LogDTL: Network Log Template Generation with
Deep Transfer Learning

Thieu Nguyen
Hanoi University of Science and Technology
nguyenthieu2102gmail.com

Abstract—Analyzing network logs is increasingly playing an
essential role in system management and maintenance. As a
result, more and more new techniques and models have been
proposed for automatic log analysis. Log template generation is
the essential first step to apply such sophisticated techniques. This
article presents an automatic log template generation framework
(LogDTL) in which transfer learning technique is used in the
deep neural network (DTNN model) to overcome the trade-off
between the accuracy of the generated template and human
resources for manual labeling. Our evaluation results show that
DTNN significantly outperforms a well-known supervised method
(CRF). DTNN achieves 91% of word accuracy with only one
training example though the CRF achieves 78% of word accuracy.

Index Terms—System Log Template Generation, Transfer
Learning, Deep Neural Network, Conditional Random Field.

I. INTRODUCTION

Network log (i.e., Syslog) contains records of events show-
ing the detailed system runtime information such as system
errors, warnings, system changes, and abnormal shutdowns.
By reviewing logs, network operators can identify the cause
of a problem that happened in their network. However, modern
networks have become so massive and complex to investigate
such logs manually. For instance, a research and education
network in Japan (SINETS5 [1]) reports around one hundred
of thousands of log messages in a day. Thus, there is a need
for an effective method for analyzing such large-scale log data.

Log message, in general, is a line of text printed by
logging statements (e.g., printf (), logging.info())
written by developers. Mining the information of logs enables
us to conduct a wide variety of system management and
diagnostic tasks, such as anomaly detection [2]-[4] and root
cause analysis [5].

Most log analysis techniques applying data mining models
to get insights into system behaviors are built on log templates.
A log template is an organized format of an unstructured
statement in the log message. It includes a variable (e.g.,
IP address, interface name) and a fixed component called
description. A group of log messages are clustered into a
log template representing the common behavior of a system.
Hence, generating log templates is an effective way to classify
log messages with their behaviors. The log template reduces
the burden of the operator’s tasks by reading structured logs
and controlling system behaviors. Furthermore, log templates

978-3-903176-32-4 © 2021 IFIP

Kensuke Fukuda
NII/Sokendai
kensuke @nii.ac.jp

Satoru Kobayashi
NII
sat@nii.ac.jp

are essential to build time series for such log data to apply the
sophisticated analysis methods.

A simple approach for generating log templates is to apply
regular expression-based matching rules to logs. However,
making appropriate rules is a time-consuming task [6]. Instead,
there are several approaches to (semi) automatically extract
log templates from raw logs. In particular, machine learning
(ML) and artificial intelligence model is applied for this task
[7], [8]. There are two ML approaches for log template
generation: supervised learning and unsupervised learning.
The supervised learning methods usually show better accuracy
than the unsupervised learning methods in a specific system,
but they require large labeled data for the training process.
Labeled data could be obtained from the source code of the
system or manually generated by human power. However,
source code is often inaccessible in practice. Besides, for large
systems that emit massive data, it is very laborious to create
labeled data manually.

This paper proposes an alternative method for generating
log templates from log messages to overcome the trade-off
between log template accuracy and human resources (i.e.,
manual labeling). The key idea is to leverage transfer learning
that applies log templates available from open-source software
to unknown vendor’s logs to obtain its log template. Thus, our
approach enables us to avoid the burden of the manual labeling
process with high accuracy. We design and implement a full
framework of log template generation (called LogDTL) using
a proposed deep transfer neural network (DTNN) model. We
evaluate our method with (known) log templates from open-
source router software and raw log data generated from propri-
etary routers. Our evaluation demonstrates that our approach
outperforms a state-of-the-art supervised model CRF (Condi-
tional Random Field) in four metrics. More specifically, our
DTNN model achieves more than 90% accuracy in word-level,
while the CRF-based algorithm shows only 78% accuracy. The
contribution of our work is as follows:

o We propose the full framework of log template generation
(LogDTL) in which the concept of transfer learning is
used with the deep neural network (DTNN model) (§ III).

e Our intensive evaluation with real log data shows that
DTNN outperforms the supervised learning model (CRF)
in accuracy and efficiency (§ V).

