
UAVs-as-a-Service: Cloud-based Remote
Application Management for Drones

Jerico Moeyersons, Martijn Gevaert, Karl-Erik Réculé, Bruno Volckaert and Filip De Turck
IDLab, Department of Information Technology

Ghent University - imec, Ghent, Belgium
Email: jerico.moeyersons@ugent.be

Abstract—In recent years, the Internet of Drones (IoD) became
an important research topic for both industry and academy.
An IoD environment consist of different drones, called Un-
manned Aerial Vehicles (UAVs), flying in different zones whereby
communication is important. Therefore, drones are becoming
increasingly ambiguous, capable and more cost effective than ever
before. These drones have been equipped with different sensors,
making it IoT-enabled drones, capable of capturing multiple data
sources and send them to the cloud for further research, but
the continuous advance in drone technology has not necessar-
ily made drone application development easier. While mature
Infrastructure-as-a-Service (IaaS) platforms offer features such
as hardware abstraction, resource allocation and tools to manage
applications remotely, commercial drones often offer a restrictive
software environment instead. Inspired by the technical success
and convenience of IaaS platforms, this article sets out to bring
that experience to drones, resulting in the creation of the UG-One
UAVs-as-a-Service (UAVaaS) platform. Many of the technologies
used in the UAVaaS platform can be found in the world of
Cloud computing as well. Applications created for drones are
containerized using Docker and application management can be
done through a web interface. The drones host a REST API for
platform management and they have a Linux onboard computer.
Developers can deploy applications on the drones or forward
the required data and deploy their applications on a remote
server instead. This approach has delivered promising results
when evaluated using several reference applications that either
represent real world applications such as video streaming and
movement control or instead just stress tests to check for resource
availability and reliability. In the end, the UG-One platform, is
shown to succeed in simplifying drone application development
and management while maintaining the reliability and versatility
required from any drone platform.

Index Terms—Application management, Docker, Drones,
Infrastructure-as-a-Service, UAVs-as-a-Service

I. INTRODUCTION

The last decade, Internet of Things (IoT), where various
objects (or things) are connected through the Internet, has
made a technological advancement [1]. Drones are one of
these things [2], consisting of several IoT smart devices, such
as LIDAR, thermal sensors, cameras, chemical sensors and
many more [3]. They have become increasingly ambiguous
and drone manufacturers have been able to create cost effective
devices that can fly longer, carry heavier loads and have
better on-board hardware. Even drone management systems
have been developed to maintain a good overview of sev-
eral deployed drones. [4]. The continuous advance in drone

technology certainly has improved the capabilities of drones,
but it has not necessarily made drone application development
easier.

When building applications that need to run in the cloud, de-
velopers create containerized applications which are remotely
deployed and managed, have guarantees when it comes to
resource availability and developers certainly do not need
to worry about the vendor of the hardware on which their
applications are deployed. This is not the case when devel-
oping an application for a drone, where a developer needs to
take into account different aspects such as specific hardware
constraints, power constraints and load constraints. Therefore,
this paper proposes a platform, further called the UG-One
platform, unlocking the potential of these drone innovations
towards a larger number of less drone-savvy developers.

By creating the UG-One UAVaaS platform based on cloud
technologies, developers can now work in a familiar envi-
ronment were applications are containerized, platform compo-
nents communicate using REST APIs, drones run Linux and
application deployment happens through a web interface.

However drones are not cloud servers, they need to make
real-time decisions and run applications that often need access
to on-board hardware such as cameras and actuators, or even
require the ability to plot a new course for the drone. Instead
of trying to create an all-in-one system that provides all the
required functionality, the UG-One drone design is based on
separate non-proprietary components with each component
optimized for specific tasks. On a hardware level, the autopilot
controls the drone while a Linux-based on-board computer
runs applications. On a software level, each part of the UG-
One drone system is containerized and can work independently
without influencing other applications or components.

While a UG-One drone can be used on its own, deploying
applications through a REST API or Swagger-UI is far from
user-friendly and application management quickly becomes
complex when dealing with multiple drones. For this purpose,
the UG-One back-end has been created. This cloud system
allows users to manage the applications running on a fleet of
drones and simplifies things such as deploying applications
that remotely control the drones, or even individually control
drones through ground control software.

