH
for streaming video contents. A video that uses the DASH
standard is available with multiple resolutions and each video
resolution is divided into segments with constant playback
duration; this is done in order to enable different resolutions
during the playback of the video at the user end. In DASH,
each video title is associated with a metadata file called Media
Presentation Description (MPD), wherein each segment for a
particular resolution is associated with a Universal Resource
Locator (URL). Before playback begins, the client requests
and fetches the MPD file and parses it to determine the
available bitrates and URLs for all segments. A DASH client
starts by downloading the first segment, usually with the lowest
bitrate representation, and uses an adaptation bitrate algorithm
(ABR) to determine the most suitable bitrate to be requested
for each of the subsequent segments. This decision is based
on two factors: the network conditions represented by the

throughput measurements for the downloaded segments and
the current status of the client buffer.

Providers may use in-network caches with prefetching to
improve both byte latency and throughput of subsequent video
segments to the end users. In-network caches have a smaller
storage size than that of servers. Enhancing the prefetch
hitrate decreases the number of unused prefetch segments, and
improves the bandwidth use of a link that is connected from
cache to video content servers. Furthermore, when multiple
clients simultaneously contend for a particular video from the
cache, the overall performance and QoE may be impacted
negatively. There are two prefetching scheme modes, cache-
driven or a client-driven DASH prefetching that each has its
own drawbacks. As a consequence, service providers may
not be able to guarantee a premium quality of service with
DASH [2].

In this work, we present a Smart Cache framework that
enhances [3], along with a comprehensive set of studies on
cache, the cache’s interaction with two clients, and overall
QoE performance. The Smart Cache framework is proposed to
predict future requests based on the throughput measurements.
Based on our study, we observe that implementing the Smart
Cache prefetch scheme at the cache increases the cache
performance by reducing the number of unused prefetches and
improving QoE metrics, such as reduced segment fetch delay
and higher bitrate gain for the user.

The rest of this paper is organized as follows: Section II
presents related work on DASH QoE and prefetching and
cache performances. We describe the Smart Cache framework
along with its algorithmic details in Section III. In Section IV,
we present our study and the results. We end with a concluding
remark in Section V.

II. RELATED WORK

Some works has been done in order to improve cache
performance and QoE. Liang et al. [4] assume that there is high
probability that a client requests the same bitrate each time, so
prefetching the next segments is based on the current bitrate.
The issue with this basic method is that it does not utilize the
available resources, such as bandwidth of the link, and the user
is not able to receive the best possible bitrate for a segment.
Rejaie et al. [5] designed a cache server that prefetches the
segments based on the average bandwidth between the origin
server and the cache. This is not comparable with a typical
DASH adaptation scheme that is based on the throughput of
the link between the client and the cache.978-3-903176-15-7 c© 2019 IFIP

388



There are a few works where the client chooses the bi-
trates based on cache information (cache-driven), or the client
receives assistance from the cache. Pham et al. [6] propose
a client ABR that is assisted by a cache server in order to
get better QoE. The cache monitors the bandwidth from the
origin server and sends it to the client. Mok et al. [7] propose
QDASH, a cache that measures the available bandwidth and is
responsible for helping clients to select the most suitable video
quality level. Krishnamoorthi et al. [8] suggest cooperative
buffer-aware prefetching in which a client continually shares
its buffer occupancy with the cache, and the cache shares its
fragments and segment fetch timing with the client. The client
can thereby give preference to downloading fragments that
are already stored within the cache. Liu et al. [9] propose a
joint client-driven prefetching and rate adaptation algorithm
(CLICRA), in which the cache affects the client decision for
the next segment(s). We propose a smart client-driven cache
to forecast the most accurate segment for clients.

III. METHODOLOGY

The Smart Cache framework has two components: DASH
Request Handler (DRH) and Cache Manager (CM). In the
original framework, CM simply included the Prefetch Man-
ager (PM). In the Smart Cache framework, CM also includes
a new module: Replacement Manager (RM) (Fig. 1).