II. RELATED WORKS

Log template generation (log parsing) has been intensively
studied in past literature and classified into two approaches.

Traditional approach: Log templates are generated with
custom rule-based parsers [9], [10] or source code/binary
analysis [11], [12]. This approach generally generates a wide
variety of accurate log templates. However, building the
parsers requires huge human resources, and also source code
is not always available (i.e., proprietary software).

Data mining approach: The other approach is to rely on re-
cent advances in data mining (or machine learning) techniques.
This approach generates log templates from raw logs produced
by systems. Thus, more raw log data is available, more chance
to generate accurate templates. Besides, it is tolerant of log
format changes. Some logs may change their format with
system updates, and traditional approaches are largely affected
by the changes. Generally speaking, this data mining approach
can be categorized into unsupervised or supervised techniques.

Unsupervised methods cover several types such as frequent
pattern mining (FQM), clustering, and neural networks. FQM
based methods (e.g., SLCT [13] and LogMine [14]) extract
frequently appeared patterns of tokens from a set of log
data. This simple technique is useful, but it may misclassify
multiply appeared variables (e.g., IP addresses) as descriptions.
Clustering based approach (e.g., LKE [15], SHISO [16])
merges raw logs to log templates by clustering them with
distance measure. Thus, similar raw log messages (with many
same descriptions) are merged as a common log template.
This approach has been well studied in the literature. A
major drawback of this approach is that we need enough
raw logs to cluster them, i.e., it is impossible to determine
variables/descriptions from just one raw log message in theory.
This disadvantage is especially crucial for network log analysis
because the distribution of the log’s appearance is highly
skewed (or long-tailed). The neural network used in the NLP
(Natural Language Processing) field has also recently been
studied in log template generation [17].

Supervised methods achieve better accuracy than unsuper-
vised ones thanks to labeled datasets. In particular, NLP-
based technique has been applied to log template generation.
Ref. [18] demonstrates that a CRF-based method outperforms
unsupervised methods. However, the biggest concern is how
to prepare an appropriate number of labeled data.

Our approach: As seen in the literature, we point out
a clear trade-off in log template generation: accuracy (i.e,
quality of generated template) and human resources (i.e.,
labeling). The novelty of our work is to rely on transfer
learning to overcome this trade-off. Transfer learning has been
a promising approach in many fields, e.g., image processing
and NLP [19]. The key idea of transfer learning is to apply
knowledge learned previously to solve new problems faster
or with a better solution. In our context, this means that
known log templates available from open-source software
help in generating new log templates for proprietary network
equipment. The transfer learning is also recently applied to

anomaly detection in different vendor’s log outputs [20],
though our approach aims at generating log templates.

III. DESIGN AND IMPLEMENTATION

In this section, we describe our proposed deep transfer
neural network (DTNN) model for log template generation
problem. We first introduce an abstract framework and then
explain each component.

A. Overview

Figure 1 shows an overview of LogDTL consisting of
four main components: Dataset, Preprocessing, Deep Neural
Network (DNN), and Label Mapping component.

The key idea of DTNN model is to transfer knowledge
learned from a dataset to another dataset. Thus, we have two
original datasets, including the source dataset (Source task -
ST) and target dataset (Target task - TT). We first parse a raw
log message into the header information (i.e., timestamp and
hostname) and sequence of words corresponding to the free-
format log statement. Next, we prepare training and testing for
both source task and target task datasets. After that, we put
the dataset into the DNN component in which we learn both
tasks continuously, for transferring knowledge from source
task to target task happened here when both models share
the same parameters of DNN. We will discuss this in § III-C.
The output of the DNN component is the labeled sentences,
which containing Description or Variable. The Label Mapping
component transforms labeled sentences into Log Templates.