The remainder of this paper is organised as follows: Sec-
tion II covers how drones can fly reliably and the need for
an on-board generic computing platform while Section III978-3-903176-32-4 © 2021 IFIP



explains the use of Docker on this on-board computer. In
Section IV, the proposed system is illustrated en explained
in detail followed by some reference implementations and
validation in Section V. Section VI explains how a drone
fleet can be managed and conclusions are summarized in
Section VII

II. RELIABLE DRONE FLIGHT AND ON-BOARD COMPUTER

As with most aviation systems, drones need to be reliable
and thoroughly tested, which can slow down development.
Each time software or hardware that controls the drone is
modified, all aspects needs to be evaluated again. To pre-
vent this kind of slowdown, open-source autopilots such as
Pixhawk [5] and ArduPilot [6] can be used. These autopilots
are good at following precise instructions such as follow a
specific path, fly to these coordinates and fly at this speed.
These instructions are communicated through the open-source
MAVLink protocol [7], which is utilized by the two most
popular and advanced open-source autopilot software projects,
PX4 [8] and ArduPilot. Since most developers do not have
any experience with MAVLink, the open-source MAVSDK
library has been created by the team behind Pixhawk [9].
With these thoroughly tested, maintained and documented
autopilots, developers do not need the time or skills required to
create an autonomous drone themselves, instead they can focus
on their applications which are deployed on a separate Linux-
based on-board computer. If the on-board computer fails, the
autopilot simply pilots the drone back home. The on-board
computer hardware and software can as such be optimized for
application deployment, performance and efficiency instead of
redundancy and reliability at all cost. This allows the usage
of mainstream low-energy consumption embedded computers
such as a Raspberry Pi. Since most of the drone specific
challenges are handled by the autopilot, the on-board computer
can now be interpreted as a remote deployment server. The
remote connection between the drone and the ground has been
implemented using a simple network connection over Wi-Fi
during development, but this can be done over cellular as well.

While MAVSDK can be used to “Talk MAVLink”, a com-
munication pipeline between the autopilot and the applica-
tions that use MAVSDK is still needed. Between the autopi-
lot and the onboard computer, this happens over Universal
Asynchronous Receiver-Transmitter (UART). On the onboard
computer itself, a program called MAVLink-Router [10] then
forwards these messages over UDP and routes them to appli-
cations on the drone or anywhere else, such as a cloud back
end or possibly even another drone. Since multiple autopilots
utilize the MAVLink protocol, it should now also be possible
to simply switch out one autopilot with another, or in other
words, deploy the same application on multiple drones with
different autopilots.

III. DOCKERISED DRONE

Because the on-board computer now acts as a remote
deployment server, the software running on it can be developed
in a way that takes full advantage of container technologies

such as Docker [11]. In fact, each platform component or
application that runs on the drones is containerized. By making
use of container virtualisation technology, the system becomes
inherently more reliable, it has improved hardware compati-
bility and it is easier to deploy (e.g. new hardware requires
only that docker is supported).

It is also much easier to manage the resources available to
containerized applications. This is critical as without resource
management, any application can utilize as much of the
available resources as it wants to use, resulting in applications
slowing down or even crashing.

A. Resource management

Resource management is done by a containerized com-
ponent running on each UG-One drone called the UG-One
API. This application, among other responsibilities, exposes a
REST API which can be used to easily integrate the drones
into a cloud back end. The API is designed to provide all of
the Docker functionality that is needed to manage applications
on a drone, but with the required limitations to guarantee
resources. It also exposes endpoints that provide information
on the system such as connected USB devices, available disk
space and current memory usage.

While the UG-One API can guarantee a fixed amount of
memory available to applications, using underlying Docker
functionality, it does not guarantee a fixed percentage of CPU
time. Instead, it works by allowing developers to assign a
CPU priority weight. As long as the CPU is not being used
100%, any application can utilize as much of the CPU as
it wants. However, as soon as applications start competing
for processing power, the distribution of CPU time will be
made based on the weight of each application that is making
calculations at that time.

B. Unmanaged resources

While CPU and memory resources are handled by the
system, the system still lacks network bandwidth prioritization
and disk space limiting. Network bandwidth prioritization is
not yet part of Docker and while it is possible to limit the
size of a Docker container, it is not yet possible to limit the
volume on the host that users can mount.

Despite these shortcomings, the UG-One API is still capable
of reliably managing containers and guaranteeing two critical
resources. Because of this, it is used to manage all the
components on a UG-One drone, including itself.

