Real-time Pattern Detection in IP Flow Data
using Apache Spark

Milan Cermak*, Martin Lastovi¢ka*T, Tomas Jirsik*
* Masaryk University, Institute of Computer Science, Brno, Czech Republic
 Masaryk University, Faculty of Informatics, Brno, Czech Republic
E-mail: {cermak, lastovicka, jirsik} @ics.muni.cz

Abstract—Detection of network attacks is a challenging task,
especially concerning detection coverage and timeliness. The
defenders need to be able to detect advanced types of attacks
and minimize the time gap between the attack detection and
its mitigation. To meet these requirements, we present a stream-
based IP flow data processing application for real-time attack de-
tection using similarity search techniques. Our approach extends
capabilities of traditional detection systems and allows to detect
not only anomalies and attacks that match exactly to predefined
patterns but also their variations. The approach is demonstrated
on detection of SSH authentication attacks. We describe a process
of patterns definition and illustrate their usage in a real-world
deployment. We show that our approach provides sufficient
performance of IP flow data processing for real-time detection
while maintaining versatility and ability to detect network attacks
that have not been recognized by traditional approaches.

I. INTRODUCTION

Although a taxonomy of network attacks has not changed
significantly in recent years, the network attack landscape is
still highly dynamic. New variations of network attacks are
introduced on an everyday basis as attackers try to evade de-
ployed security mechanisms. A significant portion of deployed
network security mechanisms is based on pattern (signature)
matching, where malicious traffic is identified based on an
exact match with a predefined attack pattern [19]. Pattern
matching detection methods ensure high accuracy and, how-
ever, lower coverage as they can be easily evaded. A minor
modification of an attack, e.g., an attack frequency, generates a
new attack pattern that does not match the detection anymore.
Further, the network patterns outdates quickly as a network
communication and attack tools evolve. For example, attack
patterns presented by Vykopal et al. [21] are not valid in
current networks according to our measurements. A pattern
matching mechanism that would be resistant to the attack vari-
ation is still a challenge for network traffic security monitoring.

Moreover, the contemporary network attacks can cause
a severe harm every second they remain undetected. This
represents a significant challenge especially in high-speed and
large-scale networks that are typically analyzed with long
detection delay. Analysis of traffic in such networks is usually
based on IP flow measurement which is characterized by a
delay of up to ten minutes [14]. Such delays may cause
irreversible damage especially in the case of critical network
services. Therefore, apart from the detection coverage, an

978-3-903176-15-7 (© 2019 IFIP

521

analysis speed needs to be enhanced as well to identify an
attack as soon as possible.

A modern pattern matching application needs to meet the
following requirements to face contemporary network threats
successfully. First, the application should be able to detect
various modification and versions of network attacks. Second,
the pattern for attack detection should be easily comprehen-
sible and definable to allow for a new pattern definition and
easy adoption by network security operators. Third, the system
should enable a real-time pattern matching and attack detection
even in the high-speed, large-scale networks.

We face these requirements by proposing a novel approach
for real-time pattern detection in IP flow data. Our pat-
tern matching approach allows specifying various distance
functions [7] and pattern definitions to enable detection of
previously unknown variations of network attacks. The pattern
matching approach is proposed in the context of stream-based
analysis framework Stream4Flow [14] using Apache Spark
analytic engine. We implement this approach in PatternFinder
application that enables highly flexible and universal patterns
definition utilizing a set of distance functions, weights, and
thresholds. Its functionality is demonstrated on SSH dictionary
attacks detection to facilitate understanding of the approach
and its capabilities. We create a dataset for the SSH attack
pattern identification, provide detection pattern for well-known
attack tools, and describe the results of experimental deploy-
ment in the real-world network.

II. RELATED WORK

Over the past years, many different ways of network traffic
anomaly and attack detection approaches have been introduced
from simple statistical analysis to machine learning meth-
ods [2], [9] event for IP flow [19]. However, the exact match
approach prevails in the majority of commercially available
analysis tools due to its low false positive rate and simple
patterns definition (e.g., in Snort, Suricata, or commercially
available Flowmon ADS system). Our goal is to extend this
approach by using an analysis of IP flows based on similarity
search principles [23]. This detection approach consists of
two follow-up phases: extraction of network traffic features
that form the basis of the pattern and comparison of created
patterns using an appropriate distance function. Various data
mining techniques can be used for this purpose as shown for

example in [13], [18], [22], [24]. Nevertheless, our observa-
tions show that these techniques are usually not designed for
real-time, large-scale analysis of IP flow records and require
specific data sources, preprocessing, formats and also uses
complex analysis systems.