B. Preprocessing

In this component, at first, we extract the “Header” part
and "Message” part from the raw log as in Ref. [21]. The
header part has a structured format and contains information
about log recordings such as timestamp, source, and hostname
depending on the configuration of the logging system. The
message part corresponds to an unstructured statement and
presents the system behaviors in a given device. The mes-
sage part is free-format but partially forms a kind of formal
languages, because the statement part is output by filling the
replacers (e.g., format specifiers) with variables. Therefore, it
can be split into a sequence of words like other languages in
many cases. In our case, we will use this message part to form
our log template generation model.

After splitting each log message into a sequence of words
(tokens) in source task and target task, we split each task into
a preliminary annotated dataset (e.g., training set, X or Xy)
and a remaining raw dataset (e.g., testing set, Y; and Y;;) as in
Figure 1. (X4, Ys¢) are used for learning DNN'’s source task.
(X4, Yy) are used for learning DNN’s target task. Transfer
learning leverages the sharing parameters process from DNN’s
source task to DNN’s target task. Note that, this transfer model
can theoretically predict the testing set of target task without
the training set of target task by using shared knowledge from
source task (§ III-C4 in detail). However, the performance of
the model may be less effective since it still needs a piece of
specific information from the target domain (§ V in detail).

Open-source DTNN
Device Data
Label Mapping
Training X
~a| Source Task | | Header > DNN
0 [e
Parsing T T '
and Shared Parameters :
. Message v v !
ggﬂ"e"%’a'té Target Task | | > Splitting Training Xy
L7 (17) > DNN !
Tesing Yy

Example: Raw Data

Aug 11, 10:25:32 svn: newgrp user thieu login yyyy on pts/0|

Header ; Timestamp, Host Message

Generated
Template

*x

newgrp user ** login ** on

Sequence of words (Token) Label Output

Des Des Var Des Var Des Var

Fig. 1. LogDTL: Log template generation using Deep Transfer Learning

| Deep Neural Network (DNN) |

Neural Network

Embeddil
.--- Char Network ...,

Char BN
Embedding p | nXGRULayer | & | \Word Network -

—> CRF Layer

Word
Embedding

Fig. 2. Deep Neural Network (DNN) for sequence tagging

C. Deep Transfer Neural Network

Since the log template estimation classifies each word
of each log message into Description or Variable, we can
consider this problem as the sequence tagging task (two tags:
Description and Variable) [18]. Therefore, our transfer learning
component can be designed based on a well-known hierar-
chical recurrent neural network model (including Embedding,
Neural Network, and CRF) as shown in Figure 2.

The advantage of DTNN is the use of both character-
sequence and word-sequence as input. The character-level net-
work receives a series of letters (encoded by char-embedding
component) and outputs a new representation of morphological
information at the character level. The word-level network
takes a series of words (encoded by word-embedding com-
ponent) and then combines them with feature representation
from the character-level network to produce a new feature
representation. This feature is then fed into a CRF layer that
outputs the label for sequence. The word-network and char-
network can be deployed as recurrent neural networks (RNN5s)
or convolutional neural networks (CNNs) ([22], [23] and
[24]).

1) Embedding technique: We need to represent the log
sequences as a vectorized (numerical) representation for the
input. There are two ways frequently used for vectorizing

a text: one-hot encoding and distributed encoding. Due to
the disadvantages of one-hot encoding representation such as
dimension explosion [25], we use distributed representation
to vectorize the log sequences in this paper. Thus, each log
message is presented by a low-dimensional dense vector, such
as Word2Vec [26]. This is helpful to avoid the dimension
explosion, especially for long sequences.