DRH serves the requests from the DASH clients and gives
back the requested segments to the client; this component
also receives all of the HTTP header information, including
the client’s smooth throughput value, and stores it for later
use. The initial MPD file is transferred to the MPD Parser
module in DRH, which parses the data to store them in the
Segment-Request Index module. The client’s ID, Session-ID,
requested video ID, and its related list of bitrates are stored
in the Segment-Request Index. Bandwidth Estimator module
in DRH receives the average throughputs, Aj , for j-th request
from the client, which is computed based on the previous m
segments:

Aj =

∑j−1
k=j−m Sk/m∑j−1
k=j−m Tk/m

=

∑j−1
k=j−m Sk∑j−1
k=j−m Tk

, j ≥ 2, (1)

where Sk is the segment size of the k-th segment, and Tk is
the total time taken for the client to receive kth segment from
cache.

CM is the functioning brain of the Smart Cache. The
PM module in CM uses the throughput stored in Segment-
Request Index to forecast the throughput for prefetching the
next segment that will be requested by the client. Forecasting
is based on an exponential smoothing approach. Consider that
Fj+1 is the future throughput for the (j + 1)-th segment given
that Fj is the currently forecasted throughput, and Aj is the
current actual throughput from the client for the j-th segment.
For the smoothing parameter, α (0 ≤ α ≤ 1), this relationship
is given by

Fj+1 = αAj + (1 − α)Fj , j ≥ 2. (2)

Fig. 1: Smart Cache Framework.

However, for the very first segment request, the cache serves
the first request with the lowest bitrate from the origin server.
When the client asks for the second segment, The PM needs a
throughput value in order for its ABR to prefetch the second
segment. In this case, the cache’s throughput value for the
second segment is the size of the segment divided by the time
that it takes for the request to transfer from the client to the
cache plus the time that it takes for the cache to fetch the
segment from origin server. Therefore, the second segment’s
estimated throughput value is calculated as follows:

Throughput forecast =
S1

∆t1 + ∆t2
,

where ∆t1 = t2 − t1, ∆t2 = t3 − t2.
(3)

Here, t1 is the moment that the client sends the request, t2 is
the instant that the cache receives the request from the client,
and t3 is the instant that the cache sends the segment to the
client.

The role of the new module, RM, in the Smart Cache
framework is to determine the segments that are to be replaced
in order to accommodate new segments, especially during
contention from multiple clients. If the number of segments
stored in the cache becomes greater than an initial number, n,
then the cache makes the decision to replace segments using
the RM. In our approach, we replace the Least Recently Used
(LRU) segment.

In the Smart Cache framework, we also designed a multi-
processing cache to handle multiple client connections simul-
taneously. Each connection is served as a separate process.
As a process, client connection has multiple threads, such as
prefetching thread (prefetches a segment from origin server)
and current thread (calculates throughput and bitrate of the
prefetching segment). After the cache calculates the forecasted
throughput of the next segment, the prefetching method in the
cache uses the same ABR that is used by the client.

The client uses a hybrid ABR that is throughput-based and
buffer-based, with a simple average value for throughput. The
cache entity only uses the throughput-based version of the
client’s ABR. So, each time the cache calculates the next
throughput, this throughput is given to the throughput-based
ABR in the PM module. The PM module prefetches the next
segment based on the calculated forecasted throughput. Our
entire approach is presented in Algorithm 1.

IV. EVALUATION AND RESULTS

The Smart Cache framework is implemented on the GENI
research testbed [10]. There are three entities in our imple-

