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Abstract—With the development of deep learning methods,
adopting CNN-based detectors has become a trend to handle
the detection task. The proposal of Intelligent Transportation
Systems (ITS) has once again brought autonomous vehicles into
the public eye. Pedestrian detection can ensure pedestrians’
safety, and it is considered one of the most challenging problems
that urgently need to be solved. We have noticed that researchers
use various environments when publishing experimental results,
leading to unfair comparisons of experimental results. Under
different computing resources, the performance of the detector
may be weakened or enhanced. In this paper, we will compare
two representative detectors with the same computing power for
a fair comparison study, aiming to find out how experimental
settings affect the detector’s accuracy.

Index Terms—Intelligent transportation system, autonomous
vehicle, pedestrian detection, convolutional neural network.

I. INTRODUCTION

The possibility of widespread application of autonomous
vehicles has been significantly increased with the extensive
research on Intelligent Transport Systems-based communica-
tion and management protocols, such as [1]-[7]. Pedestrians
are essential transportation participants, and their safety is
non-negotiable. Pedestrian detection is one of the methods
to protect the pedestrians’ safety, which has a wide range
of application requirements and can be applied to driver
assistance systems and autonomous vehicles.

The development of deep learning and GPU computing
power has enabled more researchers and industries to work in
the field of computer vision and detection area. Many works
have been proposed in recent years, such as [8]-[12].

It can be found that most of these proposed detectors
(e.g., [13]-[17]) were trained and tested in unclear or different
environmental settings: such as training with varying amounts
of GPUs or some types of GPUs which are not in the
same level of computing power. The various experimental
conditions could have a considerable impact on the detector’s
accuracy and efficiency, which could obscure researchers’
work’s contribution. The GPUs are getting more powerful in
recent years, making it unfair when researchers directly cite
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previous experimental results and compare detectors published
in different years.

The relationship between the GPUs and detectors’ perfor-
mance is the elephant in the room. Using more GPUs with
more powerful computing ability can significantly boost the
detector’s accuracy. However, this would introduce a high cost
on GPUs, and consuming massive computing power may not
be compatible with the autonomous vehicles’ system require-
ments. The improvement of pedestrian detectors’ performance
should never rely solely on the use of greater computing
power.

In this paper, we train two representative detectors by
using the same environmental hardware on the CityPersons
dataset [18] and the ETH dataset [19]. We compare these two
chosen detectors under the same environmental and evaluation
settings to make a fair comparison and explore how experi-
mental settings and parameters could affect the performance.

II. RELATED WORK

Pedestrian detection highly relied on traditional machine
learning methods before Faster R-CNN achieved promising
performance, such as [20] and [21]. Traditional machine
learning methods apply the pre-defined hand-crafted feature
descriptor to the entire image and perform pattern matching.
Differently, CNN-based methods enable the detector to learn
the feature of the target from the given dataset.

We review the existing detectors from two aspects, one is
from the number of stages, and the other is from the usage
of anchors. Detectors can be divided into one-stage detectors
and two-stage detectors.

The detection task is a combination of classifying and
locating. The most classic and representative two-stage de-
tectors include the R-CNN family [22]-[24], which search for
the region of interest (ROI) at the first stage, and perform
classifying and locating base on the ROI results at the second
stage. Differently, one-stage detectors predict the class and
location simultaneously, without searching ROI proposals first,
e.g., YOLO-v1 [25] and SSD [26].

The concept of ‘anchor’ was proposed in RPN [24], and it
has been widely adopted since the appearance. The anchor
mechanism replaces blindly searching the windows on the
entire image by generating anchor boxes with pre-defined
scales and ratios at each fixed anchor points. The anchor
mechanism is used to predict ROI proposals in two-stage



detectors (e.g., Faster R-CNN [24] and Mask R-CNN [27])
and candidate bounding boxes in one-stage detectors (e.g.,
SSD [26] and YOLO-v2 [28]).

Instead of applying anchors into usage, YOLO-vl [25]
achieved an anchor-free detecting pipeline by dividing the
images into grids to generate corresponding predictions.
DeNet [29] avoids the use of the anchor mechanism by
predicting the four keypoints of the target. Another anchor-
free pedestrian detector TLL [30] was designed to predict top-
bottom points and the topological line.