2) Neural Network: For the advantages of RNNSs, such
as intuitive and simple implementation, we select the GRU
(Gated Recurrent Unit) [27] as a core network for both char-
network and word-network. Our char-network is the stack of
n GRU layers, and the word-network is the stack of m GRU
layers as in Figure 2. The input of the char-network is the
embedding at character-level while the input of the word-
network is the concatenation of the last char-network’s hidden
state and the embedding at word-level. In this paper, both GRU
networks are bi-directional and have two layers (m = n = 2).

3) CRF: On the basis of the max-margin principle [28], the
CRF layer defines an objective function to maximize, as the
technical details is shown in [29]. With the input sequence of
words, the output of the CRF layer will be the sequence of
label (including Description and Variable in our case).

4) Transfer Learning: There are several architectures of
transfer learning corresponding to DNN [29] such as cross-
domain transfer, cross-application transfer, or cross-lingual
transfer. Our task, generating log templates from raw log
messages, can be considered as a sequence labeling problem
in which each word in a log message can be classified into
Description or Variable. Thus, we design the DTNN as cross-
domain transfer and assume that we have a few labels in the
target domain. We share all the model weights and feature
representation in the DNN (the red rectangle in Figure 1), in-
cluding the word and character embedding, the word-network,
the char-network, and the CRF layer. We perform a label
mapping step on top of the CRF layer, as shown in Figure 1.

The difference between DNN and DTNN is as follows:

o DNN treats source task and target task separately. The
training algorithm for DNN is the same as other neural
networks: using gradient descent and back-propagation
algorithm or its improved version such as AdaGrad [30].

o DTNN trains both the source task and target task jointly
at the same time.

Next, we explain how to train DTNN. Here, we intend to
transfer the knowledge learned from a source task st to a
target task t¢, with the training set X; and X;;. Suppose Wy,
and Wy, are the set of model parameters for the source and
target tasks respectively. The model parameters are divided
into two sets, task-specific parameters Wiqsk spec and shared
parameters Wpared, 1.€.,

W = Wst,spec U Wshareda Wy = th,spec U Wsha'r‘ed7

where the shared parameter W qreq is jointly optimized by
the two tasks, while task-specific parameters W ope. and
Wit spec are trained for each task separately.

The training procedure consists of four steps: (1) At each
iteration, the sampled task is randomly selected between st
and tt. (2) A batch of training instances is generated and then
performed a gradient update according to the loss function
of the given task (The AdaGrad algorithm above is used for
computing the learning rates dynamically in each generation).
(3) Update both task-specific parameters and shared parame-
ters. (4) Repeat the step (1) to (3) until stopping. Since our
focus is on the target task and there is a difference between
the source task’s convergence rate and target task’s one, the
early stopping is used on the target task.

When the training set of the target task does not exist, the
source task can be considered as a pre-trained model. Also it
will be used to classify the label for the testing set of target
tasks only. The training procedure in this case is composed
of three steps: (1) At each iteration, update gradient using the
loss function in the source task. (2) Classify the testing set
of the target tasks. (3) Repeat the step (1) and (2) until the
training procedure of source task finishes. As can be seen, the
shared parameters are updated based on the source task only.
So the performance for the testing set of the target tasks may
be less efficient, because it learns nothing from target tasks.

D. Label Mapping

The output of the DNN component is labeled sentences,
consisting of a sentence of mixed Description and Variable.
Finally, we generate log templates by matching the labeled
sentences to the sequence of words in Preprocessing module.

IV. EXPERIMENT SETTINGS
A. Dataset

We use two raw log datasets (AV and S4 datasets) collected
at backbone routers in two research and education networks
in Japan. The AV dataset (203490 raw logs) is generated by a
Vyatta open source router in APAN-JP, and the S4 dataset
(149406 raw logs) is generated by proprietary routers in
SINET4. Two different types of logs are included in the dataset
corresponding to two vendors of equipment. We focus on

routing and interface-related log templates that are commonly
used in both networks.