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference 389



Algorithm 1 Smart Cache Procedure
R: Request from client, α: smoothing constant, n: cache size, Q:

caches segement queue
Function MAIN(R,α, n,Q)
bitrates[]
URLs[]
j ← 2
forecast throughput← 0
While R do

if R==MPD
bitrates, URLs← PARSE(R)
STORE(bitrates, URLs)

else if R==S1

t1 ← HEADER(R)
t2 ← MEASURE TIME()
RECIEVE FROM ORIGIN SERVER(S1)
t3 ← MEASURE TIME()
SEND TO CLIENT(S1)
∆t1 ← t2 − t1
∆t2 ← t3 − t2
forecast throughput← SIZE(S1)/(∆t1 + ∆t2)
S2 ← PREFETCH(forecast throughput)
RM(S2)
F2 ← 0
STORE(F2)

else
SEND TO CLIENT(Sj)
Aj ← HEADER(R)
forecast throughput← FORECAST(Aj)
Sj+1 ← PREFETCH(forecast throughput)
RM(Sj+1)
j + +

end if
end while

End Function

Function FORECAST(Aj)
RETRIEVE(Fj)
Fj+1 ← α ∗Aj + (1− α) ∗ Fj

STORE(Fj+1)
return Fj+1

End Function
Function PREFETCH (forecast throughput)

Use ABR with all available bitrates from MPD
return Sj+1

End Function
Function RM (Sj+1)

if Size(Q) > n
Pop(Q)

end if
Q← Sj+1

End Function

mentation: clients, cache, and DASH Server. In the topology,
two clients are connected to a LAN switch. The in-network
cache is connected to the same LAN switch. The cache is
then directly connected to the video content server. The GENI
platform allows us to regulate link bandwidths. Smart Cache
and DASH player were written in Python [11]. For calculating
the smooth throughput, Client’s ABR uses m = 10 previous
segments. Apache2 web-server is used as the DASH content
server. For our study, we used the publicly available Big Buck
Bunny video from the ITEC dataset [12]. In particular, we
used the 10 sec and 15 sec segment durations (which we refer
them as 10s and 15s in the rest of the paper) while the entire
video has 60 segments and 40 segments, respectively (for a

total video length of 600 sec). Both datasets have 20 different
bitrates (resolutions) for each segment to choose from. All the
possible scenarios are replicated 5 times.

We consider two general scenarios: In the first scenario there
is one client, and in the second scenario there are two clients.
Within the first scenario, we tested once with no background
traffic on the links (10Mbps for each link), and then with
UDP background traffic on the link between the cache and the
origin server. The double-client scenario is studied only with
background traffic between the cache and the origin server.
The choice of the bottleneck link through background traffic
is motivated by prior work. For example, it has been reported
that the cache-server link with limited bandwidth could cause a
bottleneck in the network [4] and [13]. Based on [8], a simple
cache solution is potentially beneficial when the bandwidth
bottleneck is between the client and the cache. However,
caching can be more effective if the bottleneck is between the
cache and the origin server. A common issue that arises when
the DASH technology applies cache is that the connectivity
between the client and the cache will have a higher bitrate than
that of the connectivity between the cache and the server [14].
This causes a cache to consume more time fetching uncached
segments from the original server [15]. Thus, the ABR in
the client incorrectly estimates network conditions, which in
turn causes wrong quality decisions, ultimately resulting in a
negative effect on QoE [16]. When there are multiple clients
contending at the same cache, this issue is exacerbated. Thus,
in this work, we consider the case of a network bottleneck on
a cache-server bandwidth backbone link.

The background UDP traffic was created by transferring a
very large file (1.6 GB) using UDP socket python code on each
of the cache and the server machines 40 sec after the first client
began its requests. 40-second interval, since by this time, the
throughput value has already surpassed the peak threshold for
initial bitrate ramp-up phase. On the other hand, if we generate
the traffic before 40 sec, then the client would stay on the
requests with lower bitrate for a greater number of segments.
Therefore, implementing background traffic has no significant
effect, as the requests would have remained at the low bitrates
for a longer period before the throughput hits the threshold.
We conducted our study based on the condition that when a
second client initiates a connection, the cache is empty. Thus,
in the double-client scenario, the cache always has to prefetch
the segments for both clients, because the required segments
from the second client that the first client also requests are all
removed. To capture the performance penalty associated with
the cache misses, it is necessary to consider a cache policy in
which the cache is cleared for each new client [8]. We consider
a 10-segment cache size in our study with the LRU method in
the Replacement Manager. In the double-client scenario, the
second client starts with a short delay of 20 sec. We observe
that when both clients run simultaneously, the second client’s
segment requests are mostly cache hits. This occurs because
the second client requests the same segments as the first client,
especially for the first few segments. In this case, there is
not much difference in the results of single-client and double-

