
SRFog: A flexible architecture for Virtual Reality
content delivery through Fog Computing and

Segment Routing
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Abstract— The advent of softwarized networks has enabled
the deployment of service chains of virtual network components
on computational resources from the cloud up to the edge.
The next generation of use cases (e.g. Virtual Reality (VR)
content delivery services) puts even more stringent requirements
on the infrastructure, calling for considerable advancements
towards fully cloud-native architectures. This paper identifies
important challenges for next-generation architectures to support
low latency applications throughout their execution life cycle. A
flexible architecture named SRFog is presented for the support of
VR content delivery in next-generation networks. The approach
combines Fog Computing (FC) concepts, an extension of cloud
computing, with Segment Routing (SR), which leverages the
source routing paradigm. Service Function Chaining (SFC) is also
discussed as a major functionality for the proper orchestration
of emerging use cases. Early implementations show promising
results when deploying container-based VR chains in a flexible
FC architecture.

Index Terms—low latency, VR, Fog Computing, Segment
Routing, Micro-services, Orchestration

I. INTRODUCTION

The deployment of high-bandwidth and low latency 5G
network infrastructures has been driving the digital transfor-
mation of network services in Industry 4.0, Smart Cities,
Healthcare, or autonomous cars. To overcome the hurdles to
arrive at truly End-to-End (E2E) services which meet the
even more stringent requirements (e.g. higher bandwidths,
lower latencies) of future applications, next-generation (6G)
networks have to provide distributed orchestration and man-
agement features to integrate a continuum of computing
resources [1] with a wide variety of ultra-broadband (radio
access and core) and high-precision network links. Bandwidth
requirements for Augmented and Virtual Reality (AR/VR),
or Holographic Type Communication (HTC) applications will
rise well above 1Tbps, while their interactive experiences
require sub-millisecond latency [2]. Also, the massive growth
of the Internet of Things (IoT) is pushing the boundaries
of network architectures by transforming everyday objects
into smart connected devices requiring high reliability and
low latency guarantees. The deployment of these applications
has been hindered by the inefficiency of today’s network
architectures and protocols to support their requirements [3].

Current architectures lead to low performance and poor Qual-
ity of Experience (QoE) to end-users. To ensure low E2E
service latency for all emerging use cases, drastic changes
in current network architectures need to take place. Several
improvements are currently being implemented at the Radio
Access Network (RAN) and core alongside novel networking
systems incorporating Software-defined networking (SDN) [4]
and Network Function Virtualization (NFV) [5] concepts to
interconnect resources from the cloud up to the edge, helping
to bring low latency services to reality. Nevertheless, novel
solutions are needed to bring the latency down to fully support
the requirements of emerging use cases.

This paper proposes a flexible architecture to support VR
content delivery in next-generation networks called SRFog,
leveraging on Fog Computing (FC) [6] and Segment Routing
(SR) [7]. FC distributes resources in the network area by
bringing processing power, storage, and memory capacity
closer to devices and end-users, deploying such resources on
edge and fog locations. SR provides higher flexibility and
agility by adopting the source routing paradigm. Meaning, a
node steers a packet through an ordered list of instructions
placed into packet headers. SRFog applies SR to enable
fast routing through a service chain deployed at different
infrastructure levels (i.e. edge, fog, cloud). The concepts of
Service Function Chaining (SFC) and Micro-services are also
adopted in the SRFog architecture since both technologies are
promising approaches to enable low latency service delivery
in future networks.

The next section revisits the state-of-the-art on low la-
tency service delivery in softwarized networks and identifies
important challenges. Afterwards, the SRFog architecture is
presented in Section III alongside two main topics: the allo-
cation of container-based VR chains and the integration of
SFC with SR to enable fast and scalable orchestration of
VR applications. Section IV focuses on open challenges and
future directions while concluding remarks are presented in
Section V.

II. STATE-OF-THE-ART & CHALLENGES

Several steps in the service execution causing increased
delays have to be recognized as potential barriers to low E2E
service latency. First, a fast and scalable E2E connection setup978-3-903176-32-4 © 2021 IFIP



is required, typically across access and core network domains.
Distributed (hierarchical) SDN architectures are considered
better candidates than current centralized control architectures
[8]. However, further research is needed to understand how
such architectures can incorporate local or global network
measurements and analysis to steer the message routing, and
how service-level objectives can be enforced in the network.
Along the network path, fog-cloud resources need to be set up
to execute several micro-services of a service chain, leading to
flexible deployments supporting low latency service delivery
[9]. The SRFog architecture is detailed in Section III-A.
Current service allocations are mostly orchestrated in a static,
centralized manner and typically focus on optimizing energy
and cost efficiency [10]. Further work is needed to support
dynamic resource provisioning, optimize transport and com-
puting latency, and take specific requirements of future low
latency applications into account. Section III-B features this
topic.