For the AV dataset, we have both raw logs and its labeled
templates from the source code of open source Vyatta [12]. We
group all labeled templates into 45 independent and different
clusters. Meanwhile, for the S4 dataset, we have to manually
generate labeled templates for all raw logs and use them
as ground truth. We also cluster its labeled templates into
75 clusters. Note that these log datasets are parsed into a
sequence of statement words before log template generation
with amulog [21].

TABLE I
DATASET
Source Task (AV) Target Task (S4)
Train (SX) | Test (SY) | Train (TX) | Test (TY)
Logs 100000 100000 74496 74910
Templates 100000 100000 74496 74910
Clusters 38 45 41 75

Since our goal is to generate log templates for proprietary
network equipment based on transfer learning, the AV dataset
will be used in the source task, and the S4 dataset will be
used in the target task. We split both datasets into training
and testing sets (Table I). We use random selection for each
training and testing set with the rate of 50% in both datasets.
After that, we re-calculate the clusters for each set in both
tasks. The number of clusters for each set is shown in Table I.

B. Performance Metrics

We evaluate the performance of the test models in two as-
pects: accuracies and processing time. We compare our model
DTNN with two state-of-the-art models: CRF and DNN. For
each test case, we conduct ten trials with randomly and
independently selected training data, and we use their average
(mean) and standard deviation (std), considering dependencies
on the selection of the training data.

The performance metrics we used is as follows:

o Word accuracy [18]: Assigned label is validated in word
level. This checks whether the label of a description word
(or variable word) is Description (Variable) or not.

o Line accuracy [18]: Assigned labels are validated in a log
message. It is failed if at least one label in a log message
does not match.

o Template word accuracy: is the average line accuracy
weighted by the number of the appearance of log mes-
sages in a log template.

e F accuracy is one of the clustering metrics and is com-
monly called pairwise F-measure [31]: for each pair of
log messages (ground truth and prediction), the score
checks whether the relation of the message pair is correct
in terms that “the pair is in the same cluster” or “the pair
is not in the same cluster”.

PERFORMANCE EVALUATION

TABLE 11

Train. Methods Accuracy Metrics Processing time (sec)
Data Word Acc. Template Word Acc. F Acc. Line Acc. Training T. Testing T.
0 DTNN 0.898 £ 8.73E-7 0.838 + 5.45E-6 0.797 &= 1.07E-5 | 0.341 4+ 7.04E-6 | 0.341 £ 7.04E-6 | 0.341 & 7.04E-6
CRF 0.779 £+ 0.025 0.772 £+ 0.063 0.828 £+ 0.115 0.228 £+ 0.081 2E-7 £ 0.0008 4.31 + 0.07
1 DNN 0.677 &+ 0.064 0.603 £+ 0.08 0.888 + 0.11 0.163 + 0.13 27.80 £+ 0.2099 82.28 £+ 0.232
DTNN 0.912 + 0.02 0.871 + 0.022 0.949 + 0.088 0.442 + 0.103 1877.56 + 3.996 171.34 + 9.362
CRF 0.932 + 0.025 0.818 + 0.067 0.991 + 0.005 0.786 + 0.027 0.01 £ 0.0004 4.3 £ 0.093
10 DNN 0.958 £+ 0.031 0.804 £+ 0.03 0.956 £ 0.045 0.801 £ 0.101 31.47 £+ 0.1487 82.69 £ 0.452
DTNN 0.967 + 0.028 0.869 + 0.033 0.950 + 0.057 0.858 + 0.111 2169.65 + 3.780 185.88 + 1.455
CRF 0.990 + 0.004 0.901 + 0.04 0.998 + 0.001 0.940 + 0.021 0.02 £ 0.0029 439 £ 0.114
100 DNN 0.994 + 0.003 0.895 £+ 0.014 0.999 + 0.0002 0.976 + 0.011 74.74 £+ 0.0955 82.80 £ 0.462
DTNN 0.996 + 0.001 0.926 + 0.007 0.993 £+ 0.004 0.972 £+ 0.011 2305.77 &+ 11.915 186.39 + 0.891
CRF 0.999 + 0.0003 0.933 £+ 0.002 1.000 £+ 5.4E-05 0.993 + 0.001 0.08 £ 0.028 4.26 £+ 0.084
1000 DNN 0.998 + 0.0002 0.921 + 0.009 0.999 + 0.0002 0.989 + 0.002 74.70 + 0.091 82.74 £ 0.29
DTNN 0.999 + 0.0003 0.937 + 0.003 1.000 £ 0.0003 0.993 + 0.0016 2704.20 + 8.487 186.17 4+ 0.591
CRF 0.999 £ 4.36E-5 0.943 £+ 0.002 1.000 £ 5.1E-9 0.996 £ 0.0003 4.32 4+ 1.2473 4.42 £+ 0.088
10000 DNN 0.998 £+ 0.0003 0.927 £+ 0.007 1.000 £ 0.0003 0.989 £+ 0.0017 132.66 4+ 0.058 83.11 £ 0.258
DTNN 1.000 + 1.52E-5 0.961 + 0.002 1.000 + 1.32E-5 0.998 + 9.3E-5 4032.86 + 7.79 185.42 + 0.884