IV. SYSTEM OVERVIEW AND IMPLEMENTATION DETAILS

This section covers the system overview, illustrated in
Figure 1. The upper part covers the autopilot and the on-board
computer on the drone, which was covered in Section II and
Section III. The other part visualizes the UG-One back-end
and is explained below.

A. Back-end API

To ensure that the front-end can obtain dynamic content
from the database, the API servers and from the drones, there



Fig. 1. UG-One system components overview



is a need for a central unit that will retrieve this information.
This unit also needs to ensure that the drones can extract
data from the database and make it possible that drones can
retrieve their configuration. This central unit is the Back-end
API which is created by a Node.js [12] server and the npm
module Express [13].

To make a connection with the database, drones and API
servers, several node modules are used. The first node module
is Axios [14] which is a promise-based HTTP client npm
module for the browser and Node.js. Through Axios, it is
possible to retrieve information from the drones, manage the
applications and request resources by using their UG-One
API. Via the node module docker-hub-api [15], information of
Docker Hub images from a public registry can be retrieved.
To retrieve information from a Docker Image on GitLab, an
attempt was first made to access it via a node module. These
node modules were node-gitlab [16] and gitlab [17]. Due
to lack of documentation and the absence of features which
can retrieve Docker images, the GitLab API is chosen. With
the GitLab API server [18], the different Docker images as
their meta-information can be retrieved. The Mongoose node
module [19] is used to access the MongoDB [20] database
in the cloud to manage the data and modify the database
structure.

For the development of a cloud platform, a data store is
not to be missed out. For the cloud infrastructure, only one
database was chosen for simplicity, but multiple types of
databases can be used. Before a database can be deployed,
research was done to determine if a SQL or a NoSQL data
store is best suited for the cloud platform [21]. By weighing
up the advantages and disadvantages, a choice was made to
choose for a NoSQL database. NoSQL databases are easier to
scale horizontally than SQL databases [22], because a NoSQL
database ensures that if the data that needs to be stored grows,
the database can easily be expanded. Also, there is no need to
create a pre-defined schema and NoSQL databases are more
suited to handle big data then SQL databases [21]. This is
important because different applications on the drones, can
store many different types of data in different structures. By
comparing the different NoSQL databases and taking the CAP
theorem [23] into account, the MongoDB database has been
chosen. The CAP theorem states that it is difficult for a
distributed datastore to simultaneously provide more than two
out of the following elements: consistency, availability and
partition tolerance. For the cloud infrastructure of the UG-
One platform, consistency and partition tolerance are the two
most important elements. Therefore, MongoDB was chosen
because it offers consistency (all nodes see the same data at
the same time) and partition tolerance (the system must work
continuously without the loss of messages or partition failure).

B. UDP Port Forward Server

When the drone is configured and starts up, it is able to
send MAVLink messages through the UDP Protocol to an
application on a client’s device such as a ground control
station. A ground control station is a typical software ap-

plication that runs on a computer on the ground. Through
wireless telemetry, the computer on the ground communicates
with the UAV. A ground control station can display real-
time data about the performance, position, altitude, etc. of the
UAVs. It can also be used to control an in-flight UAV, upload
new mission commands and set parameters like altitude [24].
When the drone is ready to fly, one possibility is to send
MAVLink messages directly to the client’s device. However
this has a couple of disadvantages. When the drone boots up,
an IP address must be given to the drone to send MAVLink
messages to. This IP address cannot be changed when the
drone is active so when the IP address of the user changes,
the connection with the drone will be lost. Also, when another
user wants to take over the drone, this architecture prevents
the user from controlling the drone. Another drawback is when
multiple drones are sending their MAVLink messages to the
same endpoint of an application or on the back-end. One can
choose to try to distinguish the MAVLink messages from the
different drones in that endpoint, but this can lead to complex
routing systems within the endpoint. To solve these problems
of the direct drone-client connection architecture, a protocol
between the drone and the Back-end API has been set up and
an UDP Port forward server was developed.