The majority of IP flow data analysis systems is based
on batch data processing that significantly increases the time
needed to detect attack or anomaly in network traffic. This
approach is used mainly due to the performance requirements
that the network traffic analysis brings. However, this issue has
been overcome with the current advent of distributed stream
data processing engines such as Apache Spark, Storm, Samza
or Flink. Our previous results [5] showed that these systems
could process a large amount of IP flow data in real time
with sufficient data throughput. This approach of IP flow data
processing was verified in [3] that used Apache Spark for
generation of network traffic statistics. These systems allow
not only real-time network traffic analysis but also provide
advanced data processing methods.

III. STREAM4FLOW ANALYSIS FRAMEWORK

Real-time processing of IP flow data puts high demands on
computation resources and requires the use of systems that
scale well and allow for parallel computing. To meet this
requirement, we introduced a Stream4Flow analysis frame-
work [14] based on a stream-based IP flow analysis workflow.
The framework enriches traditional IP flow monitoring archi-
tecture allowing to process data in real time and providing
new analysis capabilities. It is composed of several separate
systems for data normalization, analysis, and presentation.
Mutual interconnection of those systems is illustrated in Fig. 1.
Receiving and initial processing of IP flows is provided by
IPFIXcol collector [20] capable of collecting IP flow data
in various transport formats and transforming them into the
JSON format. Such transformed IP flows are provided to the
Kafka messaging systems [15] ensuring their scalable and fast
distribution within the framework. The core of the framework
consists of Apache Spark distributed stream processing en-
gine [25] with custom applications for real-time IP flow analy-
sis. Analysis results provided by these applications are sent
back to the Kafka and stored in the Elastic Stack [8] that also
offers basic visualizations using Kibana framework. The last
part of the Stream4Flow framework is an additional custom
web interface capable of advanced results visualization.

Data in the Stream4Flow framework are distributed in
JSON data serialization format which is commonly used by
modern data processing engines and provides good readability
and variability. Transformation of IP flow records within the
Stream4Flow is performed using IPFIXcol that offers broad
configuration options including the ability to specify names
for extended IP flow elements. Therefore, any information
exported by monitoring probes, including information from the
application layer of a network packet, can be used by analysis
applications. The following sample gives a shortened example
(reduced to 8 fields down from original 29) of a flow record

522

in JSON format representing DNS response, as it is received
by the analysis application.

{
"Qtype":"ipfix.entry",
"ipfix.octetDeltaCount": 96,
"ipfix.packetDeltaCount": 1,
"ipfix.sourceTransportPort": 53,
"ipfix.sourceIPv4Address": "240.0.0.2",
"ipfix.destinationTransportPort": 50498 ,
"ipfix.destinationIPv4Address": "240.0.1.2",
"ipfix.DNSName": "iuIAAAAPCAECAwIB.test.com"

The analytical part of the Stream4Flow framework is com-
posed of Apache Spark distributed stream processing engine
providing sufficient IP flow data throughput [5] and MapRe-
duce programming model [6]. It enables to obtain in-depth
information about network traffic and create advanced analysis
applications. The core of the MapReduce-based analysis is
specification of a key, which can be an IP address, commu-
nicating pair of devices, or arbitrary IP flow element. For
such a key, it is possible to compute specific aggregations and
provide detailed statistics of network traffic. These detailed
aggregations and their fast distributed processing enable to
create applications capable of analyzing network traffic in
high-speed and large-scale networks and even in real time.

IV. PATTERNFINDER

In addition to common applications for an IP flow analysis,
the MapReduce programming model in the Stream4Flow
framework allows implementing analyzes, which are difficult
to perform and computationally intensive in other systems.
One such analysis task is a computation of traffic aggrega-
tions for each pair of connection peers, or each observed IP
address. Such aggregation can be continuously compared with
predefined patterns of known network attacks or anomalies.
To demonstrate this approach, we created an application
PatternFinder that is publicly available in the Stream4Flow
project repository. It is a highly flexible, easily extensible
and modular application, capable of analyzing IP flow data,
and comparing known patterns with real measurements in real
time. In addition to a comparison of traffic patterns based on an
exact match, it allows comparisons based on similarity using
different distance functions [7].

