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Abstract—Network monitoring is essential for traffic engineer-
ing, maintenance, and troubleshooting purposes and thus forms
an integral part of network management. However, observing
each and every packet may not be feasible or at least be very
costly. It is therefore crucial for network operators to ensure a
scalable and efficient monitoring. With the emergence of multi-
path communication as facilitated by new network architectures
like SCION, monitoring becomes an even more challenging
task. In a multipath network, operators need to be able to
monitor their customers’ traffic flows across different network
paths to ensure optimal network utilization, fault tolerance
and fairness. Traditional single-path flow monitoring such as
sampling-based mechanisms fall short, since packets may be
spread across a potentially large number of different paths.
To address this challenge, this paper proposes SPEEDCAM, a
new approach that aims to achieve scalable and efficient flow
monitoring in multipath networks. Our approach which is based
on probabilistic probe selection significantly reduces the number
of required monitoring probes, while enabling an effective flow
information gathering. With an implementation of SPEEDCAM
in the SCIONLab network, we demonstrate more than 89 % of
monitoring accuracy with a small fraction of network routers
covering only 50 % of network traffic in the multipath network.

Index Terms—Network monitoring, multipath communication,
SCION

I. INTRODUCTION

New networking paradigms have caught the attention of
the networking industry, specifically multipath communica-
tion [1, 2]. Instead of using a single path for an end-to-
end communication, multipath communication allows end-
hosts to transmit packets via multiple paths simultaneously. By
scattering packets through multiple paths, network operators
are able to distribute the load over their network, achieving
better utilization of the overall network capacity, and thus
saving network provisioning costs. Furthermore, multipath
communication allows fast failover in case of congestion, and
thus improves network reliability. Driven by this, considerable
ongoing efforts from both academia and industry are being
made to realize these benefits [3, 4].

Despite these promising benefits, multipath communication
also introduces new problems faced by network operators [5].
For example, a malicious user may abuse multipath commu-
nication to achieve better throughput or to disrupt the network
by flooding packets through all possible paths. In such cases,

extensive network monitoring and analysis are required to
accurately detect the misuses.

Today, network operators collect flow-level measurements
for traffic engineering [6], QoS [7], and anomaly detection [8],
but modern network routers hardly support per-packet record-
ing. Driven by this, various sampling techniques have been
suggested. Routers may collect packets or flows based on a
sampling probability and aggregate them to conjecture the flow
statistics [9, 10]. Although sampling-based flow measurement
demonstrates viability of passive monitoring, it shows lim-
itations with regards to monitoring multipath communication
since correlating all the flows collected from densely deployed
probes would introduce scalability issues.

To this end, we introduce SPEEDCAM, a scalable network
monitoring approach for multipath communication environ-
ments. SPEEDCAM enables efficient multipath-flow measure-
ments based on a probabilistic approach. More precisely, an
inspector (e.g., network operator) selects a subset of routers
called probes over which the inspectee’s multipath-flows are
observed with a high probability, and conducts an inspection at
random times. The selection is performed based on the proba-
bility modeling; candidate scores for each node are measured
based on the network topology and traffic statistics, reflecting
the probability of being probes for effectively measuring the
majority of multipath flows. The model keeps changing the
list of probes, introducing unpredictability of the inspection.

We have implemented SPEEDCAM, which performs net-
work exploration, probe selection, traffic monitoring and clas-
sification. In the evaluation, which has been conducted over the
multipath-enabled SCIONLab network [11], we demonstrate
that SPEEDCAM achieves more than 89 % of monitoring
accuracy using only 33 % of routers with 50 % of network
coverage. The overall evaluation introduces negligible perfor-
mance overhead—the average resource consumption for CPU
and memory is less than 0.5 and 2%, respectively.

In summary, this paper makes the following contributions:
• To the best of our knowledge, this is the first work that

addresses network monitoring for multipath architectures.
• We present SPEEDCAM, a new approach enabling effi-

cient and effective flow monitoring in multipath commu-
nication environments.

• We demonstrate the viability of SPEEDCAM through a
proof-of-concept implementation and its evaluation in a
real-world network testbed.978-3-903176-32-4 © 2021 IFIP



II. RELATED WORK

Various network monitoring techniques have been devel-
oped, following the steps of measurement, aggregation and
analysis. Such network monitoring can be classified into active
and passive monitoring [12].