V. RESULTS

A. Prediction Accuracy

Table II shows the (mean =+ std) results of tested models
with different performance metrics. Training data represents
the number of training instances of target task used for each
model in each test case. Since CRF and DNN require a training
dataset, in the case of O training dataset, only our transfer
learning model DTNN has the results.

1) DNN vs CRF model: First, we compare the results of
DNN and CRF models in order to evaluate the effects of
CRF extensions such as neural network, word embedding,
and character embedding in DNN. From Table II, we see
that DNN only outperformed CRF by F accuracy metric for
small training datasets (N < 100). Meanwhile, with enough
training dataset (N = 1000), CRF gets better results than the
DNN model in most performance metrics. Thus, thanks to
the extensive component in DNN (word embedding, character
embedding, and neural networks), DNN is more accurate than
CRF for the small training dataset. On the other hand, many
input features for word and character embeddings might make
noise to the model for enough training data.

2) DINN vs CRF model: Next, we compare the results of
the DTNN model and CRF model to evaluate the impact of
transfer knowledge from the source task to the target task. In
our design, the source task is from open-source software, and
the target task is from proprietary software. From Table II, for
the small training dataset, DTNN always gives better results
than CRF. In particular, with just one training example, DTNN
outperforms CRF on all performance metrics. However, with a
large training dataset, the results between CRF and DTNN are
in-significantly different. For example, for N = 1000, both CRF
and DTNN got 99.9% of word accuracy, 100% of F accuracy,
and 99.3% of Line Accuracy. Besides, when comparing the
Template Word Accuracy, we see that DTNN always achieves
better results than CRF, regardless of the larger or small
amount of training data, demonstrating that knowledge from

source task has helped bring efficiency to the target task in
our model.

One might think that DTNN achieves the best performance
due to a possibility that source and target templates could be
overlapped. We tested CRF with S4 raw logs and Vyatta’s
templates, but the accuracy of this model was quite low.
Thus, The overlap of two sets of the templates is small, and
knowledge transfer is the essential part of the performance
gain.

B. Processing time

Next, we discuss the processing time overhead of the
proposed method. All the experiments are conducted with a
commodity workstation (CPU: Xeon W-2102 2.90GHz, Mem-
ory: 256GB, GPU: GTX1080). As shown in Table II, DTNN
requires 2000-4000s for training and 180s for testing; they
are 10-100 times larger than those in CRF and DNN. Thus,
this result demonstrates another trade-off, i.e., accuracy/human
resources vs. processing time.

