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Abstract—Industrial Control Systems (ICS) are complex sys-
tems made up of many components with different tasks. For a
safe and secure operation, each device needs to carry out its tasks
correctly. To monitor a system and ensure the correct behavior
of systems, anomaly detection is used.
Models of expected behavior often rely only on cyber or physical
features for anomaly detection. We propose an anomaly detection
system that combines both types of features to create a dynamic
fingerprint of an ICS. We present how a cyber-physical anomaly
detection using sound on the physical layer can be designed,
and which challenges need to be overcome for a successful
implementation. We perform an initial evaluation for identifying
actions of a 3D printer.

Index Terms—ICS, security, cyber-physical systems, finger-
printing, anomaly detection, sound

I. INTRODUCTION

Industrial Control Systems (ICS) interact with the real world
to manage and manipulate physical processes. Examples are
power grids, chemical, water treatment, or nuclear plants [1].
To ensure a safe operation, each ICS component needs to
execute its task correctly. This requires to check a system’s
functionality and status.
A common method to find deviations from expected behavior
is anomaly detection [2]. It triggers alarms in case a system’s
observed behavior differs from its expected behavior. The
expected behavior is defined by a reference model. A reference
model consists of selected features which are compared to
new observations. Features can be compared individually or
in a combined manner. The combination of features can give
context to the state of the observed system. The combination
of multiple features to identify entities is called fingerprinting.
Fingerprints are one method of building a reference model.
Fingerprinting is performed actively or passively [3]. Ac-
tive fingerprinting-techniques interact directly with the finger-
printed system to trigger necessary observations. In passive
fingerprinting, features are observed without interaction.
Models in anomaly detection can be built by using machine
learning methods [2], [4], or using externally provided docu-
mentation [5], [6].
Most anomaly detection systems (ADS) use either only cyber
or only real-world features [2]. However, using a combination
of cyber and physical features for anomaly detection has
advantages. Depending on the cause of an anomaly, physical
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features often indicate deviations earlier than cyber features
or vice versa. For example, a malfunctioning device can send
back acknowledgments for executed operations even though it
did not perform the acknowledged action. Such behavior can
not be detected by an ADS that relies only on cyber features.
Other physical issues of devices such as abrasion also cannot
be detected by cyber-only ADS. For example, Stuxnet [7],
in which the monitoring of the attacked system, which relied
purely on cyber-only features, would have benefited from ad-
ditional physical monitoring. A mismatch between physically
observed behavior and the monitored cyber-values helps to
spot anomalies in the operation of attacked centrifuges.
ADS purely based on physics are not able to detect a loss
of control immediately. In case a robot executes a legitimate
queue of commands but is not accessible via its interfaces, it
will only create an anomaly if it stops operating or executing
different commands.
Despite the previously motivated advantages, connecting phys-
ical and cyber-features for anomaly detection imposes var-
ious challenges. Physical measurements of processes take
longer since the measurements are done over some time.
The measured signals need to be processed and cleared from
noise before they can be used. Finally, a cyber-physical ADS
needs to correlate physical measurements with observed digital
signals of the ICS.
This paper proposes cyber-physical anomaly detection for ICS.
Our approach uses both, network communication and sound
measurements to create a reference model of ICS. Observed
network traffic is used to confirm if commands have been
executed correctly, and to process and filter sound samples of
a monitored ICS.
The correlation between measured physical signal and network
traffic is used to detect anomalous behavior of single devices
in an ICS. As a result, our system is capable of detecting
anomalies in which a device executes an operation differently
on the physical layer than it was instructed on the cyber-layer.
It is capable of detecting attacks and faults in the monitored
system.
We assume that services used in ICS environments often
follow deterministic patterns. This work extends our previ-
ous work on network-based device fingerprinting [8]. The
proposed method can confirm if devices have successfully
executed the commands as observed control messages on the
network layer suggest. Via this approach, our ADS can detect
both, attacks and faults. Our contribution is introducing a
multi-layer ADS that uses both, physical and cyber-features.978-3-903176-32-4 © 2021 IFIP



The rest of the paper is structured as follows. Section II
covers related work on anomaly detection, fingerprinting, and
sound mapping. Section III gives the necessary background on
anomaly detection fingerprinting for cyber and cyber-physical
systems and sound classification. Section IV explains the
necessity of such a system and shows how it is realized. It
also points out the challenges of such an approach. Section V
gives an overview of initial evaluations of parts of the proposed
system.