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference390



TABLE I: Exponential smoothing error ratio for double-client scenarios with
10s and 15s

client (playback duration) α=0.5 α=0.7 α=0.9
client1(10s) 13.42 10.74 9.35
client2(10s) 15.83 12.31 10.25
client1(15s) 20.36 15.79 14.22
client2(15s) 17.51 14.13 13.14

client scenarios. However, by injecting a delay for the second
client prior to initiating its connection, we were able to see
the effect of cache size on our final results. From our initial
experimentations, we found that the first segment is deleted in
less than 20 sec when the cache size is 10 segments.

We compared the Smart Cache with other works such as [4]
and [8], in which the basic duty of the cache is to prefetch the
next segment of the same bitrate as the current segment [8].
Although the cache performs a basic function in these works,
some may implement extra cache functions to improve the
prefetching scheme, while still maintaining the same basic
function. Overall, in this study we consider the basic concept
that is common to most of the works mentioned in our related
work, and we refer to it as a basic prefetching scheme. After
showing the result of throughput accuracy with exponential
smoothing, we study the result of cache performance metrics
such as cache hitrate and its effect on client throughput.
Finally, since various metrics are attributed to QoE [17], we
did a QoE study considering the following metrics: average
latency, average bitrate gain, and average of bitrate switches
or oscillations.

A. Throughput Accuracy

The accuracy of the exponential smoothing forecasting
method (2) is dependent on the value used for α. To determine
the best values for α, we evaluate the forecasting method under
the most tense network background traffic, by applying UDP
traffic on the cache-server link for the double-client scenario,
with 10s and 15s using α = 0.5, 0.7, 0.9 (See Table I). The
accuracy increases as we increase α for all clients in both the
datasets. Based on this initial assessment, we chose α = 0.9
for the rest of our study.

It is important to note that the second client has higher error
ratio than the first client. The cause for this difference is most
likely due to the second client experiencing more traffic on the
bottleneck link, which is caused by the presence of the first
client’s requests. The other observation is that the 15s segment
duration video is found to have a higher error ratio compared
to the 10s segment duration video.

B. Cache Hitrates

For all the scenarios, the Smart Cache scheme’s hitrate is
significantly higher than that of the basic scheme’s hitrate (see
Table II). Furthermore, for the single-client and double-client
scenarios, the difference in the hitrate for the Smart Cache
compared to the basic scheme increases more for videos with
15s than it does for videos with 10s. On the other hand, the
throughput accuracy error from the Smart Cache throughput
accuracy section shows that 15s has more error than that of
the 10s. The cause of this higher error ratio may be attributed

TABLE II: Cache hitrate for single client client and double-client scenarios

scenarios basic Smart increase
10s-notraffic 66.67% 97.33% 45.99%
15s-notraffic 50.00% 97.5% 95.00%
10s-traffic 41.00% 80.00% 95.12%
15s-traffic 27.00% 70.00% 159.26%
10s-Double-Client 52.17% 79.67% 52.71%
15s-Double-Client 41.5% 73.25% 76.51%

to the different features of data, such as the fact that there are
fewer segments with larger size and higher bitrates for the 15s
than there are for the 10s.

For the single-client scenario, we also report results without
and with background traffic to understand how background
traffic affects performance. We observe the highest increase in
Smart Cache hitrate as compared to the basic scheme in the
single-client scenario when the traffic is added to the cache-
server link.

The Smart Cache double-client scenario with a 15s has same
hitrate compared to a 10s. Overall, the Smart Cache hitrate
increases less when the second client is added to the video
fetching process, as compared to Smart Cache with a single
client. The reason could be that the cache takes care of two
clients at same time and there is more traffic with the presence
of the second client.