In active monitoring, the network operator generates an
explicit control packet to check the status of data plane.
The control packet is forwarded to the specific nodes per-
forming the monitoring to execute the command and report
the collected result to the operator. Active monitoring has
attracted many researchers because it is more applicable and
scalable than passive monitoring. In general, the goal of
active monitoring is to cover an entire network using as few
monitoring nodes as possible, achieving cost-efficiency [13].
The location optimization problem was found to be NP-hard
problem; to overcome this greedy approximation algorithms
were proposed [14].

Passive monitoring, unlike active monitoring, does not in-
troduce control overhead. Monitoring devices continuously
collect and store network traffic, and report it to network
operators. Because of the rapid increase in network traffic,
it is impossible to collect all the traffic, so sampling methods
based on probabilistic models caught attention. Accordingly,
approaches such as packet sampling [15] or flow sampling [9]
have been actively investigated. The location optimization
problem also occurs here [14].

In general, network monitoring follows the steps of mea-
surement, aggregation, and analysis. First, network informa-
tion collection basically considers how, where, and when to
collect measurements [16]. The collected raw data is mapped
into traffic patterns, network status, networking policies, etc.,
and then analyzed according to the purpose of monitoring.
The collection is responsible for delivering the collected data
to the analysis station. Methods to effectively deliver large
amounts of data, such as SNMP [17] and Syslog [18], have
been studied. Finally, in the analysis stage, traffic is classified
using packet payload or flow information, and statistics or
network status are analyzed. The results are then used for
traffic engineering, anomaly detection, and troubleshooting.

Unfortunately, the traditional network monitoring ap-
proaches cannot be directly applied to multipath networks,
which allow a flow to utilize various paths at the same
time [19, 3, 4]. Traditional network monitoring is built on the
assumption that a flow travels through a single path determined
by the ISP. In contrast, multipath communication is often
realized with the notion of path-aware networking [20, 21].
That is, ISPs provide end hosts a set of different paths leading
to a destination, allowing them to choose and utilize the
paths simultaneously for a single communication. The end-
host driven path selection empowers applications with many
desirable features such as path transparency, fine-grained path
control, fast failover, and route optimization. For network
administrators, however, the shift of decision making on path
selection from network to end hosts causes challenges on
network monitoring and management.
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Fig. 1: High-level overview of SPEEDCAM.

III. SYSTEM OVERVIEW

The aim of SPEEDCAM is to enable accurate network
monitoring for multipath communication in a scalable and
cost-efficient way. This is achieved by aggregating network
snapshots based on probabilistic modeling and correlating
them to detect abnormal activities in the network. We first
outline the desired properties derived from previous works.

• Scalability: The approach should be lightweight in net-
work monitoring, such that it enables scalable flow mea-
surements regardless of the network topology, size and
traffic volume.

• Accuracy: The probabilistic model should be able to
discover the most effective vantage points that covers the
majority of multipath communication.

• Obscurity: The probabilistic model must ensure that
adversaries cannot infer the next inspection details based
on the previous inspections or even the algorithm itself,
such that it achieves unpredictability.

• Practicality: Probes should be able to conduct the moni-
toring without huge overheads that might affect the actual
network performance.

A. General Concept

SPEEDCAM applies to networks which meet the following
requirements. The network must consist of nodes and links
which form an undirected graph. For SPEEDCAM, the graph
does not necessarily need to be known or static. This is
important because real networks tend to be dynamic with
only partial knowledge about its structure. The inspector must
have access to the network in a form that allows it to gain
knowledge about the network structure and to monitor the
traffic of the nodes.