II. RELATED WORK

The fields related to our work are anomaly detection, phys-
ical fingerprinting techniques in general, and sound detection
in particular. Anomaly detection and fingerprinting are well-
studied topics over the last decades. Both topics are inter-
twined since ADS use reference models to detect abnormal
behavior. Some systems rely on fingerprints for creating a
reference model.

A. Anomaly Detection

ADS use a reference model to classify observations as
anomalous or benign. There are two methods to create a
reference model for ICS settings. One is the statistical analysis
of observations during the operation of a plant. The reference
model can also be created via the specification of the system.
Statistic-based anomaly detection can use machine learning
to create the reference model. [4] gives an overview of
machine learning based anomaly detection methods for cyber-
physical systems (CPS). The input to the presented modeling
approaches are features from various observations that can
be made within a CPS. Some approaches [9], [10] directly
use observations related to the physical process to create
the reference model. [11] use accumulated process logs to
derive models for an observed IoT system. Some approaches
make use of the observed communication for finding patterns
[12], [13]. Specification-based anomaly detection processes
existing documentation to create a model. [5], [6] present how
documentation can be leveraged to build reference models.

B. Fingerprinting

A fingerprint is created by processing multiple features
into a single signature that can then be used for comparison.
The fingerprint can be used to uniquely identify a piece of
software [14], [15], hardware [16], [17] or process [18]–[20].
Depending on the type of fingerprinting, different features can
be used for fingerprint creation. This type influences how a
fingerprint can be collected.
Software-based fingerprints such as Browser-Fingerprinting
[14] or TLS fingerprinting [15] use features from observation
of parameters in single network packets. An example for
fingerprints from network communication in ICS is presented
in [21].
In hardware-based fingerprinting techniques, features used for
creating a fingerprint are observed during the execution of a
process by a device. During execution, physical features are
recorded and used as input for the fingerprint.

Some features, like electromagnetic emission, require expen-
sive hardware to be measured. Others require physical access
to devices. [17] demonstrates a passive fingerprinting tech-
nique based on command execution-time. In [22], physically
unclonable functions are used to create attestations of physical
properties, like the temperature of a device. When looking at
single devices, it can be feasible to consider the electromag-
netic emission during the execution of a command [23], [24].
Other physical features for fingerprinting are the power intake
[18], [25], the physical characteristics of communication [26]
or sound emission [27]. [19], [20], [28] show that the creation
of sound fingerprints for processes in CPS is feasible, and can
be used to detect attacks. Sound can be measured by setting up
a microphone in proximity while others like the measurement
require expensive additional hardware.

C. Sound Classification

The use of sound measurements for fingerprints is closely
related to sound classification technology. The biggest
challenges in this field are the filtering and enrichment of
recordings with further information. An overview of the
properties of sound fingerprinting is given in [29]. A large
portion of current research focuses on music fingerprinting
[30], in which a song should be identified from a short sample
[31]. The field of environmental sound classification has not
received much attention until 2014. [32] give an overview
about challenges for environmental sound classification.
[33] argues the feasibility of machine learning methods for
environmental sound recognition, [34] presents its successful
application. The central challenge in this field is the correct
preprocessing of recordings, such that they can be used for
fingerprinting.

Each sensing field has its challenges that need to be
considered when combining cyber and physical monitoring.
ADS built purely on cyber-features fail to detect issues in
the physical. Physical measurements are aimed at single
devices and are prone to noise. This issue is particularly
challenging when dealing with sound samples as there are
various external sources of noise. In our proposed anomaly
detection scheme, we combine methods from both domains.
We create a 2-layer ADS. The feasibility of and advantages of
a multi-layer system for CPS are discussed in [35]. However,
the description remains vague.