The application uses a predefined data input and output
interfaces of the Stream4Flow framework. At the beginning of
the data processing, IP flows are filtered using a wide range of
filtering options such as required fields, values, or network IP
ranges. The application can handle multiple filtering options
at once, whereas the IP flow has to comply with every one
of these to be processed. Such cleaned data are handled by
a vector creation module, which represents one of the crucial
parts of the application. The module allows creating bi-flow or
simple vectors. The simple configuration treats each combina-
tion of source and destination IP addresses and their ports
independently. The bi-flow configuration attempts to group
both directions of communication for their mutual analysis.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference Experience Session

) Data JSON JSON prS o e |N
C}())llectlng Transform R ——— < 1SON i;;,}; ad | & \.\ :fij
rocess —_— oR
IPFIXcol Kafka Apache Spark Streaming
IP Flow JSON et
Records | e Y T @ ,,,,,
o= JSON == . B @
= CF||l— <> + [
= BE

Monitoring Probe ~ Web Interface

Elastic Stack

PatternFinder Patterns Definition

Fig. 1. The architecture of Stream4Flow framework for the real-time analysis of IP flows.

Values of bi-flow or simple vectors represent characteristics
of analyzed connection that are handled by pattern comparison
module. Each connection vector is compared in real time with
predefined patterns using a defined distance function. The
result of the processing is a number representing a distance of
analyzed connection vector and compared patterns. The format
of the pattern can be arbitrary, whereas an appropriate dis-
tance function must be correctly implemented. The following
example shows a definition of patterns where the distance is
computed by a Quadratic form distance function.

distance_function: biflow_quadratic_form

patterns:
— name: anomaly
request: [23, 8983, 9098]
response: [24, 1125, 9101]

The last part of the analysis application is an aggregation
module that aggregates computed distances into distribution
vector. This aggregation allows considering the distance of
each analyzed connection and tune detection sensitivity. The
distribution vector is represented as an array containing a
sum of weights in the position corresponding to the computed
distance. The position is specified in the application configu-
ration as an increasing range of values determining the range
position for computed distance. A recommended approach is
to set the higher weight to connections with smaller computed
distance as well as the largest. This approach reduces the
number of false positives caused by a small number of
connections closed to the given pattern whereas the rest is
very distant. The following example shows a specification of
intervals and weights.

distribution:
anomaly:
intervals: [0, 3, 5, 6, 7,
weights: [3, 2, 1, 1, 2, 3]

The application marks the aggregation as anomaly or attack
in a moment when a sum of the left half of the distribution
vector is greater than or equal to the predefined limit and to
the right half of the distribution at the same time. Results of
the detection are sent to the Stream4Flow framework and can
be explored within the Elastic Stack. Besides, we developed
the web interface to represent results as an extension to
the Stream4Flow web page. The interface provides a simple

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference Experience Session

overview of the detection using Top K graphs of source and
destination addresses with the summarizing table containing
all aggregations that were identified as closest to the given
patterns. Figure 2 shows an example of the table whereas the
results are extended by information about confidence derived
from the distance distribution.

Timestamp Source host Destination host Closest patterns Confidence

2018-08-1508:18:32.583 240.113.0.9 240.113.0.148 ncrack-2 Medium

2018-08-1508:13:32.413 241.128.0.58 240.30.0.112 hydra Very high

2018-08-15 08:19:58.211 241.128.0.58 240.30.0.113 ncrack-1 Very high

2018-08-1508:17:13.015 242.177.0.63 240.251.0.3 hydra; ncrack-2 Low

2018-08-1508:04:23.217 240.251.0.57 240.251.0.193 ncrack-1; ncrack-2 Low

2018-08-1507:14:28.210 242.123.0.180 240.113.0.23 ncrack-1 High

2018-08-1507:14:28.210 241.123.0.180 240.113.0.39 medusa Very high

5“7 24

Fig. 2. Summarizing table of PatternFinder detection results.

Showing 51 to 60 of 239 rows 7. | rows per page <1

V. PATTERNS DEFINITION

Definition of an appropriate pattern is an essential process
for the detection of severe events in network traffic. A weak
pattern that is not specific or unique enough results in mislead-
ing or too general anomaly or attack recognition. The pattern
can represent IP flow corresponding to an attack, network
traffic of a particular application, or a unique user and device
behavior. To derive such pattern, a trace dataset containing
sufficient samples of the desired network events is required
independently of derivation approach. Freely available datasets
of network traffic can be used. However, these datasets typi-
cally suffer by lack of variety (e.g., contain only one version
of the attack), updates [12], and correct labels [1]. For these
reasons, we recommend generating a new trace dataset that is
primarily focused on the desired event of network traffic.