To make sure that not all drones send their MAVLink
messages to the same port on the back-end, a protocol between
the drone and the back-end is created. At drone startup time,
the IP address of the back-end is given, which always has
the same IP address. However, the drone needs to be given a
specific port to which it can send its data. Not all drones can
send their data to the same port because then the back-end
would have issues in knowing which data stems from which
drone. The solution used in this paper is to tie each drone to
one specific port on the back-end. When a drone boots up,
one of the first actions it performs is to send a request to
the Back-end API to negotiate for a MavlinkPort. When the
drone is registered to the platform, it receives a MavlinkPort.
This Mavlinkport is the port on the UDP Port Forward Server
to which the drone needs to send his MAVLink messages to.
This MavlinkPort makes sure that only that specific drone is
allowed to send to that specific port. This solves the problem
that different drones would send their MAVLink messages to
the same endpoint.

To solve the issues when a client IP address changes or
another client wants to take over the drone, an UDP Port
Forward Server is created. As the name implies, this server
will forward UDP messages to another port on a different IP
address. To configure the forwarding of the UDP messages, a
REST request must be sent to the UDP Port Forward Server.
This REST request will dynamically open or close the ports
and configure the forwarding mechanism. Through this UDP
Port Forward Server, multiple drones can send their MAVLink
messages to the server and it forwards them to the right device
of the client. Through the web application, the user can make
sure that these MAVLink messages arrive on the application
on the client’s device or on an application on the back-end.
The web application sends a request to the back-end API with



the configuration data. The back-end API will in turn extract
additional data from the database and send it to the UDP
Port Forward Server. Using this configuration data, the UDP
Port Forward Server can open the MavlinkPort as well as a
ClientPort on the UDP Port Forward Server. The ClientPort
is a port that is used to send data from the client back to
the MavlinkPort on the drones IP Address. This way, multiple
drones can connect to the cloud and users can monitor all their
drones with a ground control station.

When the IP address of the user changes or when another
user wants to monitor or control the drone, this is no problem
anymore. By reconfiguring the ports and IP addresses of
the UDP Port Forward Server, a user can reconnect with
their drone or another user can take control of a drone. We
investigated how such an UDP Port Forward Server could be
properly incepted. The first solution was to use a Router of
which the Routing- and IPTables could be modified [25], [26].
This solution had one drawback, the router had to be rebooted
every time the UDP Port Forward Server would set up new
forwarding connections. The solution that therefore was used
here is an API Server. On this server, UDP sockets (ports) can
dynamically be opened and closed. Also, incoming requests
with configuration details can be handled and ports can easily
be set up. For simplicity, Express.js was used to set up an API
Server. To forward the UDP Messages, several possibilities
were evaluated. Eventually the node module dgram [27] was
chosen to forward UDP messages. It has extensive documen-
tation and can be configured easily.

C. Front-end

To ensure that users can easily manage their drones and
their applications, a web application is created as illustrated
in Figure 2. Through the web application, different Docker
applications can be deployed on the drone. It is also possible to
retrieve information, stop, restart and delete these applications.
Through the web application, Docker images, which can be
stored on Docker Hub or GitLab, can be linked to our solution.
Those linked images can then be used for deployment of the
Docker applications on the drone. To create this web-based
front-end, several front-end frameworks were studied and the
choice was made to use the framework React. React [28]
is an UI library that uses a component-based architecture
just like Angular. React is characterized by several features
such as one-way-databinding [29], JSX [30] and the Virtual
DOM [31]. Unlike the Angular framework, React does not
have an app-level state. All the states are stored in all the
different components of the web application. When a com-
ponent wants to use information from another component,
different components must pass their state to each other so
that these components in their turn will pass their state to
other components and so on. For larger projects, this can lead
to errors and difficulties in managing the application. This
problem can be solved by using Redux [32], [33] or Context
API [34]. Redux and Context API [35] add structures and
components to manage the app-level state. They also offer the
possibility to work more conveniently by using this one central

Fig. 2. The UG-One front-end showing the active containers on a specific
drone

unit to store the state. When creating the web application,
a combination of Redux and Context API was used [36],
[37]. The Context API methods are used to recreate the
structure and components of Redux. Redux itself is not easy to
understand and to use. The combination of both app-level state
managers makes it easier and faster for a developer to create
a web application with an app-level state. But when creating a
bigger more complex web application, Redux is recommended
because it can manage the data better and clearer and offers
tools to help manage the app-level sate.

For the deployment of the web server, NGINX was cho-
sen [38]. This web server has a low memory load, is
lightweight and offers the basic functionalities to host a web
server.