III. DISCUSSION ON THE DETECTORS

Before we present the experimental settings and results, we
would like to introduce the detectors we choose and explain
why we choose them. We list some key characters of the
methods we use in the Table I.

TABLE I
DETECTORS COMPARISON.

| Detectors | Year | # of stages | Anchor |
Faster R-CNN | 2015 2 Yes
CSP 2019 1 No

We adopt Faster R-CNN [24] (with FPN [31]) and CSP [17]
in our comparative experiments. We demonstrate the model
structure in Figure 1, and we list the environmental settings
in Table III.

o Faster R-CNN [24] As one of the most representative
two-stage detectors, Faster R-CNN is still widely used
today. The concept of ‘anchors’ comes from Faster R-
CNN. To better take advantage of the framework, we
use FPN [31] to enrich the extracted features, which
will be called Faster R-CNN + FPN in the rest of this
paper. By proposing a pyramidal hierarchy network, FPN
leverages the rich semantic features in high-level feature
maps and fine localization information in high-resolution
feature maps. We apply HRNet [32] and ResNet-50 [33]
as the backbone respectively to find out the influence of
backbones and understand the performance of this classic
two-stage detector.

o CSP [17] By predicting the centerness of the pedes-
trian and the corresponding scales, the authors designed
this one-stage anchor-free detector. Unlike the Corner-
Net [34], which took advantage of two corner keypoints,
the success of CenterNet [35] indicated the importance of
the center keypoint. The appearance of CSP emphasized
the effectiveness of the object’s centerness.

It is found that more detectors are designed as one-stage
detectors, and many anchor-free detectors have appeared,
especially since 2019. These two selected detectors can cover
a variety of different categories.

IV. EXPERIMENT

We perform the experiments on the CityPersons dataset [18]
by training them with proper hyper-parameters and evaluate

their accuracy on seven setups of the CityPersons validation
set. We apply the detectors trained on the CityPersons dataset
to the ETH dataset [19] to investigate their performance on
unseen data.

A. Experimental settings

In the experiment, all the detection models are trained on
a single Nvidia GeForce GTX 1080 Ti GPU, with 11GB
GPU memory. We adopt the official work provided by au-
thors of [17] and the MMDetection toolbox [36] to build up
the experimental models and configurations. We do not pre-
train these models on any other datasets before training on
the CityPersons training set. Training configurations of each
detector are listed in Table III. To fully utilize our GPU’s
computing ability and obtain the best accuracy, we set the
batch size to 2 if the GPU memory is sufficient. We have to set
the batch size to 1 for the detector Faster R-CNN + FPN. We
adjust the learning rate and the number of epochs by observing
the convergence of the training loss. We reduce each detector’s
training images to a different resolution to make it compatible
with GPU memory.

B. Evaluation

1) The CityPersons dataset: We test detectors on the
CityPersons validation set with original image resolution
10242048, and the detailed configuration of each setup is
listed in Table II. The unified evaluation metric is M R~?2 (the
lower, the better), which is the mean value of nine derived
miss rates with the corresponding FPPIs (false positive per
image) evenly located in [1072,10°] within the log-space. The
evaluation results on the CityPersons dataset are shown in
Table IV, and we plot the bounding boxes on the same image
from the CityPersons dataset in Figure 3 for visualization.

HRNet achieved promising accuracy performance in [32],
indicating its powerful feature extraction capabilities. In our
experiments, the resolution of training images of Faster R-
CNN + FPN with ResNet-50 is larger than that of Faster
R-CNN + FPN with HRNet. They achieve comparable per-
formance, especially on Reasonable, Bare, and Partial setups.
Our experimental results show that the image resolution will
affect the accuracy of the detector.

We list the experimental results from the authors in Table V.
The authors of [18] did not provide clear information about the
GPU used in the Faster R-CNN experiment, which prevents us
from making comparisons. We find by using four GPUs, CSP
obtained a M R~2 of 11.0% on the Reasonable setup, which
is 1.82 % better than the result obtained on one GPU. The
performance of CSP on Small and Partial setups dramatically
drops when it is trained with 1 GPU.