Dataset suitable for a definition of patterns should contain
only network traffic of interest without any other traffic [4].
Dataset satisfying these conditions can be created in two ways.
The first is the analysis of real-world traffic and filtering of
desired events. Nevertheless, this method requires recognition
of events in the network traffic which is hard to achieve
reliably. The second approach consists of a created virtualized

523

environment (e.g., virtual machines and networks, or cyber
ranges) where only traffic of interest is present. For example,
to generate a dataset with traffic associated with dictionary
attacks on SSH service, a simple virtual client-server network
can be created with several common attack applications. Using
this approach, we can obtain a trace dataset containing only
relevant traffic needed for pattern definition. This approach
also enables to create various modifications and types of de-
sired network traffic. In the case of SSH authentication attack,
all important variations of the attack must be covered including
attack speed, success rate, and differences in versions of the
attack application or service itself.

Pattern definition based on the dataset can be done by var-
ious approaches using simple statistical operations, machine
learning, or clustering methods [9]. Thanks to the requirement
of noise traffic absence, the dataset can be easily labeled and
directly used by a selected pattern definition approach. In
the case of simple statistical operations, connections related
to the same attack type can be aggregated, and median or
average IP flow characteristic (e.g., number of packets) can be
computed. The aim is to identify the most common IP flow
representing the desired pattern corresponding to the anomaly-
related connection. The advantage of the dataset is a possibility
of its combination with real-world network traffic to improve
derived patterns further.

PatternFinder application allow improving patterns in four
different ways. The first is a definition of appropriate distance
function used to compare the pattern with outgoing IP flows.
There are many different distance functions [7] whereas its
choice must take into account not only the desired func-
tionality but also the input data. The second approach to
improvement is the setting of distance intervals determining
the weight of the IP flow regarding pattern similarity. If the
analyzed IP flow is similar to the pattern (using given distance
function), it is necessary to define smaller interval spacing so
that regular connections will be on the right side of the interval
while less similar connections on the left side. The third
approach of patterns improvement is a definition of weights
for each distance interval slot. Generally speaking, the most
similar IP flows should have more significant weight as well
as entirely different ones to better distinguish unambiguously
identified connections. The last approach for improvement of
analysis success rate is a definition of limit determining a
minimal number of IP flows that need to be recognized as
similar to the pattern. A higher number reduces the number of
false positives but also reduces the ability of the application
to recognize less significant anomalies and attacks. Each of
the mentioned distribution values must always be set relative
to the target network and its traffic characteristics.

A. Simple SSH Authentication Attack Pattern Definition

Usage of PatternFinder is best suited to detection of anoma-
lies and attacks with similar and repetitive network connection
characteristics (e.g., denial-of-service, brute-force, or wide-
area attacks). To demonstrate our approach, we selected de-
tection scenario of a dictionary attack on SSH authentication

524

TABLE I

PATTERNS DEFINITION FOR SSH DICTIONARY ATTACK DETECTION.
Tool Request Response

Pkts | Bytes | Duration | Pkts | Bytes | Duration
Hydra 16 1973 11959.5 25 3171 11959.5
Medusa 18 2528 6079 25 3715 6079
Ncrack-1 13 2860 2549.5 14 2103 2548.5
Ncrack-2 16 3340 10050 21 2675 10048

that is characterized by similar IP flows corresponding to
repeated connections trying to guess user credentials. We
created an annotated dataset using the above mentioned virtual
environment and common tools to attack the SSH service —
Medusa [11], Hydra [17], and Ncrack [16]. Each of attack
tools was run five times in different settings (e.g., number
of threads) to capture fifteen attack modifications in total. A
core of each tool is based on a different connection library,
and approach resulting in distinct IP flows with a different
number of transferred packets, bytes and duration times. The
dataset and derived detection patterns are publicly available in
the Stream4Flow project repository.