In turn, once flows are set up, network paths are chosen
and service components installed, low latency communication
protocols are necessary to efficiently deliver content to end-
users. New IP protocols [11] have also included latency-
aware features in these architectures, such as Deterministic
Networking (DetNet), Time-Sensitive Networking (TSN) and
SR over IPv6 (SRv6) [12]. DetNet assures bounds on latency,
delay variation, and packet loss for prioritized services. It
can support high reliability and low latency services such
as autonomous driving and factory automation, by allowing
‘soft’ slicing that considers the desired service performance.
TSN provides time synchronization and time-aware, reliable
scheduling for real-time communication with non-negotiable
time boundaries for E2E transmission latencies, while SRv6
replaces tunneling with IP options and enables steering of
packets belonging to a flow via a set of instructions. These
are referred to as (topological or service-based) instructions
or ‘segments’. These segments can (i) enforce flows through
specified strict or loose paths, (ii) allow the selection of a link,
buffer, or a Quality of Service (QoS) treatment within a node
and (iii) direct a packet through an ordered sequence of ser-
vices, enabling flexible and fast service chaining. Section III-C
discussed the integration of SR and SFC.

Besides underlying IP layer protocols, application and trans-
port layer protocols need to be tuned towards low latency
services. Many Web-based applications employ HTTP (over
TCP), which supports features to decrease latency, such as
request multiplexing and pipelining, and server push (since
HTTP/2). Recent developments towards HTTP/3 fix head-of-
line blocking by using the transport protocol QUIC, thus po-
tentially reducing start-up latency. While the abovementioned
techniques aim to reduce delays, application- or network-
specific optimizations can also mask or compensate for de-
lays. By gathering, analyzing, and learning from network
and application data, context changes can be predicted and
actions executed beforehand accordingly. Changing network
characteristics, user movements, data access patterns, or sensor
locations can therefore be dealt with appropriately by setting

up new routes or selecting and transporting different content
at different quality beforehand. In addition, the integration of
intelligence at the edge will lead to Machine Learning (ML)-
driven networks able to support highly dynamic management
updates under varying network circumstances, meeting the
requirements of cloud-native applications and services over
the continuum of virtual resources.

III. SRFOG: TOWARDS LATENCY-AWARE SFC
ALLOCATION

This section presents the SRFog architecture for emerging
use cases in next-generation networks based on FC and SR.
SFC allocation for fog-cloud infrastructures is also discussed
in detail. Furthermore, the integration of SFC and SR is
described, in which SRv6 can help achieve fast routing in
service chains through the source routing paradigm. Finally,
a container-based VR SFC has been designed to serve as an
example of how service allocations are performed in SRFog.

A. SRFog Architecture

The advent of novel architectural paradigms enables the
deployment of service chains on computational resources from
the cloud up to the edge, providing several benefits such as
low latency and mobility support. Fig. 1 presents a high-
level view of the SRFog network infrastructure, showing its
key architectural concepts based on FC and the micro-service
paradigm. SRFog provides resources throughout the network
area, including the core and the edge. In contrast to centralized
clouds, fog and edge nodes are distributed across the network
to act as intermediate nodes between end devices and the
cloud. These fog nodes or edge locations bring processing
power, storage, and memory capacity closer to devices and
end-users. The main difference between edge and fog nodes is
where the processing takes place since the first usually is the
end device itself while fog nodes are intermediate locations
close to end devices. All network locations are Points of
Presence (PoPs) consisting of networking equipment such as
routers, switches, and computing resources (e.g. servers).

In addition, SRFog follows the micro-service pattern [13].
An application is decomposed into a set of loosely coupled
services that can be developed, deployed, and maintained
independently. Each service is responsible for a single task
and communicates with the other services through lightweight
protocols. Containers are currently the most promising alterna-
tive to the traditional monolithic application paradigm, where
almost everything is centralized and code-heavy. Due to their
low resource usage and high portability, containers are also
the main alternative to conventional Virtual Machines (VMs).
With their massive adoption, orchestration solutions for con-
tainerized services have been developed by IT companies
and open-source communities. Among those, the most widely
used today is Kubernetes [14], an open-source orchestration
platform for automatic life cycle management of containerized
applications. All SRFog nodes are based on the Kubernetes
architectural model shown in Fig. 2. Kubernetes follows the
master-slave model, where at least one master node manages



Fig. 1: High-level view of the SRFog network infrastructure.

