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Abstract—Current methods for planning wireless networks
rely on a mixture of on-site measurements and predictive
modeling. Unfortunately, such methods can be expensive and
time-consuming when it comes to planning for venues of large
dimension, or those with a vast number of wireless devices.

In this short paper, we focus on an important aspect of scalable
network planning: estimating the number of source devices (e.g.,
access points, base stations) needed to meet traffic demands.
We propose a coarse-grained approach that models aggregate
demands and interference sources. Minimizing the number of
source devices is shown to be NP-complete. However, our coarse-
grained approach permits an integer linear program that solves
for the optimum while remaining tractable; an approximation
result is also derived. Preliminary experiments using QualNet
and Ekahau support our approach.

I. INTRODUCTION

Current methods for planning wireless networks are not
scalable. Two obstacles to scalability are:
• Measurement Cost. Traditional approaches require on-site

measurements which are both time-consuming and expen-
sive. Even a limited number of measurements imposes a
significant cost when dealing with venues that are vast in
size and/or densely populated by wireless devices.

• Computational Intractability. Predictive planning (i.e., mod-
eling) approaches often optimize using fine-grained fea-
tures such as known demands at precise locations, exact
dimensions of rooms, furniture placement, etc. However,
this optimization is often time-consuming given that the un-
derlying problem is combinatorially hard. For large venues,
such techniques may be intractable.

For massive venues – such as ballgame stadiums and IoT
networks – a natural question arises: Is there a scalable
solution to wireless network planning? As with many other
computational challenges, new approaches are needed as the
problem size greatly increases.

Here, we make progress towards one aspect of the large-
scale network design problem: scalable estimation of the
number of sources (i.e., access points, base stations, beacons,
etc.) needed to satisfy demands per area. Such an estimate is
useful to a system designer who needs a fast and reliable cost
estimate. This is key for efficient network provisioning, which
impacts network management. Later, traditional methods can
be used to place devices according to planning based on fine-
grained features.

We adopt an approach often used to model complex systems
in physics [5] and biology [14] known as coarse-grained
modeling, which is a natural compromise between accuracy
and tractability. The venue representation is simplified, and
consists of only coarse-grained features: flexibly-sized (but
typically large) areas, each with estimates for traffic de-
mands, distances between areas, and maximum and minimum
distances between devices. Using only this knowledge, we
provide a predictive approach that is tractable while capturing
the important interactions between devices at a large scale.

A. Our Contributions

This short paper reports on the following preliminary results:
• A course-grained modeling approach for estimating the

required number of sources in general wireless networks.
• A proof that the problem is NP-complete and an integer

linear program (ILP) for our coarse-grained approach.
• An algorithm that, subject to certain assumptions, guaran-

tees an approximation ratio.
• Preliminary experimental results using the QualNet simula-

tor [24] and Ekahau [11] on real-world data.

B. Related Work

Prior work on network planning is extensive and, given
space constraints, we briefly survey only closely-related work.

Several commercial products exist: Ekahau [11], Aerohive
Networks WiFi Planning Tool [1], TamoSoft Site Survey [26],
and Netspot [21]. Yet, these are aimed at fine-grained predic-
tive planning, and they apply only to WiFi networks.

Work from the research community often uses a combina-
tion of optimization and measurement points [3], [6], [10],
[16], [18], [19], [25], [25]. However, again, these results are
not focusing on the challenge of scalability.

Finally, genetic algorithms, simulated annealing, greedy
heuristics exist [13], [15], [17], [20], [23]. While promising,
these approaches are often proposed without a proof of NP-
hardness, and they make no guarantees on solution quality.

II. THE WIRELESS PLANNING PROBLEM

Modeling Coarse-Grain Features. A venue is partitioned into
disjoint areas, each of which corresponds to a coarse-grained
feature such as a speaking hall, group of offices, etc. where
users are likely to congregate and expect wireless service. For978-3-903176-15-7 © 2019 IFIP
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each area ai, we assume that a rough estimate of aggregate
demand, Di, is known. The set of all areas is denoted by A.

Areas ai and aj are neighbors if (i) any point in ai is
within dsep meters from any point in aj , and (ii) there is no
intermediate area between them. Other neighbor definitions
may be used without significantly changing things; our prob-
lem formulation is flexible, and ultimately any designation of
areas/neighbors is at the discretion of the system designer.