To show a quick and straightforward approach of patterns
definition, we used the median of response and request IP
flow characteristics correlated by Quadratic form distance
function [7]. We counted the median of packets, bytes, and
duration for each connection of the attacking tools and its
setting. Hydra and Medusa tools were characterized by similar
IP flow properties for all their settings. Therefore, we have
decided to create patterns recognizing these tools based on
the median of all their IP flows available in the dataset. In the
case of Ncrack tool, one of the settings leads to completely
different connections characteristics. Therefore we decided to
define two distinct detection patterns. Defined patterns are
summarized in the Table I. Based on the analysis of regular
SSH connections and corresponding medians of request and
response IP flow characteristics, we divided the distances
interval in the following way to emphasize more similar and
completely different connections: [0, 2, 3, 4, 5, 7].
Corresponding weights were selected in a standard way scaled
by one: [3, 2, 1, 1, 2, 3]. The minimum limit of
weight for reporting was set to 7, to restrict the minimum
of similar IP flows to three.

VI. PATTERNFINDER EVALUATION

To demonstrate the capabilities of the PatternFinder appli-
cation, we have deployed the Stream4Flow framework within
the backbone network of Masaryk University. The framework
processed IP flow data from network probes capturing IP flows
from two 40 Gb links connecting the university network to the
Internet. The application was deployed in the framework on
four workers with two cores and 4 GB memory each for one
week in August 2018 to measure its performance and real-
time detection abilities. With these resources, the application
was able to process a large number of IP flows without
any delays. With the micro-batch size of 5s, the average
processing time of each batch was 3.39 s whereas every batch

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference Experience Session

processing finished successfully. The same processing time
remained when we additionally configured comparison with
100 detection patterns. These features have persisted even
if the volume of traffic increased during DDoS attacks on
the university network reaching 60,000 flows per second. Our
results show that the application could be deployed within the
framework with fewer resources than was tested.

We selected one day of the week to deeper analyze detection
capabilities of the application to show not only its performance
but also its pattern detection properties. In total, 478.98 M
flows were processed with 5.54 k flows per second on average
and 9.9k flows per second in peak which corresponds to
2191 TB of data transferred. The PatternFinder application
detected 1734 possible attacks on SSH authentication. These
detections may be regular network traffic associated with
connections created by a user that forgot his password or by
incorrectly configured scripts. To distinguish these attempts
from attacks, we analyzed the cumulative distribution function
of attack login attempts. The result is depicted on Fig. 3.
The analysis shows that, if the greater degree of detection
certainty is needed, the required number of connections should
be limited to a minimum of six. In the case of patterns used for
attack detection, the limit of weight should be set to value 16
to cover five unambiguous similarities with a smaller number
of less similar connections.

100°

10 15 20 25 30 35 40 45 50

Cumulative attacks percentage

Number of attempts

Fig. 3. Cumulative distribution of attacks based on login attempts number.

To evaluate the detection capabilities, we compared the
obtained results with Flowmon Anomaly Detection System
(ADS) [10] deployed in a production network of our university.
The system processes 5-minute discrete batches of IP flow data
and is set by default to consider 30 or more log-in attempts
as an attack. With these settings, it detected 264 events from
75 unique IP addresses (a continuous attack is reported in
every processed batch of data). With the same settings, the
PatternFinder application detected 78 events from 42 unique
IPs. These events overlap in some cases in the sense that ADS
system reports a continuous attack every five minutes whereas
PatternFinder can report one event covering a longer period.
To evaluate PatternFinder performance by the standard metrics
we have set the events from ADS as ground truth and counted
the numbers of true and false positives, and false negatives,
finally, we have set the true negative value to zero. With those
values, the accuracy of PatternFinder detections was 39.9%,
precision 82.7%, and recall 43.6%. We conclude that in real
networks there are more tools in use and their pattern distance
was too large for a detection. On the other hand, there were

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference Experience Session

several events detected solely by PatternFinder. They were
identified as slow stealthy attacks spanning across the time
border of fixed time windows.

Cumulative attacks percentage

Attack confidence ratio

Fig. 4. Cumulative distribution of attacks based on confidence ratio.

Another essential aspect of distance-based attack detections
is the confidence ratio. IP flows are aggregated by Pattern-
Finder in distribution vector according to their connection
vector and weight of resulting position. We divided the array
into the left part (close flows) and the right part (distant flows)
with the center in the middle of the array, and calculate their
ratio. Surprisingly, only 66 attacks out of the total of 1734 had
this ratio lower than infinity. The rest of the attacks had all
flows in the left side of the distribution vector which means the
attackers stick to one tool during one attack and its signature
is similar to our pattern. The cumulative distribution function
of attack with the non-infinity ratio is depicted in Fig. 4.