III. BACKGROUND

In this section we give an overview of techniques and
challenges in anomaly detection, fingerprinting, and sound
classification. Anomaly detection is concerned with finding
patterns that deviate from expected behavior. A comprehensive
overview of this topic is given in [2], [36]. To make anomaly
detection work, a reference model has to be created to dis-
tinguish between normal and abnormal behavior. Models can
be created via statistical approaches or by using a system’s
specification [6], [36]. After a model was built, new data
points are classified if they conform to it. A model can enable



context-aware, behavioral or statistical anomaly detection [36].
The classification is done by comparing selected features to
the reference model. If the compared feature is not within an
expected range or conforms to created rules it is considered
anomalous.
One reference model type is a fingerprint. Fingerprinting can
be done actively or passively. Active fingerprinting techniques
rely on direct interaction between the fingerprinter and the
fingerprinted devices to obtain the required features. The
interaction with a device for signature creation can have
effects on it, influencing the fingerprint in an unwanted way.
Especially in ICS environments with low powered devices,
additional interaction can have strong effects on fingerprinted
devices [17].
Therefore it is desirable to use a passive fingerprinting
method in ICS. Passive fingerprinting relies on features that
are observed without directly interacting with a device, e.g.
parameters in a network packet or emitted sound. Selected
features should be robust, unique, and easy to access to be
suitable for creating a fingerprint. The robustness is needed
to reliably identify similarities. Uniqueness is required for
distinguishing occurrences. Features should be easily acces-
sible such that the method can be scaled to be used for many
devices. Input for the fingerprint generation are the selected
features. Depending on its nature, a feature might need to be
preprocessed and cleared of noise before it can be processed.
Additionally captured noise in a signal can falsify the resulting
fingerprint. To clear noise, different sorts of transformations
or filters can be used, depending on the signal. This step
especially important for physical measurements. [37] points
out the influence noise has on fingerprinting performance.
Noise reduces characteristics that separate different signatures
from each other. From the preprocessed features a fingerprint
is then generated, resulting in a signature of an observation.
Similar to anomaly detection, there exist two phases: a model
building phase, and a classification phase. In model building,
a created signature is stored along with a label in a database.
In the classification phase, the signature is compared to the
stored signatures. The closest match or no match is returned.
Due to the ease of access and scalability, we choose audio for
creating a physical fingerprint for this part of our ADS. The
captured recordings need to be cleared of background noise.
Background noise can be caused by interference on a recording
device or other sound sources in proximity. Simple background
noise can be removed by using one of the various filters
[29]. To remove other sound sources from the input more
sophisticated methods are required. We elaborate in Section IV
how this is done in our selected environment.
Finally, a recorded sample must be cut such that the beginning
and end align with the reference recording. After preparing
the recording it can be processed for fingerprint generation.
Common techniques as presented [38], [39] can be used for
this step.

IV. APPROACH

In this section, we describe how our approach to perform
cyber-physical anomaly detection for ICS. We describe the
general structure of our anomaly detection scheme and elabo-
rate on the advantages and challenges of the proposed method.

A. Concept

Similar to other ADS, our approach consists of a model gen-
eration phase and a classification phase. The created reference
model consists of a mapping between a command observed
on the network layer, and a corresponding sound signature on
the physical layer.

1) Model Generation Phase:
In the model generation phase, the reference model is created.
The input are sound recordings of command executions and
network-captures containing the packets used to issue the
command. We assume that recording of the executed operation
can be performed isolated from background noise. The first
step is filtering the recording from background noise. In our
scenario, frequencies on the lower spectrum are most unique
to each action. Therefore our method applies a low-pass filter.
To reduce the amount of data that needs to be processed
each recording is down-sampled. It is also cut to such that
it only contains the command execution. The resulting data
is a background noise-free recording of a device performing
a specific operation. Each recording is then analyzed con-
cerning signal energy and occurring frequencies. From this
information, a weighted average per frame of the recording
is generated. The weighted average per frame, reduced to the
40 most significant frequencies, becomes the fingerprint. This
number of frequencies is within in the range used in other
related work [40], [41].
From the network capture, the command used to issue the
recorded execution is extracted. The fingerprint, extracted
command, and preprocessed recording are stored in a model
database. The fingerprint along with the extracted command
makes up combined cyber-physical fingerprint that identifies
an action. This information is stored in a model-database for
reference and further filtering in the classification phase. The
process of creating a mapping between network communica-
tion and sound fingerprint can be seen in Figure 1.
In the model generation phase, the reference for each possible
command is generated. The creation of signatures can be done
when testing and evaluating a device before it is integrated
into the ICS. In case the fingerprinted device interacts with
different types of objects, a reference for each type has to
be created. This additional mapping has to be created since
the execution of the same command might sound different
depending on the interaction. For example, a robot picking
up a heavy object might sound different from the same robot
picking a lightweight object.