C. Case study

Finally, as a case study, we compare ground truth templates
(manually labelled) with generated log templates as listed
in Table II. Our aim here is to confirm whether a small
number of the training data (N=1) is enough for appropriate
template generation. Templates 1 is related to multicast, and
Template 2 is for MTU change. For both templates, DTNN
generates the correct templates. On the other hand, CRF
misclassifies interface names and addresses as Description due
to less enough training data, and DNN remains one digit as
Description likely due to lack of enough knowledge transfer.
Thus, these results clearly demonstrate the validity of our
transfer learning approach.

VI. CONCLUSION

We propose a template generation method based on deep
transfer neural network in order to overcome the accuracy
issue of unsupervised learning models and the drawback of

TABLE III
CASE STUDY: “**” REPRESENTS VARIABLE, AND WORDS WITH BRACKET SHOW MISCLASSIFICATION.

method templatel

ground truth rpd ** EVENT MTU ** index ** Up Broadcast P2P Multicast addr ** **

CRF rpd ** EVENT MTU (ifname) index ** Up Broadcast P2P Multicast addr ** (v6 addr)
DNN #% #% EVENT MTU ** ** ** Up Broadcast ** ** ** (num) **

DTNN rpd ** EVENT MTU ** index ** Up Broadcast P2P Multicast addr ** **

lacking training data in supervised learning models in the
template generation problem. Our approach opens up new
perspectives for the log template generation.

We validated the effectiveness of our approach with datasets
from backbone routers at research and education networks in
Japan. Our evaluation results show that DTNN outperforms
two state-of-the-art models (DNN and CRF) across different
test cases (small/medium/large training resources) and with
different performance metrics. We also confirmed that DTNN
works in reasonable processing time for testing.

In the future, we will investigate the validity of our approach
for the larger class of log template categories.

Software availability: Our LogDTL implementation is
available at https://github.com/fukuda-lab/LogDTL.

ACKNOWLEDGEMENTS

This work is supported by the NII Internship program, JSPS
KAKENHI Grant number JP19K20262, and the MIC/SCOPE
#1916030009.

REFERENCES

[1] T. Kurimoto et al., “Sinet5: A low-latency and high-bandwidth backbone
network for sdn/nfv era,” in IEEE ICC’17, 2017, pp. 1-7.

[2] T. Li, J. Ma, and C. Sun, “Dlog: diagnosing router events with syslogs
for anomaly detection,” The Journal of Supercomputing, vol. 74, no. 2,
pp. 845-867, 2018.

[3] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System log
analysis for anomaly detection,” in IEEE International Symposium on
Software Reliability Engineering (ISSRE), 2016, pp. 207-218.

[4] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in ACM CCS’17,
2017, pp. 1285-1298.

[5]1 S. Zhang et al., “Syslog processing for switch failure diagnosis and
prediction in datacenter networks,” in IEEE/ACM IWQoS’17, 2017, pp.
1-10.

[6] P. Wang, G. R. Bai, and K. T. Stolee, “Exploring regular expression
evolution,” in [EEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2019, pp. 502-513.

[71 P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in IEEE International Conference on
Web Services (ICWS), 2017, pp. 33-40.

[8] W. Meng et al., “Logparse: Making log parsing adaptive through word
classification,” in JEEE ICCCN’20, 2020, pp. 1-9.

[91 M. Cinque, D. Cotroneo, and A. Pecchia, “Event logs for the analysis

of software failures: A rule-based approach,” IEEE Transactions on

Software Engineering, vol. 39, no. 6, pp. 806-821, 2012.

W. Shang, Z. M. Jiang, B. Adams, A. E. Hassan, M. W. Godfrey,

M. Nasser, and P. Flora, “An exploratory study of the evolution of com-

municated information about the execution of large software systems,”

Journal of Software: Evolution and Process, vol. 26, no. 1, pp. 3-26,

2014.

M. Zhang, Y. Zhao, and Z. He, “Genlog: Accurate log template discovery

for stripped x86 binaries,” in IEEE COMPSAC’17, 2017, pp. 337-346.