Given A, we define an area graph, GA, where each vertex
vi corresponds to ai, and the weight of the vertex is Di. Edge
(vi, vj) has weight equal to the distance between ai and aj .
Signal Propagation. Communication between sources and
clients may be degraded by signals originating in any other
area (not only neighboring areas). To model the impact of
such interference under our coarse-grained approach, we use
the signal-to-interference-plus-noise ratio (SINR) [2], [28]
for each area: SINR(ai) = P

N+I where P is the incoming
signal power to a client in ai, N is the floor noise, and I is
the interference from other sources. More specifically, for a
source s transmitting at P Watts, and for a path loss exponent
α, the transmission is received by a client r if the following
holds that SINR(r):

P/(δrs)α

N +
∑
s′ 6=s P/(δ

r
s′)

α
≈ 1/(δrs)α

N +
∑
s′ 6=s 1/(δrs′)

α
≥ β

where β > 0 is the SINR threshold, and δrs is the distance
between a sender s and receiver r. In our coarse-grained
modeling approach, we do not assume full knowledge of δrss,
so our distance values are chosen conservatively as discussed
in Section II-A.

In this short paper, we assume transmit power is homoge-
nous, and that the floor noise is small relative to the total
interference I . This is plausible in many settings given that N
is often small (typically, −90 dBm to −100 dBm). We keep
N in our ILP formulation, but this simplifies our model as the
SINR power terms cancel in the numerator and denominator.

In practice, channel quality correlates with the degree to
which β is exceeded. However, we may consider β to be set
conservatively; thus, exceeding β implies high channel quality.
Overlapping Coverage. Clients can be arbitrarily located
within an area ai. Some will be in close proximity to a source
in ai, while others will be at the edges of ai and closer to a
source in a neighboring area. Given this, for each area ai, the
aggregate demand may be met in part by sources in ai and in
part by sources in a neighboring area (but not by sources in
non-neighboring areas).

For any ai, we assume that sources in ai are on different
channels. Note that this is plausible in WiFi networks, for
example, given the use of channels in both the 2.4 GHz and 5
GHz bands. We emphasize that sources in any other areas
(including neighbors) may share the same channel as any
source in ai, thus causing inteference.
Decision Problem. We formally define the following Wireless
Planning (WIPLAN) decision problem. As input, we are given
an area graph GA. The decision question is: Can all demands
be satisfied by some placement of s sources?

A. ILP Formulation
Table I defines the parameters and variables for our mathe-
matical formulation of WIPLAN.

Table I. Parameters and variables in our mathematical program.
Parameter Definition
dij max. distance from a source in aj to a client in ai.
`ij min. distance from a source in area aj to a client in ai.
Di aggregate demand of an h-fraction of clients in area i (Mbps).
Ci channel capacity of a source in area ai (Mbps).
N floor noise level (Watts).
β SINR threshold (unit-less).
m maximum number of sources in any area.

Variable Definition

s
j
i

excess fraction of service in area ai that can be offered to a
neighboring area aj .

xi number of sources in area ai, where 0 ≤ xi ≤ m.

y
j
i

has value 1 if source in area ai can provide service to area
aj ; that is, β is exceeded. Otherwise, the value is 0.

Parameter dij (`ij) denotes the max. (min.) distance from a
source in aj to a client in ai. Note dij appears in the numerator
of the SINR constraints, while `ij appears in the denominator
(see Figure 1). This makes it more challenging to satisfy the
SINR constraints, but is more conservative.
Initial Formulation. For clarity, we begin by describing a
simple but non-linear mathematical program that captures the
essentials of wireless coverage; this is presented in Figure 1.

For any area ai, let Bi denote the set of bordering areas
to ai ∈ A. Constraint 2 enforces that the demand in each area
ai ∈ A is met by a combination of the sources in ai and those
in neighboring areas aj ∈ Bi.

Constraint 3 ensures that a contribution
∑
aj∈Bi

sjiy
j
iDj in

Constraint 2 to neighbor aj must come from sources in ai.
Constraint 4 models whether the sources in ai exceed the

SINR threshold β. Observe that the equation can always be
satisfied by setting yii = 0; this interacts with the equations
specified by Constraint 2 and implies that no demand is
satisfied by sources in ai, since yii xa = 0.