2) Classification Phase:
The classification phase confirms that a device in the ICS has
correctly executed a command. The input for this phase is a
recording of the last n seconds, the corresponding network



Sound of the last n
seconds

Network capture of
command

Preprocessing
Signal Analysis

(Energy of
frequencies, etc)

Generating sound
fingerprint

Storing
references

Extracting command
from network capture

Create combined
cyber-physical

fingerprint

Model
DB

Fig. 1: Steps of the model generation phase

capture, and a synchronized timestamp for the beginning of
both inputs. There are two sliding windows, one for each layer.
There may be operations that started before the beginning
of the recording. However, due to their execution time on
a device, sound by previously started operations may be
emitted after a recording is started. For identifying and filtering
such operations, the sliding window for the network layer
needs to be larger than the one for the sound recording. For
simplification, we assume the execution of each operation
takes up to n seconds. Therefore the length of the network
capture in the simplified approach has a length of 2n sec-
onds. This assumption holds because actions started at 0 of
the network capture are done at ns. This ensures that all
sources from a monitored ICS in a recording are known. The
length of an action can also be used as an additional feature
for detecting anomalies. The described process classifies an
action starting at the beginning of the recording. The first
step clears the recording of simple background noise. This
step applies the same filters used in the model generation
phase. Our system extracts issued commands along with a
timestamp from the network. The model database provides
references for the extracted commands. The process uses
the references and timestamps of the commands to remove
ICS related background noise from the recording. Therefore,
is subtracts reference recordings of the extracted commands
from the recording at the corresponding time stamps. This
is done by using the inverse of the reference recording and
adding it to the source at the specified timestamp. This
creates a dynamic filtering method for the sound recording
that can be used to selectively filter background noise caused
by surrounding devices. All operations that should not be
classified are subtracted from the signal. In our example, these
are all operations that do not start at the beginning of the
recording (0 for the recording, n seconds for the network
capture). The remaining sound signal only contains the sound
of the operation to be classified. From the remaining signal,
the fingerprint is generated the same way as during the model
generation. The resulting fingerprint is then used to check
if it matches the signature for the extracted command from
the network capture. The approach checks if the difference
between the generated and the stored reference signature is
within a certain threshold. In case the signatures match, the
system operates as expected. In case there is no match, either
the device itself, any device in proximity of the microphone or
the observed network traffic deviate from the reference model.
This deviation is then classified as an anomaly regardless of

the cause. An illustration of the classification phase can be
seen in Figure 2.

B. Advantages and challenges of the proposed approach

Using the presented cyber-physical approach has several
advantages. 1) As mentioned in the introduction, such a system
can detect anomalies at an earlier stage than systems that
solely rely on cyber or physical features. 2) By choosing sound
to passively create a fingerprinting approach for the physical
layer, the method does not impact the ICS after model creation.
3) Sound is easily accessible. For our initial evaluation, we use
a microphone built into a mobile phone to record audio. 4) The
system is easy to set up, and 5) the filtering method can be
applied to large environments. 6) By combining the observed
network traffic with physical observations, the approach can
identify anomalies on both layers.
Physical anomalies can be caused by abrasion, malfunctioning
devices, or a stealthy attacker [2]. They can be identified by a
mismatch of the recording and the corresponding signature in
the model database. The correlation of network traffic with
sound fingerprinting makes it possible to detect physically
broken devices that appear to function correctly on the cyber-
layer. In particular, broken devices that send back acknowledg-
ments for received commands can be identified via correlation.
A modularized approach using the reference recordings to
dynamically filter captured recordings has several advantages.
The first advantage is the simple adoption of changes in the
ICS. In case a single device in the ICS is replaced¸ it is
sufficient to replace the signature/command mapping in the
model database. By using the network traffic in combination
with observed network traffic, the background noise can be
filtered dynamically since the filtering depends on the network
traffic. Therefore, the anomaly detection adapts to changes in
the operation of the ICS. Further, the proposed method can be
seen as an extension to standard network ADS. Due to this,
existing systems can be extended and keep using established
methods to detect anomalies.
To realize the approach, several challenges need to be tackled.
Methods to efficiently reduce the noise of the recordings
need to be researched. For simplification, the current proposal
assumes that noise only consists of background noise and
sounds created by surrounding devices. However, there are
other sources of noise. Examples are people on the shop floor
or other outside factors. Therefore, the filtering step of the
classification phase (Fig. 2) needs to be further improved.
Another challenge is the correct evaluation of a recorded
sample, especially in presence of similar devices.