Ncrack-1
26%

\ Ncrack-2
\ 4%

Hydra Medusa
1% 0%

Inconclusive Pattern match
69% 31%

Fig. 5. Distribution of attack tools.

The most interesting feature of PatternFinder is its ability to
distinguish some tools used for the attack based on provided
patterns. We have used four patterns of three popular tools
— Medusa, Hydra, Ncrack-1, and Ncrack-2. In 1205 cases of
reported attacks, the distance value was the same for multiple
patterns, and it cannot be determined which tool produced the
attack. This problem is prominent especially in attacks with a
small number of attempts where the distribution vector is not
distinguishing enough. From the rest of attacks, Ncrack tool
clearly dominates the detections with 516 events combined
from its both patterns. Hydra and Medusa tools were identified
only in 9, respectively 4 attacks. The distribution of tools in
detection is depicted in Fig. 5. The analysis result can be
further refined by modifying the distribution interval or weight
for each of the used patterns to take into account important
features of each attacking tool. However, the result may also
indicate that another application or programming library is
used in real-world network traffic to attack SSH authentication.

525

VII. CONCLUSION

We have proposed a novel approach for real-time pattern
detection of IP flow data that can utilize various distance
functions and pattern definitions. The approach is based on the
Stream4Flow analysis framework [14] able to process data in
real time and providing MapReduce programming model by
inclusion of Apache Spark engine. The provided programming
model allows the creation of an aggregation of IP flows asso-
ciated with the same communication peers. Such an approach
can be used to continuously compare ongoing IP flows with
predefined patterns of known attack or anomalies and form
aggregation vectors determining the similarity of these patterns
with all connections associated with communication peers. To
demonstrate this concept, we created PatternFinder analysis
application. It is a highly flexible and modular application
capable of analyzing IP flow data in real time and comparing
them with known patterns using various distance functions.
The application can detect not only previously known variants
of network attacks and anomalies but also their unknown
variations such as stealthy but long-lasting attacks.

In addition to the analytical application itself, we also
introduced an approach of the definition of new analysis pat-
terns utilizing trace datasets with a reduced noise of network
traffic. These datasets can be simply used by various statistical,
machine learning, and clustering applications. An advantage
of such datasets is their ability to be combined with real-
world network traffic. This process enables to improve pattern
detection capabilities of the application and take into account
the properties of the analyzed network while being able to
recognize the given attacks or anomalies. The creation of pat-
terns and their usage by PatternFinder has been demonstrated
on the university backbone network where the application
was able to analyze all ongoing IP flows (5.54k flows per
second on average) and successfully detect attacks on SSH
authentication. The results showed not only good performance
of the application but also its ability to identify less significant
attacks and distinguish used attacking tools.

The source code of the Stream4Flow analysis framework
together with PatternFinder and the dataset containing packet
trace of SSH authentication attacks are publicly available at
https://github.com/CSIRT-MU/Stream4Flow.

ACKNOWLEDGEMENT

This research was supported by ERDF “CyberSecurity,
CyberCrime and Critical Information Infrastructures Center of
Excellence” (No. CZ.02.1.01/0.0/0.0/16_019/0000822). Mar-
tin LaStovicka is Brno Ph.D. Talent Scholarship Holder —
Funded by the Brno City Municipality.

REFERENCES

[1] S. Abt and H. Baier, “Are We Missing Labels? A Study of the Avail-
ability of Ground-Truth in Network Security Research,” in 2014 Third
International Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security (BADGERS). 1EEE, sep 2014, pp.
40-55.

[2] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network
Anomaly Detection: Methods, Systems and Tools,” IEEE Communica-
tions Surveys Tutorials, vol. 16, no. 1, pp. 303-336, 2014.

526

[4]

[5]

[6]
[7]
[8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

M. Cermak, T. Jirsik, and M. Lastovicka, “Real-time Analysis of
NetFlow Data for Generating Network Traffic Statistics Using Apache
Spark,” in NOMS 2016 - 2016 IEEE/IFIP Network Operations and
Management Symposium, April 2016, pp. 1019-1020.

M. Cermak, T. Jirsik, P. Velan, J. Komarkova, S. Spacek, M. Drasar,
and T. Plesnik, “Towards Provable Network Traffic Measurement and
Analysis via Semi-Labeled Trace Datasets,” in 2018 Network Traffic
Measurement and Analysis Conference (TMA), June 2018.