Constraint 5 is analogous to Constraint 4, but it addresses
demand that can be met by each neighboring area.

Obtaining a Linear Program. The program in Figure 1
is non-linear. To linearize this program (see Figure 2), we
create a proxy variable zijk for the product yijxk; equality
is enforced by Constraints 14 – 17. To see this, consider
the case where yij = 1, we must have zijk = xk; this is
enforced by Constraint 14 and 16 since they force zijk ≤ xk
and zijk ≥ xk − (1− yij)m = xk, respectively. Conversely, if
yij = 0, then zijk = 0; this is enforced by Constraint 15 and 17
since they imply zijk ≤ yijm = 0 and zijk ≥ 0, respectively.

Similarly, we create a proxy variable f ji for sji y
j
i . Equality

through Constraints 18-21 is proved similarly.
Upload and Download Demands. Our final ILP separates
constraints for whether (i) a source in ai can provide download
service to clients in aj , and (ii) a source in ai can provide up-
load service to clients in aj . This is accomplished via analogs
to Constraints 10 – 13 where, for the SINR constraints, we
use assume the necessary max. and min. distance information.
Given space constraints, we omit these in our presentation.

III. NP-COMPLETENESS

We give a reduction from DOMINATING SET (DOMSET)
where the input is a graph G and the descision question is
whether there exists a set DS of b vertices such that all vertices
either belong to DS or have a neighbor in DS.
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min
∑
ai∈A

xi (1)

s.t.
Cixiy

i
i −
∑
aj∈Bi

sjiy
j
iDj+

∑
aj∈Bi

sijy
i
jDi ≥ Di ∀ai∈A (2)

Cixiy
i
i ≥
∑
aj∈Bi

sjiy
j
iDj ∀ai∈A (3)

β yii ≤
(1/dii)

α

N +
∑

ak∈A\{ai}
xk/(`ik)

α
∀ai ∈ A (4)

β yij ≤
(1/dij)

α

N +
∑

ak∈A\{aj}
xk/(`ik)

α
∀ai ∈ A and aj ∈ Bi (5)

0 ≤ sij ≤ 1 (6)
yji ∈ {0, 1} ∀ai ∈ A and aj ∈ Bi (7)
xi ∈ {0, . . . ,m} ∀ai ∈ A (8)

Figure 1. A non-linear mathematical program for WIPLAN.

We consider a subset of WIPLAN instances with the follow-
ing settings: download demand Di = 1 (set upload demands
to 0), `ik = |A|mβ, N = 0, α ≥ 2, dij ≤ 1 for all i, j, k.
Now, the SINR constraints are met: each zijk cannot exceed
m, and there are less than |A| terms in the SINR-equation
sum; thus, the left-side sum is at most |A|mβ/(|A|mβ)α ≤
1/(|A|mβ) while the right side is 1/(dij)

α ≥ 1.
We also set Ci for each ai ∈ A equal to deg(vi) + 1 where

deg(vi) is the degree of vertex vi in the area graph GA. This
choice is motivated later in our proof of Theorem 1.

WIPLAN instances with these settings are referred to as
relaxed, and we will show that the set of such instances is
NP-complete (implying that WIPLAN is NP-complete).

Theorem 1. WIPLAN is NP-complete.
Proof. Note: WIPLAN ∈ NP because, given a solution for the
n areas, it is verified in polytime through O(n2) constraints.

A DOMSET instance corresponds to a relaxed WIPLAN
instance as follows. Each vertex vi ∈ G for DOMSET corre-
sponds to ai ∈ A. Also, every neighbor vj of vi corresponds
to area aj ∈ Bi. From this, the resulting area graph GA
for WIPLAN is created with a topology that matches G. The
parameter settings are those of a relaxed instance.