When these requirements are met, the inspector can execute
an inspection and aggregate the flow measurements for each
inspectee. Note that in this work, the inspector is described
as a centralized component, but it may be split into multiple
inspectors, each responsible for a subnetwork. One run of the
inspection is called an episode and consists of four phases as
shown in Figure 1.
Exploration. This phase has the goal to create an undirected
graph of the network to be monitored. The structure of the



network is required for the following phases. In the following
it is assumed that the network graph can be created, e.g. by col-
lected information from each node. Note that the exploration
phase needs to be constantly repeated to react to changes in
the network; the exploration phase precedes every episode by
default, but it can be skipped if the network is static and fully
explored.
Selection. Based on the results of the previous exploration
phase, the selection phase uses the network information and
returns a set of nodes, called probes, to monitor. The selection
process has two goals to achieve: 1) it has to minimize the
amount of used probes for scalability, while 2) maximizing the
network coverage to achieve a high accuracy of the inspection.
To achieve these goals, the selection uses the topology and in-
formation from past monitoring phases to increase the quality
of a selection. The selection quality is defined as follows:

q(S,N) =
coverage(S)

coverage(N)
(1)

where S represent a set of probes and N the set of all nodes.
Monitoring. The monitoring uses the selected probes from
the previous phase. The inspector initiates the monitoring by
triggering the probes to measure the flows forwarded through
them. The probes log the flow measurements over a time span
∆T = t2 − t1. At the end of the time span, the inspector
aggregates the flow measurements.
Classification. In this phase, the aggregated flow measure-
ments are intercorrelated to quantify the total amount of traffic
that travels through different paths for the same source and
destination pair.

B. Assumptions

We clarify the assumptions to help further understanding
SPEEDCAM and the underlying environment.

• Secure communication: We assume that the communi-
cation between the centralized controller (e.g., inspector)
and probes is secure. There are well-established mecha-
nisms enabling secure-channel establishment that can be
applied for the distributed environment.

• Flow measurement: We also assume that the probes can
efficiently quantify the flows for the time span, and there
is no degradation on packet forwarding performance.

IV. SPEEDCAM

To achieve scalable and accurate network monitoring for
multipath communication, an essential component of SPEED-
CAM is probe selection. To ensure a good network monitoring
quality, we consider unpredictability in selecting probes cov-
ering the network as widely as possible.
Unpredictability. The inspector shall not be predictable for
the inspectees. When a set of probes is predictable for the
inspectees, they can avoid the inspection by choosing paths
without probes. From this, we first present two strawman
approaches, i.e., obscurity centric and entropy centric, and
then provide our design that combines the two approaches.

The obscurity-centric approach counters the predictability
by keeping the selection algorithm and its configuration secret
from the inspectees. In this approach, the probe selection is
focused on its effectiveness by applying heuristics, considering
the number of probes, coverage of each probe, and the selec-
tion history. However, the unpredictability only lasts as long
as the selection algorithm remains secret. The inspectees could
use the inspection statistics to reverse-engineer the algorithm.

In entropy-centric approach, we can select random probes
by using an entropy. Instead of selecting probes based on
statistics, the algorithm randomly selects a set of probes,
preventing predictability to inspectees. Nonetheless, there is
a conflict between the randomness and effectiveness of probe
selection; a fully random selection may result in a completely
useless data collection on the multipath correlation.

Therefore, we combine the two approaches to achieve both
effectiveness and randomness in probe selection. SPEEDCAM
uses a heuristic approach called candidate score, denoted as
cs(n), to determine the probability of each node to be chosen
as a probe. While not guaranteed to be chosen, the chance
to be a probe is higher for a good candidate than for a bad
candidate. Then, we randomly select k probes from a set of
best candidates. This process will result in a high quality of
the probe selection concerning the network coverage while at
the same time not being fully deterministic.

A. Candidate Score
The following criteria can be calculated using the informa-

tion collected during the Exploration phase.
Degree. [ deg(n) ]: The total number of incoming and
outgoing links of a node. This criterion indicates the likelihood
of a good transport hub and can be used as a central transport
hub by other nodes. The higher the degree of a node, the higher
the possibility to monitor a great range of traffic sources. Leaf
nodes on the edge of the network use to have a low degree
and are therefore uninteresting as probes, since they may only
monitor traffic from/to these nodes.
Total capacity. [ cap(n) ]: The sum of the connection capacity
of a node. The capacity is the physical or agreed connection
limit between partners. This is similar to the degree, but it
differs in one aspect: The degree is only an indicator about
the possible connectivity, but not for the possible throughput
of traffic. A node with a high capacity may be preferred over
a node with a high degree and lower capacity to transfer data.
Average activity. [ actt1,t2(n) ]: The relation between poten-
tial and actual throughput of a node in a time interval between
t1 and t2. The time span can be of any resolution, but should
be consistent.

actt1,t2(n) =
traffic∆T (n)

cap(n)
(2)

Storing the timespan for an episode gives the possibility to
create a profile for a node to be used by the selection process.
The selection itself can be time based. A node with a high
activity in the morning may receive a higher candidate score
than a node with a high activity in the evening, which can
increase the quality of the probe set.