V. REFERENCE IMPLEMENTATIONS AND VALIDATION

In order to validate and demonstrate some of the capabilities
of the UG-One platform, several component reference imple-
mentations have been created. These have the added benefit of
demonstrating how certain applications can be implemented
by developers that want to start developing for the UG-
One platform. The source code is publicly available through
https://github.com/IBCNServices/UG-One.

A. Video streaming

First of, a reference implementation [39] is created that
connects to an on-board drone camera and streams video to
both on-board and off-board applications. While this imple-
mentation can still be optimized significantly, it was already
capable of providing a high-resolution stream to on-board
and low-resolution stream to off-board applications, reducing
bandwidth and battery usage.

B. Stress testing

The second application was created to simply run a stress
test and use as much resources as possible. This application
was used to validate the resource management capabilities of
the UG-One drones. As expected, these applications could
never exceed their memory limit and could only claim CPU
time in relation to their weight. This means that no critical
container with a significantly higher CPU share value, or
weight, ever experienced any real slowdowns while a stress
tests was running.



C. MAVLink application

Finally, as mentioned before, one of the reference applica-
tions was a container that reads out telemetry data provided
by the autopilot over MAVLink.

VI. MANAGING A DRONE FLEET

Users can deploy and manage their applications, request
system resources and more through the REST API on the
drone. But this way of working is not user-friendly and
certainly not when multiple applications need to be managed
on multiple drones. To be able to manage those applications
in a fast and easy way, a back-end cloud infrastructure is
needed. The proposed cloud infrastructure that was created
offers a web application that enables users to easily deploy
applications, keep an overview of their drone fleet, manage
resources on the drones, etc. Because the web interface shows
dynamic content to the users, there is also a need for a back-
end API and a database. This back-end API is the central unit
of the cloud infrastructure which sends and receives requests
to and from the web server, database, drones, API servers,
etc. Next to the web server, back-end API and database, there
is one last component present on the cloud, the UDP Port
Forward Server.

VII. CONCLUSION

In line with the established cloud service models, a new
UAVaaS model and platform has been created, allowing de-
velopers with no previous drone experience to develop and
deploy applications on drones. Container technologies are used
to offer the convenience of application and drone management
through a web interface while it also continues to be modular
and very capable as well. Applications can run on any drone
that has the required hardware components and often can run
on the back-end as well with little to no modification.

As resources on the drone on-board computing unit are
considered scarce, in future work we will investigate the use of
more secure container technology alike Kata containers [40]
and on using uni-kernels, stripping out functionality not re-
quired by the applications running on the drone.

REFERENCES

[1] B. Bera, D. Chattaraj, and A. K. Das, “Designing secure blockchain-
based access control scheme in iot-enabled internet of drones deploy-
ment,” Computer Communications, vol. 153, pp. 229–249, 2020.

[2] G. Choudhary, V. Sharma, and I. You, “Sustainable and secure trajecto-
ries for the military internet of drones (iod) through an efficient medium
access control (mac) protocol,” Computers & Electrical Engineering,
vol. 74, pp. 59–73, 2019.

[3] M. B. Ghorbel, D. Rodriguez-Duarte, H. Ghazzai, M. J. Hossain, and
H. Menouar, “Energy efficient data collection for wireless sensors using
drones,” in 2018 IEEE 87th Vehicular Technology Conference (VTC
Spring). IEEE, 2018, pp. 1–5.

[4] S.-C. Choi, N.-M. Sung, J.-H. Park, I.-Y. Ahn, and J. Kim, “Enabling
drone as a service: Onem2m-based uav/drone management system,”
in 2017 Ninth International Conference on Ubiquitous and Future
Networks (ICUFN). IEEE, 2017, pp. 18–20.

[5] (2020) Pixhawk. [Online]. Available: https://pixhawk.org/
[6] (2020) Ardupilot. ArduPilot. [Online]. Available: https://ardupilot.org/
[7] (2020) Mavlink developer guide. Dronecode. [Online]. Available:

https://mavlink.io/en/

[8] (2019) PX4 documentation v1.10.1. [Online]. Available: https:
//docs.px4.io/v1.10/en

[9] (2020) Mavsdk documentation. Dronecode. [Online]. Available: https:
//mavsdk.mavlink.io/develop/en/

[10] Mavlink router. Intel Corporation. [Online]. Available: https://github.
com/intel/mavlink-router

[11] (2020) Docker. [Online]. Available: https://www.docker.com/
[12] S. Tilkov and S. Vinoski, “Node. js: Using javascript to build high-

performance network programs,” IEEE Internet Computing, vol. 14,
no. 6, pp. 80–83, 2010.