Consider a dominating set DS of size b. For each vi ∈ DS,
set xi = 1, yii = 1 (so ziii = 1), and f ji = 1 for aj ∈ Bi.
For every vertex vi /∈ DS , set ziii = 0 and f ji = 0. Since
Ci = deg(vi)+1 for each area ai ∈ A, the demand Constraints
10 and 11 are satisfied. To see this, note that if vi ∈ DS, this
capacity is sufficient for contributions of at most Dj = 1 to
all deg(vi) neighbors while still leaving 1 to satisfy Di. Else,
if vi /∈ DS , then ai can meet its demand with help from its
neighbors (each of which donates 1). Therefore, we have a
solution to our relaxed WIPLAN instance that uses b sources.

Now, consider a solution to a relaxed WIPLAN instance
with b sources. If xi ≥ 1 (note this implies ziii ≥ 1), put vi in
DS. Thus, |DS| ≤ b. To verify that DS dominates, assume
otherwise; that is, there exists some vi in G such that vi /∈ DS
and none of its neighbors are either. Thus, the corresponding
Constraint (10) cannot be satisfied since there is no source in
ai, nor in any of its neighbors; that is, Di will not be met, and
this contradicts the assumption of a WIPLAN solution.

min
∑
ai∈A

xi (9)

s.t.
Ciz

i
ii −

∑
aj∈Bi

f jiDj+
∑
aj∈Bi

f ijDi ≥ Di ∀ai∈A (10)

Ciz
i
ii ≥

∑
aj∈Bi

f jiDj ∀ai∈A (11)

Nβ yii + β
∑

ak∈A\{ai}

ziik/(`
i
k)
α ≤

(
1

dii

)α
∀ai ∈ A (12)

Nβ yij + β
∑

ak∈A\{aj}

zijk/(`
i
k)
α ≤

(
1

dij

)α
∀aj ∈ Bi (13)

zijk ≤ xk ∀ai, ak ∈ A and aj ∈ Bi (14)
zijk ≤ yijm ∀ai, ak ∈ A and aj ∈ Bi (15)
zijk ≥ xk − (1− yij)m ∀ai, ak∈A and aj∈Bi (16)
zijk ≥ 0 ∀ai, ak ∈ A and aj ∈ Bi (17)

f ji ≤ s
j
i ∀ai ∈ A and aj ∈ Bi (18)

f ji ≤ y
j
i ∀ai ∈ A and aj ∈ Bi (19)

f ji ≥ s
j
i − (1− yji ) ∀ai∈A and aj∈Bi (20)

f ji ≥ 0 ∀ai ∈ A and aj ∈ Bi (21)

0 ≤ sji ≤ 1 (22)
yij ∈ {0, 1} ∀ai, aj ∈ A (23)
xi ∈ {0, . . . ,m} ∀ai ∈ A (24)

Figure 2. ILP capturing basic features of WIPLAN.

IV. APPROXIMATION ALGORITHM

While solving exactly using a tractable ILP is ideal, we
report another preliminary result that may be useful for
extremely large instances: an algorithm, GREEDYPLAN, that
takes in GA with max. degree ∆, and yields an approximation
guarantee for WIPLAN if the assumptions below hold.
• A1. For any area ai, sources in ai and its neighboring areas

are on different channels. Tentatively, this is plausible; for
example, by using both the 2.4 GHz and 5 GHz bands for
WiFi, and noting ∆ will likely be small in practice.

• A2. Given that N is typically small relative to I , we
formalize this as N ≤ ε I for a small constant ε > 0.

• A3. The ratio r = min{dsep/d
i
i, dsep/d

i
j} ≥ ((1 + ε)(β(1 +

∆)m))1/α, for all areas aj that are not a neighbor of ai.1
Loosely, a client in ai is closer by an r-factor to sources in
its own area, or in a neighboring area than it is to a source
in any other (non-neighboring) area.

In many settings, ∆ will be small. Consider α = 3.5,
ε = 0.1, m = 4, ∆ = 3, and a “typical” β = 10 [9]
(coincidentally, β = 10 translates to 10 dB = 10 log10 (β));
this yields a small r ≈ 4.4.

Due to space limitations, we sketch the algorithm execution.
A vertex whose demand (i) is not met is colored white;
(ii) is met, but has at least one (white) neighbor whose
demand is not, is colored gray; and (iii) is met, along with all
neighbors, is colored black. In each iteration of its execution,
GREEDYPLAN finds a gray or white vertex vi with the largest
capacity (arbitrarily break any ties) and satisfies the demand
for vi and the demand of all of its neighbors by placing sources

1While it may appear that a large α helps us, note that N will swamp I
for large α, and so the SINR will not exceed β. Hence, the assumption fails
to hold if our earlier assumption N ≤ εI does not hold.
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(3) (4) (5)

Figures 3-5. Average carried load, PDR, signal strength, and interference for clients, respectively.

in the corresponding area ai. Then, vi is colored black, and
the neighbors’ colors are updated.