Finally, the candidate score for each node is calculated as
follows:

cs(n) = wd · deg(n) + wc · cap(n) + wa · actt1,t2(n) (3)

where w means weight for each attribute (w ≥ 0).
The average activity will be zero for the first episode,

because the inspector does not have information about the
traffic of such a node. Note that, we set the weights equally in
our evaluation, but the weights can be configured by network
operators to address various purposes of network monitoring.
Probability. The probability to be selected as a probe depends
on the cs(n). It is calculated for all nodes in the network.
With that information, the probability can be calculated and
assigned to the node with:

Psc(n) =
cs(n)

max (cs(N))
(4)

where N denotes all nodes in the network.

B. Probe Selection

Based on the list of candidates with the assigned selection
probability (candidate score), the inspector selects k probes.
The size of k should scale with the network size |N |, but as
discussed earlier it should be as small as possible. The question
in this phase is how many nodes does the inspector need to
deploy to find a greedy user with a high accuracy? There are
a few possible scales, that we discuss in the following:
Constant. [ K ]: A constant amount of nodes will be se-
lected, ignoring the size of the network. The advantage is
the predictability of the computation time suitable for static
networks. However, it is not sufficient for a dynamic network
growing over time.
Logarithmic. [ log(|N |) ]: A logarithmic amount of probes
will scale nicely with any network because it needs very few
nodes in large networks.
Linear. [ x · |N |, 0 < x� 1 ]: A linear amount of probes will
need more resources than the logarithmic approach, but it will
also raise the accuracy to sufficient levels. The factor x must
be much less than 1, otherwise the inspector will utilize half of
the network which contradicts the goal to use as few resources
as possible. The evaluation will use x = {0.1, 0.2, 0.3}.

The selection phase ends with the set of k nodes, used for
the next phases as probes.

V. EVALUATION

We conducted our SPEEDCAM experiment for 48 hours
on SCIONLab testbed [11], a novel Internet testbed that
supports native multipath communication. The testbed includes
38 infrastructure nodes and hundreds of user-created nodes
physically distributed across 4 different continents. Since
SCIONLab is a live testbed where users continuously create
and destroy their nodes for research purposes, the network
topology keeps changing over time. Thus, it provides a dy-
namic network environment for testing purposes. Figure 2
shows a snapshot of the SCIONLab topology that consists of