In general, when GPU computing power and memory are
limited, there is a trade-off among backbone choices, image
resolution, batch size, and other hyper-parameters. This is
an important issue that needs to be solved before applying
deep learning-based detectors to vehicular GPUs and support
autonomous vehicles in real-world scenarios.
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Fig. 1. Model structure illustrations of the chosen detectors.
TABLE 11
EVALUATION SETUPS OF THE CITYPERSONS DATASET [18]
| Reasonable | Bare Partial Heavy Small | Medium | Large
Height (in pixels) [50, +o0] [50, +o00] | [50, +o00] | [50, +o0] | [50, 751 | [75, 100] | [100, 4+o0]
Visibility ratio [0.65, 1] [0.9, 1] [0.65, 0.9] [0, 0.65] [0.65, 1] | [0.65, 1] [0.65, 1]
2) The ETH dataset: The ETH dataset [19] has 1804
TABLE IIT

images in total, and the image resolution is 480 x 640, which

EXPERIMENTAL SETTINGS OF DETECTORS’ TRAINING. . . .
is much smaller compared to the image resolution of the

CityPersons dataset. In order to compare the generalization
| Backbone | Image Resolution | Batch size |

Faster
Faster

ability of each detector, we directly apply the trained detectors
R-CNN+FPN | HRNet 256x512 1 . . .
R-CNN4FPN | ResNet.50 608 1216 ] to the ETH dataset w.1thout any other tralmpg or fine-tuning.
CSP ResNet-50 640 1280 2 We plot the evaluation results on the Fig. 2. It can be
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observed that Faster R-CNN + FPN with ResNet-50 achieves
the best performance, and Faster R-CNN + FPN with HRNet
achieves a moderate performance. The performance of CSP
drops significantly, compared with Faster R-CNN + FPN.
- The generalization ability of pedestrian detectors is critical
A when they are applied to autonomous driving system, enabling

them predict correct results on unseen data. Currently, most

pedestrian detectors do not have strong generalization ability,
z and this is one huge challenge in the pedestrian detection area.

L V. CONCLUSION

\ In this comparative study paper, our motivation was to
L \ compare two different detectors on the same environmental
N settings. We explained the reasons why we chose these two
45.8% CSP “ representative detectors in our study. From the evaluation
|~ - 387% Faster R-CNN + FPN (HRNet) | %t results, we found the backbone and image resolution can

= = 36.4% Faster R-CNN + FPN (ResNet) "\

: : : ‘ affect the detector’s accuracy. The trade-off of these hyper-
parameter settings and network architectures is highly related
to the model complexity, which can be limited by the GPUs,
Fig. 2. Evaluation results on the ETH dataset [19] especially vehicular GPUs. Another open challenge in the

pedestrian detection area is the generalization ability, as we

1073 1072 10t 10° 10t
false positives per image



TABLE IV
EXPERIMENTAL RESULTS ON THE CITYPERSONS VALIDATION SET. THE RESULTS IN BOLDFACE INDICATE THE BEST ON THE CORRESPONDING SUBSETS.

\ | Reasonable(%) | Bare(%) | Partial(%) | Heavy(%) | Small(%) | Medium(%) | Large(%) |

Faster R-CNN+FPN (HRNet) 16.83 11.35 16.51 49.65 22.64 7.75 9.84
Faster R-CNN+FPN (ResNet) 16.23 11.16 16.58 51.91 24.64 9.42 8.76
CSP 12.82 8.27 12.75 51.14 19.23 4.78 7.27

TABLE V

WE CITE THE EXPERIMENTAL RESULTS ON THE CITYPERSONS VALIDATION SET FROM ORIGINAL AUTHORS.

\ [ GPU | Reasonable | Bare | Partial | Heavy | Small | Medium | Large |
Faster R-CNN [18] - 15.4 - - 64.83 25.6 7.2 79
Faster R-CNN + Semantic [18] - 14.8 - - - 22.6 6.7 8.0
Faster R-CNN + ATT-self [10] - 20.93 - - 58.33 - - -
CSP [17] 4 GPUs (1080Ti) 11.0 7.3 10.4 49.3 16.0 3.7 6.5

(c) CSP

Fig. 3. Visualization results on the CityPersons dataset.

demonstrated in the evaluation results on the ETH dataset. In
future, we will work on improving the generalization ability
of pedestrian detectors.
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