C. Client Throughput Measurements

In order to understand the client throughput, it is important
to understand that the increase in the number of misses in the
cache server causes the cache to request the missed segment
from the original server, thereby consuming more time and
resources for the client to receive the requested segment. Since
there is a small number of misses in the Smart Cache scheme,
each time that the client requests a segment from the cache,
it will be served by the cache itself. This effect will be more
prevalent when there is background traffic on the outgoing link
of the cache.

We found that the throughput measured by the DASH player
is higher with the Smart Cache scheme than with the basic
scheme. In Table III, the measured throughput for Smart Cache
and basic for single-client with 10s is almost equal, because
only the first few segments are cache misses, which have
smaller sizes. In the double-client scenarios, the clients that
request 15s experience less throughput increase when using
Smart Cache than for 10s. The second client for 15s shows
the least increase with Smart Cache compared to basic (see
Table IV). Due to a higher number of misses in the cache,
the difference in throughput increases for the double-client
scenario is less when compared to the single-client scenario,
specifically for the second client. Note that, in the basic
scheme, the client must wait for the cache to fetch all of the
missed segments from the origin server.

In Fig. 2, we present throughput behavior with timeline
shown based on the segment number in the x-axis. The first
peak shows that the throughput measurement is increasing to
a threshold while the two clients are requesting segments and
background traffic is running; however, it suddenly drops after

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference 391



0 10 20 30 40 50 60
segments(1-60)

0

1

2

3

4

5

6

th
ro
ug

hp
ut
(M

bp
s)

Basic
Smart

(a) First client using 10s

0 10 20 30 40 50 60
segments(1-60)

0

1

2

3

4

5

6

7

th
ro
ug

hp
ut
(M

bp
s)

Basic
Smart

(b) Second client using 10s

0 5 10 15 20 25 30 35 40
segments(1-40)

0

1

2

3

4

5

6

th
ro
ug

hp
ut
(M

bp
s)

Basic
Smart

(c) First client using 15s

0 5 10 15 20 25 30 35 40
segments(1-40)

0

1

2

3

4

5

6

7

th
ro
ug

hp
ut
(M

bp
s)

Basic
Smart

(d) Second client using 15s

Fig. 2: Throughput measurement for clients: Smart Cache vs. Basic.

TABLE III: Client average throughput (Mbps) with a single client scenarios

scenarios basic Smart increase
10s-notraffic 4.17 4.74 13.67%
15s-notraffic 3.73 4.89 31.10%
10s-traffic 3.05 4.13 35.41%
15s-traffic 2.55 3.61 41.57%

TABLE IV: Client average throughput (Mbps) with for doubleclient- scenarios

scenarios basic Smart increase
10s-double client1 2.74 3.65 33.21%
10s-double client2 2.54 3.62 43.70%
15s-double client1 2.45 3.06 24.90%
15s-double client2 2.47 2.78 12.55%

40 sec and stays steady. After the bottleneck is taken away,
the trend increases. However, the two clients still compete for
resources that results in an unsteady behavior.

D. Analysis of Client QoE

Finally, we focus on client QoE by considering the follow-
ing metrics: average latency, average bitrate gain, and average
of bitrate switches or oscillations.

1) Latency: It has been reported that the time that users
wait for the requested content to be downloaded from the
server to the local devices can significantly influence user
experience [18]. In all the scenarios, Smart Cache displays
better QoE than the basic scheme in regards to average latency
(see Table V and able VI). For the single-client 10s and 15s
without traffic, the delay difference between basic and Smart
Cache is not significant. But for the double-client scenarios, we
observe that for each client the delay of 15s is more than that
of the 10s. In addition, the difference between Smart Cache
and basic for 15s is more than 10s. The second client in both
datasets experiences less difference between basic and Smart
Cache. Thus, an important parameter in QoE experience in
terms of average latency is the segment size duration.

