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Abstract—Indoor location services are of great relevance for
several applications ranging from mobile marketing and naviga-
tion to healthcare technologies. Wireless technologies provide a
method of gauging performance indicators through the capturing
of signals emitted by mobile devices. Since the Bluetooth technol-
ogy has seen a steady growth over the years, providing a viable
alternative to 802.11 protocols, this paper presents BluePIL, a
fully passive system for Bluetooth device identification and locali-
zation designed as a distributed streaming architecture delivering
results in near-real-time. This approach enables a contact and
activity tracing with different data privacy dimensions.

BluePIL relies on parts of the Bluetooth address for device
identification and a modified multi-lateration algorithm using a
path loss model for device localization. The results were obtained
using Ubertooth Bluetooth sensors and low-cost hardware (ASUS
Tinkerboard devices), showing that the approach achieves locali-
zation accuracies of 1m to 1.4m within a space of around 12m2

and 25m2, respectively.

I. INTRODUCTION

Measuring the interest in a product or service in a public
space, such as a trade show or a sales floor, is fundamentally
important for the evaluation of the marketing strategies of
businesses. Thus, the increasing adoption of portable devices
allows indoor positioning systems to be implemented [19]. The
analysis of such signals emitted by portable devices, such as
smartphones, laptops, and tablets, enables the extraction of po-
sitional data providing a method of gauging Key Performance
Indicators (KPI) through their passive or active capture [36].

Localization enables advanced security measures, such as
emergency routes, which can be planned dynamically by
analyzing the human crowd behavior. The efficient planning
of marketing strategies of business events or campaigns [31]
becomes possible due to an improved planning of public
spaces [36] or especially in the context of the SARS-CoV-2
outbreak, a proximity detection, contact, and activity tracking
relying on Bluetooth (BT) technology was designed [11], [13].

Typical tracking approaches rely on Wi-Fi Received Signal
Strength Indication (RSSI), such as 802.11g (2.4 GHz) or
802.11a (5 GHz), and on one hand driven by Wi-Fi Media Ac-
cess Control (MAC) addresses the calculation of distances and
an identification of individual devices, respectively [29], [19],
[6], becomes possible. On the other hand, to prevent a tracking
of devices and strengthen user privacy, MAC-randomization
strategies [30] have been proposed. It prevents the building

of a history of devices based on their MAC addresses. Thus,
strategies within Wi-Fi make the step of a device identification
complex. The fact that MAC-randomization does not exist in
classic BT [4], spawned the hypothesis that BT may provide
a viable alternative to Wi-Fi. While a fair amount of research
exists for the areas of unique identification and localization
of BT devices [1], [34], [17], [20], [31], most approaches
up to now do not allow for a system to be entirely passive,
i.e., not requiring any knowledge of and collaboration with
the target devices. This is the case especially for the area of
device localization, where approaches based on fingerprinting
and those based on a path loss model require prior calibration
using a target device.

By passively measuring at a given point in time the RSSI it
is possible to determine the uniqueness of devices tracked with
a certain likelihood. This is done by comparing the current
RSSI with a radio-propagation map, which contains expected
RSSI values [26] with a localization via the smallest error
distance. Most approaches estimate the device’s position in
space based on measurements of at least three observing points
(i.e., tri-lateration), whereas, for multiple observing points,
a multi-lateration technique is employed [1]. For example,
a Log-Distance Path Loss model can be used (cf. Section
II-D) to calculate radio signal decay over distance [2] and to
estimate the position of BT devices by modeling the finding
that the decay of a signal over distance is approximated by a
logarithmic function.

BluePIL introduces a distributed streaming architecture that
uses a node-sink topology to deliver near-real-time positioning
estimates of BT devices. It defines a data processing pipeline
accomplishing identification and localization tasks through
passively captured BT Basic Rate/Enhanced Data Rate (BT-
BR/EDR) packets in several steps, i.e., device identification,
signal strength filtering, signal strength merging, the locali-
zation algorithm, and location filtering. BluePIL is based on
a Python implementation running on low-cost hardware (e.g.,
Ubertooth Devices [16] and small computers, such Raspberry
Pi’s or ASUS Tinkerboard), and requires a minimal setup,
since configurations are handled automatically.