Sound of the last n
seconds with

timestamp

Network capture of
last 2n seconds

Preprocessing

Extraction of
commands with

timestamps

Lookup of
command
references

Clear recording from
background

Generating sound
fingerprint

Compare fingerprint
to reference

Model
DB

Match

Anomaly

No anomaly

Yes

No

Fig. 2: Steps of the classification phase

At this moment it is unclear how two devices located right
next to each other, executing the same command at the same
time, can be distinguished. This problem might be solved by
the use of stereo or multiple microphones. However, then
additional information about a device’s position is required.
The optimal setup of the microphones throughout and ICS
remains a challenge. Finally, our approach is not capable of
differentiating attacks from faults.
In the following, we describe the initial evaluation results for
classifying commands.

V. EVALUATION

The most important step in the proposed approach is the
generation of the correct sound fingerprints. The feasibility
of fingerprinting whole processes and single devices has been
demonstrated by several works mentioned in Section II. Our
approach creates fingerprints for processes on single devices
that are then dynamically combined during the classification
phase.
For an initial test, we generate fingerprints for different move-
ments of a 3D printer. We consider this as a mini-factory with
just a single device that can perform different operations. The
only source of noise in this setup is the fan on the device
itself. The fan-speed can be adjusted to simulate noise.
We record different operations of the printer to distinguish
them, and to create a fingerprint. For simplicity, each recording
has a length of 20 seconds. Figure 3 shows a comparison
of recordings when executing two different operations before
filtering. Figure 3a shows the spectrogram of printing in a
circle motion while Figure 3b shows printing in a square.
The spectrograms show differences in the signature of the
movements. The differences are marked in red. In Figure 3a a
wave form can be identified after 8 seconds which is missing
in Figure 3b.
The spectrogram shows which frequencies carry the most
energy. This gives an insight into which frequencies can be
used for defining a fingerprint or can be filtered. The generated
signature from the signal is an array of 1700 floats. These are
further reduced to the most significant 40 values in the sound
fingerprint generation step as described in Section IV. Taking
the recordings as input for the fingerprinting process it can
be seen that the generated signatures differ. The generated
fingerprint is then compared to signatures in the database by

(a) Spectrogram of printing a circle (b) Spectrogram of printing a square

Fig. 3: Spectrograms of a circle motion (left) and square
motion (right)

calculating the Euclidean distance to each recorded signature.
The sound is then identified as the closest signature in the
database. Based on the sampling rate and quality of the record-
ing, more features can be extracted for creating a fingerprint.
In case multiple stereo microphones are present, the position
of a device can also be identified.
In the future, we plan to develop, evaluate and validate our
proposed framework in a real ICS testbed [42], especially
considering additional sources of background-noise.

VI. CONCLUSION

We proposed a method for cyber-physical anomaly detection
for ICS by leveraging observed network traffic and sound
measurements to detect anomalies. These are used as input
to build a reference model for anomaly detection. Thus the
proposed system (Section IV) combines advantages of physical
and cyber-only ADS. Since ICS often consist of low-resource
devices we chose a passive fingerprinting technique. The
correlation of network traffic and sound enables a dynamic
adaption of the anomaly detection scheme to the operation of
a system. It allows to dynamically filter noise from recordings
that are used for anomaly detection. Our approach is applicable
in environments in which multiple devices emit sound, for
example, the shop floor of a factory. We evaluated initial
findings for distinguishing operations of single devices in a
small scale environment. We plan to extend the approach to
a real-world ICS testbed and improve the dynamic filtering
capabilities.
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