Fig. 3 presents trends on latency for 10s and 15s in the
double-client scenarios. In the basic scheme, the moment that
the traffic runs on the cache-server link occurs at nearly the
same time that the client asks for a segment before segment
number 15. In the Smart Cache scheme, the moment that the
traffic runs on the cache-server link occurs at nearly the same
time that the client asks for a segment after segment number
15. This is since in the basic scheme the first few segments
are cache missed. When after 40 sec the background traffic is
activated on the link, Smart Cache is already a few segments

TABLE V: Average latency and Average Bitrate for a single client in Basic
and Smart Cache Schemes with and without traffic

scenarios
Average latency(ms) Average Bitrate(Mbps)

basic Smart decrease basic Smart increase
10s-notraffic 5.43 5.20 4.24% 2.79 2.81 0.36%
15s-notraffic 7.63 6.51 14.68% 2.34 2.38 1.71%
10s-traffic 7.58 6.10 19.53% 1.64 1.90 15.85%
15s-traffic 9.41 8.46 10.10% 0.96 1.01 5.21%

ahead of the basic scheme. In the figures, we see that the peak
value of latency for the basic scheme is almost 250 sec, while
for Smart Cache, this is around 150 sec. This may be attributed
to the Smart Cache having accurately prefetched more of
the requested segments at that time. This latency can change
depending on the size of the segment, which means that if the
background traffic happens on higher segment numbers, then
we will probably observe more latency and more difference
between basic and Smart Cache schemes. If the traffic happens
in the beginning of the requests, then the difference will not
be significant because the sizes of the segments are smaller.

2) Bitrate Gain: The bitrate metric study shows that for
all scenarios, Smart Cache shows higher gain than the basic
scheme; see Table V and Table VI. Also, the 15s video shows
lower bitrate gain than 10s. Fig. 4 shows additional details on
the requested bitrate of those clients. The first peaks in each of
the plots are related to the moment when the bitrate already
hits the link’s throughput threshold for ramp-up phase. In a
single-client with no background traffic, this peak would be
higher than other scenarios, because there is no traffic to stop
it and throttle the link throughput.

Observe that there is a sudden drop after 40 sec, and
the throughput measurements thereafter stay steady on the
minimum bitrate. After the bottleneck is taken away, the bitrate
values will have sharp upshifts and this trend functions more
smoothly as the two clients are still running and competing for
link resources. In 10s, the gap between two schemes is more
moderate than that of 15s; this relationship is also displayed in
numeric values in the tables. Smart Cache compared to basic
in the double-client scenario with 15s displays more gain than
10s.

3) Bitrate Switching: In terms of bitrate switching, we did
not observe any changes in measurement for the single-client
scenario without background traffic. For single-client scenarios
with background traffic, the changes are also insignificant.
However, there is a small increase in the number of bitrate
switching with Smart Cache for 15s (see Table VII). For

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference392



0 10 20 30 40 50 60
segments(1-60)

0

50

100

150

200

250

la
te
nc

y(
se

c)

Basic
Smart

(a) First client using 10s

0 10 20 30 40 50 60
segments(1-60)

0

50

100

150

200

250

la
te
nc

y(
se

c)

Basic
Smart

(b) Second client using 10s

0 5 10 15 20 25 30 35 40
segments(1-40)

0

50

100

150

200

250

la
te
nc

y(
se

c)

Basic
Smart

(c) First client using 15s

0 5 10 15 20 25 30 35 40
segments(1-40)

0

50

100

150

200

250

la
te
nc

y(
se

c)

Basic
Smart

(d) Second client using 15s

Fig. 3: Latency: Smart Cache vs. Basic.

0 10 20 30 40 50 60
segments(1-60)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

bi
tra

te
s(
M
bp

s)

Basic
Smart

(a) First client using 10s

0 10 20 30 40 50 60
segments(1-60)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

bi
tra

te
s(
M
bp

s)

Basic
Smart

(b) Second client using 10s

0 5 10 15 20 25 30 35 40
segments(1-40)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

bi
tra

te
s(
M
bp

s)

Basic
Smart

(c) First client using 15s

0 5 10 15 20 25 30 35 40
segments(1-40)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

bi
tra

te
s(
M
bp

s)

Basic
Smart

(d) Second client using 15s

Fig. 4: Bitrate Gain: Smart Cache vs. Basic.