Let OPT denote the optimum solution for WIPLAN. We
omit the proof of our result below in this short paper.
Theorem 2. Given assumptions A1 – A3, the number of
sources assigned by GREEDYPLAN is O(∆2) ·OPT .

V. PRELIMINARY EXPERIMENTAL VALIDATION

We experiment with real-world data on a section of a
football stadium from which distances and aggregate demands
are inferred. There are 8 areas totaling roughly 3500 meters
squared (37000 square feet). Each area has an aggregate
demand between 1200 and 2300 Mbps corresponding to an
average of 0.5 Mbps per client; these are unchanged in each
experiment. Capacities differ per experiment, but are always
between 300 and 400 Mbps in rough correspondence to the
theoretical maximum of IEEE 802.11n using both the 2.4 GHz
and 5 GHz bands. We use N = −96 dBm, and (a pessimistic)
β = 20 (≈ 13 dB).

From these parameter settings, we construct our ILP and
solve it using Gurobi [12]. Experiments use α = 3.5 and α =
4 to model the significant attenuation which arises in indoor
environments such as office buildings and stadiums [22].

The network simulator QualNet [24] is used to evaluate our
solutions. Sources are placed uniformly along the perimeter of
each area, and clients send and receive at a constant bit rate
via sources in a scenario lasting 2 (simulated) hours.

The automated AP placement and configuration (i.e., predic-
tive planning) functionality of Ekahau [11] provides another
point of comparison. Using an AutoCAD [4] layout, we set
cinderblock walls, Cisco AP1040s [8] (using 2.4 GHz and
5 GHz with IEEE 802.11n) as sources (aligning with our
capacities), and generic laptops as clients. Note that the AP
capacities are fixed (unlike our ILP trials); therefore, Ekahau
yields a single recommendation for our data set.

A. Our Initial Results
Due to space constraints, we summarize our preliminary

findings. The ILPs were solved quickly; always less than 0.25
seconds. Solutions were stable, indicating 28 sources in total
for almost all settings; and always in the range 26 to 31. By
comparison, Ekahau recommended 25 sources for our data set.

Figures 3-5 illustrate a solution evaluation with QualNet for
one run. The per-client average carried load (effective system
throughput [7], [27]), packet drop rate (PDR), signal power,
and interference were reported by QualNet.

Figure 6. Carried load and PDR as sources are removed in an area.

Figure 3 illustrates an average carried load per client ranging
from 0.4 to 1.5 Mbps for both α = 3.5 and 4. This seems
reasonable given that the average throughput per client to meet
the specified download demand per area is 0.5 Mbps.

Figure 4 shows the average PDR for clients in each area.
Notably, these PDRs are small, all less than 0.003. This is
reassuring as it implies that the recommended number of
sources from solving our WIPLAN instance allows for clients
and sources to successfully communicate, and that the impact
of interference (captured by SINR constraints) is tolerable.
This is supported by Figure 5 which illustrates the average
signal strength versus average interference values.

These results suggest that the number of sources is suffi-
cient, but could we use fewer? To examine this, we experiment
using less sources; Figure 6 depicts this for an area which was
originally assigned 7 APs. We observe that PDR increases by
a factor of ≈ 7, implying a performance degradation with less
than the recommended number of sources. As a sanity check,
we see that the carried load increases since fewer sources exist
to handle the (unchanged) demand from clients.

VI. FUTURE WORK

While further research is needed, our coarse-grained model-
ing appears reasonable given the QualNet and Ekahau results.
Our preliminary results suggest that the WIPLAN formulation
does not lead to a grossly under or over-provisioned network.

We plan refine our coarse-grained approach on larger-scale
scenarios, using more real-world data. Our approach is meant
to be general; in addition to WiFi deployments, we plan
to address IoT networks. Finally, we plan to evaluate the
performance of our approximation algorithm.
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