Y. Yamashiro, S. Kobayashi, K. Fukuda, and H. Esaki, “Network log

template generation from open source software,” IEICE Technical Report

(in japanese), vol. 118, no. 204, pp. 15-22, 2018.

[10]

(11]

[12]

[13]

[14]

[15]

[16]
(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

template2

/kernel MTU for ** reduced to **
/kernel MTU for (v6 addr) reduced to **
/kernel MTU for ** reduced to **
/kernel MTU for ** reduced to **

R. Vaarandi, “A data clustering algorithm for mining patterns from event
logs,” in IEEE IPOM’03, 2003, pp. 119-126.

H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang, and A. Mueen,
“Logmine: Fast pattern recognition for log analytics,” in ACM Inter-
national on Conference on Information and Knowledge Management,
2016, pp. 1573-1582.

Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection
in distributed systems through unstructured log analysis,” in [EEE
ICDM’09, 2009, pp. 149-158.

M. Mizutani, “Incremental mining of system log format,” in 2013 IEEE
International Conference on Services Computing, 2013, pp. 595-602.
S. Nedelkoski, J. Bogatinovski, A. Acker, J. Cardoso, and O. Kao, “Self-
supervised log parsing,” arXiv preprint arXiv:2003.07905, 2020.

S. Kobayashi, K. Fukuda, and H. Esaki, “Towards an nlp-based log
template generation algorithm for system log analysis,” in International
Conference on Future Internet Technologies, 2014, pp. 1-4.

F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and
Q. He, “A comprehensive survey on transfer learning,” Proceedings of
the IEEE, 2020.

R. Chen, S. Zhang, D. Li, Y. Zhang, F. Guo, W. Meng, D. Pei,
Y. Zhang, X. Chen, and Y. Liu, “Logtransfer: Cross-system log anomaly
detection for software systems with transfer learning,” in 2020 IEEE 31st
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 2020, pp. 37-47.

S. Kobayashi, Y. Yamashiro, K. Otomo, and K. Fukuda, “amulog:
A general log analysis framework for diverse template generation
methods,” in IEEE/IFIP CNSM’20, 2020, pp. 1-5.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” Journal
of machine learning research, vol. 12, pp. 2493-2537, 2011.

J. P. Chiu and E. Nichols, “Named entity recognition with bidirectional
Istm-cnns,” Transactions of the Association for Computational Linguis-
tics, vol. 4, pp. 357-370, 2016.

X. Ma and E. Hovy, “End-to-end sequence labeling via bi-directional
LSTM-CNNs-CRF,” in Annual Meeting of the Association for Compu-
tational Linguistics, 2016, pp. 1064—-1074.

R. Yang, D. Qu, Y. Gao, Y. Qian, and Y. Tang, “Nlsalog: An anomaly
detection framework for log sequence in security management,” IEEE
Access, vol. 7, pp. 181 152-181 164, 2019.

K. W. Church, “Word2vec,” Natural Language Engineering, vol. 23,
no. 1, pp. 155-162, 2017.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” in NIPS 2014
Workshop on Deep Learning, December 2014, 2014.

K. Gimpel and N. A. Smith, “Softmax-margin crfs: Training log-linear
models with cost functions,” in Human Language Technologies: Annual
Conference of the North American Chapter of the Association for
Computational Linguistics, 2010, pp. 733-736.

Z. Yang, R. Salakhutdinov, and W. W. Cohen, “Transfer learning for
sequence tagging with hierarchical recurrent networks,” arXiv preprint
arXiv:1703.06345, 2017.

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization.” Journal of machine
learning research, vol. 12, no. 7, 2011.

S. Basu, A. Banerjee, and R. J. Mooney, “Active semi-supervision
for pairwise constrained clustering,” in Proceedings of the 2004 SIAM
international conference on data mining. SIAM, 2004, pp. 333-344.