[13] (2020) Express. express. [Online]. Available: https://expressjs.com/
[14] (2020) axios. npm. [Online]. Available: https://www.npmjs.com/

package/axios
[15] (2020) Docker-hub-api. npm. [Online]. Available: https://www.npmjs.

com/package/docker-hub-api
[16] (2020) node-gitlab. npm. [Online]. Available: https://www.npmjs.com/

package/node-gitlab
[17] (2020) node module gitlab. npm. [Online]. Available: https://www.

npmjs.com/package/gitlab
[18] (2020) Projects api. gitlab. [Online]. Available: https://docs.gitlab.com/

ee/api/projects.html
[19] (2020) npm mongoose. npm. [Online]. Available: https://www.npmjs.

com/package/mongoose
[20] V. Abramova and J. Bernardino, “Nosql databases: Mongodb vs cas-

sandra,” in Proceedings of the international C* conference on computer
science and software engineering, 2013, pp. 14–22.

[21] V. Sharma and M. Dave, “Sql and nosql databases,” International
Journal of Advanced Research in Computer Science and Software
Engineering, vol. 2, no. 8, 2012.

[22] A. Korpal. (2019) Scaling horizontally and vertically for databases.
[Online]. Available: https://bit.ly/2Bas3sJ

[23] R. Greiner. (2014) Cap theorem: Explained. [Online]. Available:
https://robertgreiner.com/cap-theorem-explained/

[24] (2020) Uav ground control station. Unmanned
system technology. [Online]. Available: https://www.
unmannedsystemstechnology.com/category/supplier-directory/
ground-control-systems/ground-control-stations-gcs/

[25] E. Ma. (2019) Port forwarding using iptables. [Online]. Available:
https://www.systutorials.com/port-forwarding-using-iptables/

[26] P. S. (2019) Iptables tutorial. [Online]. Available: https://www.hostinger.
com/tutorials/iptables-tutorial

[27] (2020) Udp/datagram sockets. Node.js. [Online]. Available: https:
//nodejs.org/api/dgram.html

[28] M. A. Jadhav, B. R. Sawant, and A. Deshmukh, “Single page applica-
tion using angularjs,” International Journal of Computer Science and
Information Technologies, vol. 6, no. 3, pp. 2876–2879, 2015.

[29] (2020) Data binding. angularjs. [Online]. Available: https://docs.
angularjs.org/guide/databinding

[30] (2020) What is jsx. react enlightment. [Online]. Available: https:
//www.reactenlightenment.com/

[31] (2020) Understanding the virtual dom. bitsofcode. [Online]. Available:
https://bitsofco.de/understanding-the-virtual-dom/

[32] (2020) Redux in react. Reactredux. [Online]. Available: https:
//react-redux.js.org/introduction/why-use-react-redux

[33] M. K. Caspers, “React and redux,” Rich Internet Applications w/HTML
and Javascript, p. 11, 2017.

[34] (2020) Context in react. Reactjs. [Online]. Available: https://reactjs.org/
docs/context.html

[35] A. B. Thakur. (2020) Redux vs context api. [Online]. Available:
https://dev.to/ayushmanbthakur/redux-vs-context-api-3182

[36] T. Media. (2020) Node.js & express api — expense tracker. [Online].
Available: https://youtu.be/KyWaXA NvT0

[37] P. Ranasinghe. (2019) Build a redux-like store with react context and
hooks. [Online]. Available: https://bit.ly/36pGxAJ

[38] (2020) Nginx web server. NGINX. [Online]. Available: https:
//www.nginx.com/

[39] N. Tijtgat, W. Van Ranst, T. Goedeme, B. Volckaert, and F. De Turck,
“Embedded real-time object detection for a uav warning system,” in
Proceedings of the IEEE International Conference on Computer Vision
Workshops, 2017, pp. 2110–2118.

[40] A. Randazzo and I. Tinnirello, “Kata containers: An emerging architec-
ture for enabling mec services in fast and secure way,” in 2019 Sixth
International Conference on Internet of Things: Systems, Management
and Security (IOTSMS). IEEE, 2019, pp. 209–214.