TABLE VI: Average latency and Average Bitrate for double-clinet in Basic
and Smart Cache Schemes with a 10s and 15s

scenarios
Average latency(ms) Average Bitrate(Mbps)

basic Smart decrease basic Smart increase
client1-10s 7.64 7.10 7.07% 1.63 1.81 11.04%
client2-10s 7.23 6.82 5.67% 1.47 1.78 21.09%
client1-15s 9.83 8.50 13.53% 0.80 1.13 41.25%
client2-15s 9.30 8.58 7.74% 0.75 1.11 48.00%

double-client scenarios, the values for bitrate switching is
almost the same except for 15s, where Smart Cache has
less bitrate switching compared to the basic scheme. These
insignificant changes could be due to the fact that the changes
we implement are in the cache itself, and not in the client
ABR. When the Smart Cache has higher bitrate switching than
the basic scheme, this is related to upshifts. The experience of
users is more negatively affected by downshift switching than
it is by upshift switching [19]. [20] shows that with larger
segment sizes, frequent bitrate switching is not significantly
worse than videos with less bitrate switches.

E. Key Observations

We now summarize key observations with double-clients
based on our study:

• Cache Hitrate: For 10s, Smart Cache increases the hitrate
by 52% and for 15s Smart Cache increases the hitrate by
76% compared to the basic scheme.

• Client Throughput: With Smart Cache for 10s, the
throughput measurement of client1 and client2 increase
33.21% and 43.7%, respectively, compared to the basic
scheme. This value for 15s double-client for client1 and
client2 increases to 24.9% and 12.55%, respectively.

• Delay: With Smart Cache for 10s, delay for client1
decreases by 7.07% while client1’s delay decreases by
5.67% compared to the basic scheme. For 15s with Smart

TABLE VII: Average bitrate switching

scenarios basic Smart
Single-10s-traffic 34.4 31.4
Single-15s-traffic 28.2 29.4
Double-10s-client1 31.8 32.4
Double-10s-client2 32.2 32.0
Double-15s-client1 29.0 28.6
Double-15s-client2 30.4 26.4

Cache, delay decreases for client1 and client2 by 13.53%
and 7.74%, respectively.

• Bitrate Gain: With Smart Cache for 10s, client1 and
client2’s bitrate gain increases by 11.04% and 21.09%,
respectively, over the basic scheme. For 15s, the gain
increases by 41.25% and 48% for client1 and client2,
respectively.

V. CONCLUSION

In this work, we presented an Smart Cache framework
by adding the Replacement Manager and implemented the
framework for multiprocessing clients. We observed that when
both clients send the requests at about the same time, the
second client receives the segment with the same resolution as
the first client. When there is a delay in the start of the second
client to flush out the cache, we observe that the number of
misses in the cache is reduced with the Smart Cache approach
compared to the basic scheme, resulting in the improvement
of client throughput measurements and QoE metrics. Smart
Cache shows a better average latency with a higher average
requested bitrate than the basic prefetching.

REFERENCES

[1] Cisco Visual Networking Index, “Forecast and methodology, 2014-2019
white paper,” Technical Report, Cisco, Tech. Rep., 2015.

[2] E. Thomas, M. van Deventer, T. Stockhammer, A. C. Begen, and
J. Famaey, “Enhancing MPEG DASH performance via server and
network assistance,” 2015.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference 393



[3] S. Kiani Mehr, P. Juluri, M. Maddumala, and D. Medhi, “An adaptation
aware hybrid client-cache approach for video delivery with dynamic
adaptive streaming over http (short paper),” in IEEE NOMS, 2018.

[4] K. Liang, J. Hao, R. Zimmermann, and D. K. Yau, “Integrated prefetch-
ing and caching for adaptive video streaming over http: an online ap-
proach,” in Proceedings of the 6th ACM Multimedia Systems Conference.
ACM, 2015, pp. 142–152.