1 B/s
10 B/s
100 B/s
1 kB/s
10 kB/s
100 kB/s
1 MB/s
10 MB/s
100 MB/s
1 GB/s
10 GB/s

Link bandwidth

7-71

2-24

3-1063

3-32

3-1081

3-1086

42-4

42-8

1-1015

1-19

2-21

1-1077

1-15

3-33

1-1042

3-1031

3-31

3-1030

4-43

3-1047

3-1070

3-1088

1-13

2-22

3-1034

1-14

42-7

1-1019

4-1048

5-51

42-2

1-11

3-1068

3-34

3-1046

42-3

42-5

2-1045

6-61

3-1037

3-1069

4-41

2-25

3-1009

3-1040

4-44

1-16

1-17

2-23

1-1050

1-12

4-42

3-1082

1-1041

1-1065

2-1044

42-6

1-1084

3-1076

42-1

1 B/s
10 B/s
100 B/s
1 kB/s
10 kB/s
100 kB/s
1 MB/s
10 MB/s
100 MB/s
1 GB/s
10 GB/s

Link bandwidth

7-71

2-24

3-1063

3-32

3-1081

3-1086

42-4

42-8

1-1015

1-19

2-21

1-1077

1-15

3-33

1-1042

3-1031

3-31

3-1030

4-43

3-1047

3-1070

3-1088

1-13

2-22

3-1034

1-14

42-7

1-1019

4-1048

5-51

42-2

1-11

3-1068

3-34

3-1046

42-3

42-5

2-1045

6-61

3-1037

3-1069

4-41

2-25

3-1009

3-1040

4-44

1-16

1-17

2-23

1-1050

1-12

4-42

3-1082

1-1041

1-1065

2-1044

42-6

1-1084

3-1076

42-1

1 B/s
10 B/s
100 B/s
1 kB/s
10 kB/s
100 kB/s
1 MB/s
10 MB/s
100 MB/s
1 GB/s
10 GB/s

Link bandwidth

7-71

2-24

3-1063

3-32

3-1081

3-1086

42-4

42-8

1-1015

1-19

2-21

1-1077

1-15

3-33

1-1042

3-1031

3-31

3-1030

4-43

3-1047

3-1070

3-1088

1-13

2-22

3-1034

1-14

42-7

1-1019

4-1048

5-51

42-2

1-11

3-1068

3-34

3-1046

42-3

42-5

2-1045

6-61

3-1037

3-1069

4-41

2-25

3-1009

3-1040

4-44

1-16

1-17

2-23

1-1050

1-12

4-42

3-1082

1-1041

1-1065

2-1044

42-6

1-1084

3-1076

42-1

Fig. 2: A snapshot of SCIONLab. The red nodes are selected
probes and the red lines indicate the links under monitoring.

a global backbone, 10 core ASes, and more than 100 non-core
ASes.

The prototype (https://github.com/Meldanor/SCIONLab
SpeedCam) ran on a VM based on an Intel i7@3.75 GHz
with one assigned core, 1GB of RAM and a 52GB SSD. This
VM hosted also the Prometheus server in version 2.2.1. It
provided a ground truth of the measured traffic inside the
network. This instance fetches data from all nodes in an
interval of 15 seconds. The difference to the inspector is that
the Prometheus server fetches always all the metrics. This data
is used to calculate the quality of the selection, as described
in Equation 1. For further information about the SPEEDCAM
implementation, please refer to [22].

A. Scalability Analysis

To achieve scalable monitoring, it is important to cover a
wide range of the network with a small number of monitoring
assets. We first investigate the monitoring precision, i.e., the
proportion of the traffic volume monitored by the selected
probes. Figure 3 shows the cumulative distribution function of
the precision for the different probe-selection strategies, where
N is the total number of nodes and k is the number of selected
probes. Note that only 21 nodes out of the approximately
100 active nodes have shown a high enough capability to
monitor the traffic passing through. Thus, in this experiment,
we consider |N | = 21.

For comparison, we set const number of probes with k = 1
as an extreme case. The single probe results in the worst traffic
coverage of 10 – 20 %, but it is a surprising result for only
one probe. According to our investigation, SPEEDCAM keeps
selecting a node in core networks; 3,505 times out of 11,575
inspection rounds. The selected probes are connected to other
core networks, thus responsible for a high volume of traffic at
inter-domain level.

As expected, the higher the number of probes the better
the overall precision. k = log(N) uses only two nodes
resulting in an increase of 10 % precision. A similar result
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TABLE I: Average resource consumption
(%) with snapshots every 5 seconds.

CPU Memory

k = 1 0.1 1.1
k = log(N) 0.2 1.1
k = 0.1 ∗N 0.2 1.3
k = 0.2 ∗N 0.3 1.3
k = 0.3 ∗N 0.4 1.2

is given by k = 0.1 ∗ N , that selects the same number of
probes for inspections. The other linear scales, k = 0.2 ∗ N
and 0.3 ∗ N , achieve better precision by using more nodes,
four and six probes, respectively. Interestingly, the linear
configurations show sometimes 90 – 100 % of precision with
only 4 – 6 probes. The reason for that phenomena is that the
probes are well distributed across the core networks and well
positioned without overlapping links.

B. Accuracy Analysis

The hit rate is an important criteria to evaluate the quality
of each selection strategy. It indicates how accurately a target
flow is measured by the inspection. Therefore, a high precision
but a low hit rate may lead to a bad decision for the monitored
network. Figure 4 illustrates [Min., Avg., Max] values of the
hit rate for the different selection strategies. To measure the
hit rate, we target a specific flow that occupies the maximum
capacity in the network at each episode.