M. Cermak, D. Tovarnak, M. Lastovicka, and P. Celeda, “A Performance
Benchmark for NetFlow Data Analysis on Distributed Stream Processing
Systems,” in Proceedings of the NOMS 2016 - 2016 IEEE/IFIP Network
Operations and Management Symposium, 2016, pp. 919-924.

J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, Jan. 2008.
M. M. Deza and E. Deza, Encyclopedia of Distances, 3rd ed. Springer
Berlin Heidelberg, 2014.

Elastic.co, “Open Source Search & Analytics Elasticsearch,”
Web page, 2018, accessed January 6, 2018. [Online]. Available:
https://www.elastic.co/

G. Fernandes, J. J. P. C. Rodrigues, L. F. Carvalho, J. F. Al-Muhtadi,
and M. L. Proenga, “A comprehensive survey on network anomaly
detection,” Telecommunication Systems, Jul 2018.

Flowmon Networks, “Flowmon ADS ISP 9.01.00 User Guide,” 2017.
Foofus Advanced Security Services, “Medusa Parallel Network Login
Auditor,” Web page, 2016, accessed August 23, 2018. [Online].
Available: http://foofus.net/goons/jmk/medusa/medusa.html

C. Grajeda, F. Breitinger, and I. Baggili, “Availability of datasets for
digital forensics — And what is missing,” Digital Investigation, vol. 22,
pp. S94-S105, aug 2017.

R. Hofstede, M. Jonker, A. Sperotto, and A. Pras, “Flow-Based Web
Application Brute-Force Attack and Compromise Detection,” Journal
of Network and Systems Management, vol. 25, no. 4, pp. 735-758, Oct
2017.

T. Jirsik, M. Cermak, D. Tovarnak, and P. Celeda, “Toward Stream-Based
IP Flow Analysis,” IEEE Communications Magazine, vol. 55, no. 7, pp.
70-76, 2017.

J. Kreps, N. Narkhede, and J. Rao, “Kafka: A distributed messaging sys-
tem for log processing,” in Proceedings of 6th International Workshop
on Networking Meets Databases (NetDB), Athens, Greece, 2011.

G. Lyon, “Ncrack — High-speed network authentication cracker,”
Web page, 2018, accessed August 23, 2018. [Online]. Available:
https://nmap.org/ncrack/

——, “THC Hydra - SecTools Top Network Security Tools,”
Web page, 2018, accessed August 23, 2018. [Online]. Available:
https://sectools.org/tool/hydra/

M. Swarnkar and N. Hubballi, “OCPAD: One class Naive Bayes
classifier for payload based anomaly detection,” Expert Systems with
Applications, vol. 64, pp. 330-339, 2016.

M. F. Umer, M. Sher, and Y. Bi, “Flow-based intrusion detection:
Techniques and challenges,” Computers & Security, vol. 70, pp. 238—
254, 2017.

P. Velan and R. Krej¢i, “Flow Information Storage Assessment Using
IPFIXcol,” in Dependable Networks and Services, ser. Lecture Notes
in Computer Science, R. Sadre, J. Novotny, P. Celeda, M. Waldburger,
and B. Stiller, Eds., vol. 7279. Heidelberg: Springer Berlin Heidelberg,
2012, pp. 155-158.

J. Vykopal, T. Plesnik, and P. Minarik, “Network-Based Dictionary At-
tack Detection,” in 2009 International Conference on Future Networks,
March 2009, pp. 23-27.

H. Wang, J. Gu, and S. Wang, “An effective intrusion detection frame-
work based on SVM with feature augmentation,” Knowledge-Based
Systems, vol. 136, pp. 130-139, 2017.

D. J. Weller-Fahy, B. J. Borghetti, and A. A. Sodemann, “A Survey
of Distance and Similarity Measures Used Within Network Intrusion
Anomaly Detection,” IEEE Communications Surveys and Tutorials,
vol. 17, no. 1, pp. 70-91, 2015.

U. Wijesinghe, U. Tupakula, and V. Varadharajan, “An Enhanced Model
for Network Flow Based Botnet Detection,” in Proceedings of the 38th
australasian computer science conference (ACSC 2015), vol. 27, 2015,
p. 30.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in Proceedings of the
2Nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10. USENIX Association, 2010.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019): Mini-Conference Experience Session