[5] R. Rejaie, H. Yu, M. Handley, and D. Estrin, “Multimedia proxy caching
mechanism for quality adaptive streaming applications in the internet,”
in INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, vol. 2.
IEEE, 2000, pp. 980–989.

[6] T.-D. Pham, P. L. Vo, and T. C. Thang, “Improving dash performance
in a network with caching,” in Proceedings of the Eighth International
Symposium on Information and Communication Technology. ACM,
2017, pp. 255–261.

[7] R. K. Mok, X. Luo, E. W. Chan, and R. K. Chang, “Qdash: a qoe-aware
dash system,” in Proceedings of the 3rd Multimedia Systems Conference.
ACM, 2012, pp. 11–22.

[8] V. Krishnamoorthi, N. Carlsson, D. Eager, A. Mahanti, and
N. Shahrmehr, “Helping hand or hidden hurdle: Proxy-assisted http-
based adaptive streaming performance,” in Modeling, Analysis & Simu-
lation of Computer and Telecommunication Systems (MASCOTS), 2013
IEEE 21st International Symposium on. IEEE, 2013, pp. 182–191.

[9] C. Liu, M. M. Hannuksela, and M. Gabbouj, “Client-driven joint cache
management and rate adaptation for dynamic adaptive streaming over
http,” International Journal of Digital Multimedia Broadcasting, vol.
2013, p. 16 pages, 2013.

[10] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaud-
huri, R. Ricci, and I. Seskar, “GENI: A federated testbed for innovative
network experiments,” Computer Networks, vol. 61, pp. 5–23, 2014.

[11] “Adaptation-aware-hybrid-client-cache.” [Online]. Available: https://
github.com/Sheydakm/Adaptation-Aware-Hybrid-Client-Cache

[12] “DASH dataset 2014.” [Online]. Available: http://www-itec.uni-klu.ac.
at/ftp/datasets/DASHDataset2014/

[13] J.-Y. Kim, K.-W. Cho, and K. Koh, “A proxy server structure and its
cache consistency mechanism at the network bottleneck,” in Computer
Software and Applications Conference, 1999. COMPSAC’99. Proceed-
ings. The Twenty-Third Annual International. IEEE, 1999, pp. 278–283.

[14] D. H. Lee, C. Dovrolis, and A. C. Begen, “Caching in http adaptive
streaming: Friend or foe?” in Proceedings of Network and Operating
System Support on Digital Audio and Video Workshop. ACM, 2014,
p. 31.

[15] C. Mueller, S. Lederer, and C. Timmerer, “A proxy effect analyis and fair
adatpation algorithm for multiple competing dynamic adaptive streaming
over http clients,” in Visual Communications and Image Processing
(VCIP), 2012 IEEE. IEEE, 2012, pp. 1–6.

[16] V. Poliakov, L. Sassatelli, and D. Saucez, “Case for caching and model
predictive control quality decision algorithm for http adaptive streaming:
is cache-awareness actually needed?” in Globecom Workshops (GC
Wkshps), 2016 IEEE. IEEE, 2016, pp. 1–6.

[17] P. Juluri, V. Tamarapalli, and D. Medhi, “Measurement of quality of
experience of video-on-demand services: A survey,” IEEE Communica-
tions Surveys & Tutorials, vol. 18, no. 1, pp. 401–418, 2016.

[18] Z. Pang, L. Sun, Z. Wang, Y. Xie, and S. Yang, “Understanding perfor-
mance of edge prefetching,” in International Conference on Multimedia
Modeling. Springer, 2017, pp. 527–539.

[19] N. Cranley, P. Perry, and L. Murphy, “User perception of adapting video
quality,” International Journal of Human-Computer Studies, vol. 64,
no. 8, pp. 637–647, 2006.

[20] S. Egger, B. Gardlo, M. Seufert, and R. Schatz, “The impact of
adaptation strategies on perceived quality of http adaptive streaming,” in
Proceedings of the 2014 Workshop on Design, Quality and Deployment
of Adaptive Video Streaming. ACM, 2014, pp. 31–36.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference394