Fig. 2: The SRFog Kubernetes-based architectural model.

containers across multiple worker nodes (slaves). In SRFog,
master nodes are deployed in cloud locations, while worker
nodes are set up in fog or edge locations. Cloud nodes typically
have more computing power to operate all software elements
composing a master node. Kubernetes already provides several
components (e.g. API server, Kubelet, Controller manager)
to handle the complete life cycle workflow of containerized
applications. SRFog extends the Kubernetes architecture with
two software components, an SFC controller and an SR
Manager. The next section describes how the SFC controller
performs container-based service chain allocations.

B. Container-based SFC allocation

Although Kubernetes employs containers as the underlying
mechanism to deploy micro-services, additional layers of
abstraction exist over the container runtime environment to
provide scalable life cycle orchestration features. In Kuber-
netes, micro-services are often tightly coupled into a group
of containers. This group is the smallest working unit in
Kubernetes, called a Pod, that represents the collection of con-
tainers and volumes (storage) running in the same execution
environment [14]. Based on service requirements and available

resources, the master schedules a pod on a specific node. Then,
the assigned node pulls the container images from the image
registry if needed and coordinates the necessary operations to
launch the pod. The Kube-scheduler (KS) assigns a node to
each pod. The KS is the default scheduling component in the
Kubernetes platform, responsible for deciding where a specific
pod should be deployed. Although Kubernetes supports policy-
rich and topology-aware features, the KS merely considers
the number of requested resources on each host, thus only
optimizing the scheduling for hardware cost (i.e. CPU and
RAM usage rates) without considering latency. Therefore, in
our previous work, a latency-aware scheduler for Kubernetes
has been proposed in [15] as a Proof of Concept (PoC). An
extension followed in [16], presenting an SFC controller for
the efficient provisioning of container-based service chains
focused on optimizing resources and reducing E2E latency.
The SFC controller extends Kubernetes functionalities by
enabling the allocation of container-based service chains based
on latency and location. Results have proven that the proposed
approach can significantly reduce network latency while re-
specting bandwidth guarantees. The SFC controller is included
in the SRFog architecture to deploy service chains based
on E2E latency reduction. Recently, a Mixed-Integer Linear
Programming (MILP) model [10] addressed fog-based SFC
allocation considering service chaining concepts (e.g. services
with different replication factors) and multiple optimization
objectives. Results have shown differences between the as-
sessed provisioning strategies (i.e. low latency vs high energy
efficiency). Thus, as early work, the previously presented
MILP formulation will be extended and adapted for VR
content delivery in the SRFog architecture. The model will
serve as a benchmark for future heuristics implemented in the
SFC controller. The integration of SFC and SR is explained
next.

C. Service Function Chaining based on Segment Routing

Kubernetes provides a feature called Service, which is an
abstract way to define a logical set of pods and expose
applications running on them as a network service [14].
By applying this abstraction, there is no need for a service
discovery mechanism since pods have their own IP address and
a single Domain Name System (DNS) name is assigned to a set
of pods, which makes load balancing a straightforward process
across them. The rationale behind this abstraction comes from
the pods’ volatility as they may be terminated, meaning that
pods running at a certain moment may be different than those
providing the service a few days later without requiring user
awareness. However, this means that Kubernetes networking
is currently reliant on assigning an IP address to each pod,
leading to several issues (e.g. containers IP dependencies,
IPv4 address exhaustion). Additionally, Kubernetes does not
provide any networking solution but instead relies on third-
party plugins to handle container networking. Thus, a novel
component named SR Manager is presented to enable SRv6
for container networking in SRFog. SR leverages the source
routing paradigm, in which a node steers a packet through



Fig. 3: The envisioned container-based VR service chain.

Fig. 4: High-level view of an illustrative SFC allocation.

Fig. 5: Example to illustrate the application instantiation
process in SRFog.

an ordered list of instructions, called segments. A segment
can include several types of instructions (e.g. topological or
service-based information), which are then placed as path state
information into a packet header at an ingress node. Several
segments can create unconstrained network paths represented
by the so-called Segment Lists. Information flows from packet
headers, making nodes stateless and significantly reducing the
complexity of forwarding tables, simplifying traffic engineer-
ing and management across network domains. SR is highly
responsive to network changes, making networks more agile
and flexible. The main goal of integrating SR and SFC is to
encode the service chain path in packet headers. Recent work
addresses the integration of SR concepts into service chaining
[17]. Next, a container-based VR chain has been designed to
highlight the integration of SFC and SR in SRFog.