Overall, regardless of the number of probes, the hit rates
show a similar result in average, approximately 89 – 95 %. Dif-
ferences between the linear-scaling approaches appear mostly
in the minimum hit rate, ranging in 56 – 72 % of hit rates. This
is also expected since more probes have a higher chance to
observe the traffic distributed across the network. Interestingly,
the log-scale selection shows a relatively higher hit rate at its
minimum despite the same number of probes compared to
k = 0.1 ∗N . Nevertheless, this could happen since the testing
environment is a live network; each episode has a different
network snapshot.

With k = 1, in general, SPEEDCAM shows relatively low
hit rates compared to other selection strategies. In the worst
case, 2.59 % of hit rate is measured. That is, a node with a
low cs(n) is selected as the probe, so that it could not gather
the target flow. However, it scores approximately 50 % of hit
rate in average, which is also surprising considering that there
is only one probe in the network.

From these results, we make the following observations: 1)
in general, the number of probes has a relatively small effect
on the hit rate. 2) the hit rate can be varying depending on
the network dynamics. 3) the precision is not directly related
with the hit rate. This suggests that the monitoring location is
more important than the number of probes.

C. Practicality Analysis

The performance impact of SPEEDCAM on the system is
minimal as seen in Table I. Without the outliers, no configu-
ration uses more than 7 % of the CPU time; fewer than 0.5 % in
average. The main impact on the CPU is the amount of probes
as seen in the linear configuration. The more probes exist, the
more candidate scores and the more monitoring results need
to be calculated. The memory impact has a similar result. The
resource consumption is negligible; No configuration needed
more than 1.5 % of the memory.

VI. DISCUSSION AND FUTURE WORK

A. Inspection Interval

Each inspection is repeated in a certain interval, and there
are different strategies possible.

With a fixed interval, the inspector repeats the inspection
every t time units and gets a constant stream of information
about the network traffics. The precision of the inspection
might be different depending on t; a smaller interval results
in a higher precision, but also increases/decreases the resource
impact. Furthermore, it is possible for the inspectees to infer
the inspection pattern.

A randomly chosen time interval prevents this problem. The
inspector starts an inspection non-deterministically a few times
over a given timespan, such as an hour or a day. This decreases
the precision of the measurement, because the interval changes
randomly. The inspector loses the possibility to improve its
selection quality by using the time profiles. This strategy may
waste the inspector resources, when the inspection is randomly
chosen at a point of time when nothing intersting happens.

Another strategy is to utilize the knowledge of past episodes
and the course of the traffic over a day. The inspector can
check it when the traffic is usually high, for example in the
evening. This experiences-based strategy has the same advan-
tages and issues as the activity criteria from subsection IV-A.
A longer history enables a more precise decision, but a too
long history can hold outdated information. Also it is a purely
experience based strategy vulnerable to a local optima.

B. Probe Selection using Control-plane Information

The probe selection has a significant impact on the quality
of multipath flow monitoring. SPEEDCAM leverages network
topology and traffic statistics that reflect the current state of a



given network. To improve the quality of probe selection, we
can further utilize the control plane information.

In SDN, there exist the controllers in which requests for
routing decision aggregate. For example, the Openflow switch
communicates with the controller to program the flow table
when a new flow arrives. SCION also has a control plane
protocol called path request. When an end host establishes a
communication channel, the host generates a control message
to fetch end-to-end routing paths from a controller called
the path server. The control plane information is essential
because the information provides a brief overview of current
user activities over the network. By feeding the selection
algorithm with the control plane information, the quality of
probe selection could be improved. Our future work includes
investigating how the control plane information could improve
the quality of probe selection.

VII. CONCLUSION

Multipath communication has brought a new challenge to
network monitoring. For a scalable and cost-efficient moni-
toring of multipath flows, we have introduced a new frame-
work that leverages probabilistic probe selection. With the
unpredictability in random inspection, SPEEDCAM enables
the effective detection of violation in bandwidth consumption.
Through the evaluation with a proof-of-concept implementa-
tion of SPEEDCAM, we have demonstrated that our probabilis-
tic approach can effectively diagnose multipath flows. In addi-
tion, we have further discussed a possible improvement in the
probe selection by leveraging the control plane information.
We anticipate that this work can contribute to various network
management approaches for multipath enabled environments.
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