D. Virtual Reality (VR) content delivery use case

Fig. 3 shows an example of a container-based VR SFC while
Table I shows the correspondent deployment requirements.
Latency is the most important requirement of VR applica-
tions since human perception requires accurate and smooth
movements. High latency leads to poor VR experiences and
contributes to motion sickness [18]. VR developers and in-
dustries agree that application round-trip latency should be
less than 20 ms for the Motion-To-Photon (MTP) latency
to become imperceptible [19]. Current locally deployed VR
systems are fine-tuned to meet the 20 ms threshold in their
Head-Mounted Displays (HMDs). Based on the presented VR
SFC, Table II presents estimated latency values for all com-
ponents. Sensing and motion capture take around 1 ms, while
the network infrastructure is the main contributor to latency
in current deployments. Data needs to traverse the network
being queued, processed, and transmitted by an increasing
number of routers. This procedure adds notable delays de-
pending on the state of the network, making it hard to predict.
For instance, reaching centralized cloud-based VR services
would take more than 40 ms, resulting in high E2E latency
which would disrupt immersion and create discomfort for end-
users. Computing and display further contribute to this delay.
Even considering high-end hardware and novel processing
techniques, sampling, rendering, and displaying will take 5
to 8 ms [19]. When adopting SRFog, E2E latency between
11 - 20 ms is expected, overcoming the current limitations of
centralized clouds by providing services closer to end-users as
movement prediction services can reduce the network latency
by proactively fetching content. VR components hosted in a
fog-cloud infrastructure, combined with forthcoming display
and computing technologies, can achieve comparable latency
to current local deployments. Another relevant requirement
is the network bandwidth, the throughput required to stream
video feeds to a user. The resolution of a VR immersive video
viewed using an HMD needs to reach the detail the human
retina can perceive. 8K quality and above is necessary for
photo-realistic VR, as a 4K VR video only has 10 pixels per
degree, equivalent to 240p on a TV screen [18]. Also, smooth
experiences require a high refresh rate of at least 60 fps.
Researchers consider that a network throughput of at least 400
Mbps is needed to deliver immersive VR video experiences.
Thus, scheduling mechanisms should not consider E2E latency
as the only factor in the service allocation. Network bandwidth
and resource usage also play a key role in optimizing VR
content delivery.

Fig. 4 depicts a high-level view of the VR SFC allocation,
while Fig. 5 presents the application instantiation process
based on the SFC controller and the SR Manager components.
As previously stated, the SFC controller optimizes pod alloca-
tions based on E2E latency, while the SR Manager steers the
traffic via SRv6 policies. These policies follow the segment
list instructions calculated based on pod allocations. For each
user accessing the service chain, a segment list is established
with the optimized sequence of service-node combinations



TABLE I: Deployment properties of the VR Use Case.

Application Component Pod Name Chain
Position

Target
Location

Min. Bandwidth
(Mbps)

CPU
(cpu)

RAM
(Mi)

Service
Slots

Replication
Factor

VR

Sensing sceneMerg 1 Edge/Fog 750.0

1.0 1.0

10 1
Computing quality 2 Any 500.0 8 1
Computing movePredict 3 Any 500.0 6 2

Display videoCrop 4 Edge/Fog 400.0 10 2

TABLE II: The expected latency of VR components in differ-
ent approaches (in ms) [18], [19]

Component Local VR Cloud-based VR
(centralized)

VR chain in SRFog
(distributed)

Sensing 1 1 1
Network 2 (local) 40 (cloud) 2 - 7 (edge/fog)
Computing 5 - 7 5 - 7 5 - 7
Display 5 5 3 - 5
Total 13 - 16 51 - 53 11 - 20

that their packets should follow to access the deployed chain.
These combinations follow developer guidelines instructed via
service slots. This information is available via pod configu-
ration files [16]. For instance, since each user requires one
slot, for the sceneMerg pod with ten service slots, each pod
instance can host ten users. The SR Manager defines the path
for each user based on these guidelines. Then, monitoring
services collect data on the deployed pods (e.g. resource usage,
bandwidth usage) to help the SRFog adapt the predefined paths
if needed due to increased demand. To evaluate the impact
of E2E latency, two opposing strategies have been assessed
for the VR chain allocation in SRFog: reducing E2E latency
and minimizing deployment cost. Both objectives are based
on the previously mentioned MILP formulation [20]. A set of
applications A composed of micro-services S are allocated on
nodes N . Each application a has a given SFC identifier ID.
All micro-services have a maximum number of replicas given
by β. The replication factor for a particular micro-service s for
the application a with the SFC identifier id is given by βa,id,s.
Each micro-service s has a CPU and a memory requirement
represented by ωs (in cpu) and γs (in Mi) respectively. Also,
each micro-service s has a minimum bandwidth requirement
represented by δs (in Mbps). A binary placement matrix P is
used to represent in which node n, the replica βi of a micro-
service s has been allocated. Additionally, $n corresponds to
the associated node weight (e.g. fog nodes have a lower weight
than cloud nodes). The deployment cost minimization can be
expressed as shown in Eq. 1. The MILP has been extended
to consider E2E latency from the scene to each user. Due to
space restrictions, its formulation has not been included, but
it will be addressed as future work. Both objectives have been
executed 20 times considering confidence intervals of 95%.
As shown in Fig. 6, differences of 25 ms between the two
strategies are already expected for one user request.
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Fig. 6: The E2E latency for the VR use case for both strategies.

∑
a ε A

∑
id ε ID

∑
s ε S

∑
βi ε β

∑
n ε N

P a,ids,βi
(n)×$n × ωs × γs × δs (1)

E. Summary

In recent years, FC architectures demonstrated the potential
to enable emerging use cases through their significant benefits
compared to centralized infrastructures (e.g. mobility support,
interactivity, backhaul bandwidth conservation). Container-
based VR service components (e.g. quality scaling, movement
prediction) allocated in the SRFog architecture at a proper
location will help achieve low latency service delivery to
provide immersive VR experiences to end-users comparable
to current VR deployments. This work presents an integrated
solution for VR content delivery in next-generation networks
that goes beyond existing research that only addresses a subset
of the requirements. The SRFog architecture aims to solve
resource allocation and routing by optimizing the allocation
of VR service chains based on E2E latency reduction and
applying SRv6 to provide a flexible and scalable approach to
steer traffic in container-based service chains, respectively.

IV. OPEN CHALLENGES

Open challenges remain before relying on current man-
agement and orchestration practices to solve low latency
service delivery in next-generation networks. Networks and
services keep evolving, with new protocols and technologies
introduced to tackle individual problems and improve over-
all QoS and cost-efficiency. Reinforcement Learning (RL)
methods have already proven their potential applicability to
resource allocation issues for years. However, their perfor-
mance is deeply interconnected with the RL system setup.



The interactions between the RL agent and the environment
affect the performance of these algorithms. The problem
complexity and constraints can grow exponentially depending
on the considered use case (e.g. number of PoPs, number
of services), leading to a computationally hard problem. The
advantage of RL over centralized modeling approaches is that
no information is needed about the problem beforehand. As a
PoC, an RL environment has been developed to teach agents
how to allocate service chains in FC, performing comparably
to state-of-the-art ILP formulations while being more scalable
[20]. The existing RL PoC will be adapted for the VR use case.
Another challenge is mobility support. No generic approach
has yet been proposed to deal with service guarantees when
end-users or devices move in the network. FC aims to solve
these challenges focused on IoT use cases. SRFog adopts FC
concepts to position itself as an alternative, addressing the
mobility of multiple devices (e.g. VR users and sensors). The
evolution beyond 5G will introduce new use cases requir-
ing ultra-high bandwidth. Future VR use cases require real-
time operations in a fully-immersive environment, in which
throughput availability will play a major role due to its data-
hungry nature. Also, the network would benefit from novel
mechanisms to decide the best routes for the packets given
context information (e.g. user location, mobility patterns) and
requested user QoE. SR is a solution towards fast routing in
highly complex service chain structures, while providing high
resilience guarantees against attacks, unexpected failures, and
incorrect sources of information.

V. CONCLUSIONS & FUTURE WORK

Many next-generation applications, deployed as micro-
service chains on softwarized infrastructures, have latency
requirements of a few milliseconds, which need support
throughout their execution life cycle. Fast flow setup, low
latency transport, and intelligent application-level predictions
are indispensable. Management and orchestration functionali-
ties need to react timely to changing network characteristics,
computational load, and usage patterns. This paper presents
a flexible architecture named SRFog for emerging use cases
based on FC and SR. SRFog aims to optimize the allocation
of service chains based on E2E latency reduction and applying
SRv6 to provide a flexible and scalable approach to steer
traffic in container-based service chains. An evolution from
static, modeling-based approaches towards highly dynamic
and scalable techniques, fed by pervasive network and appli-
cation telemetry, shows promising results. Additional research
is required to optimize orchestration systems and successfully
incorporate quality of experience parameters. As future work,
the development of an RL environment is planned to evaluate
the performance of applying RL to allocate container-based
VR services in SRFog and potentially incorporate RL agents
in the SFC controller.
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