The remainder of this paper is organized as follows. Sec-
tion II overviews fundamentals. While Section III describes
BluePIL’s design and implementation, Section IV details the
evaluation. Related work is described in Section V followed
by Section VI summarizing the paper’s final considerations.978-3-903176-32-4 c© 2021 IFIP



II. BACKGROUND

Basic technical background covers BT, the BT sniffer, multi-
lateration, and the log-distance path loss modell as follows.

A. Bluetooth (BT) Packet Relevant Fields

Bluetooth (BT) is defined as a short-range communications
system intended to replace the cable(s) connecting portable
and/or fixed electronic devices [7]. Operating in the unlicensed
2.4 GHz Industrial, Scientific, and Medical (ISM) frequency
band, BT devices typically transmit up to a distance of 10 m
to serve this purpose.

24 bit 8 bit 16 bit

LAP UAP NAP

CID OUI

EUI-48
LSB MSB

Fig. 1: The Composition of BT Addresses [7]

A BT packet is composed of a 24-bit Company ID (CID)
and a 24-bit Organizationally Unique ID (OUI) (cf. Fig-
ure 1). Every BT device has a unique BT address, which is
constructed as a 48-bit Extended Unique Identifier (EUI-48)
according to the IEEE Standard for Local and Metropolitan
Area Networks [22]. The CID is vendor-assigned, whereas the
OUI has to be obtained from the IEEE Registrations Authority
and is assigned to individual organizations, manufacturers, or
vendors of BT technology. For BT networking, parts of the BT
address are differentiated by the Lower Address Part (LAP),
corresponding to the CID, and the 16-bit non-significant and
8-bit upper address parts, forming the OUI.

B. Ubertooth BT Sniffer

The Project Ubertooth is the passive sensing device used
for tracking BT packets. Ubertooth is a fully open-source
hardware and software package for wireless development
[16], suitable for experimentation with both BT Low Energy
(BTLE) and classic BT. Ubertooth allows access to lower
layers of Bluetooth protocols, which are normally hidden in
off-the-shelf Bluetooth modules, being available at low cost.

Fig. 2: The Ubertooth One Sniffer [18]

BT is a spread spectrum technology, meaning that it moves
over a wide range of frequencies during the transmission of
data. Most BT monitoring hardware, therefore, implements an
array of transceivers to observe all channels used by the BT
protocol simultaneously. Ubertooth One used in this paper (cf.
Figure 2), however, only uses a single transceiver, opting in-
stead to try and hop along with the hopping pattern of ongoing
BT connections in order to eavesdrop data being transmitted
[16]. Consequently, only BT classic is fully supported by
Ubertooth One.

C. Multi-lateration

Multi-lateration defines the process of geometrically esti-
mating an object’s position in space through distance measures
to at least three points. For the case where exactly three
points are used, it is called tri-lateration. Mathematically, this
corresponds to solving the following non-linear system, with
(xi, yi, zi) the position of the i-th point, (x, y, z) the position
of the object, and di the distance of the object to the i-th point.
For planar problems, this can be simplified further, leading to
the following system in two variables:

(x− x1)2 + (y − y1)2 = d21

(x− x2)2 + (y − y2)2 = d22

(x− x3)2 + (y − y3)2 = d23

(1)

This system is then often linearized by subtracting the
last equation from the other two, leading to the following
determined linear system of equations [25]. The solution is
reached for any higher order multilateration problems simi-
larly. In practice, distance measures are often imperfect and
the calculation of a solution for Equation 1 using a non-linear
optimization lead to better results.

D. The Log-Distance Path Loss Model

The Log-Distance Path Loss Model is a popular model for
radio signal decay over distance [2]. It models the finding
that the decay of a signal over distance can be approximated
by a logarithmic function. With RSS(d) the received signal
strength at distance d, d0 a reference distance, n the path-loss
coefficient, and Xσ a zero-mean Gaussian random variable, it
can be defined as follows:

RSS(d) = RSS(d0)− 10n log

(
d

d0

)
+ Xσ (2)

In practice, the reference distance d0 is often set to 1 m and
noise is ignored for the calculation, simplifying the model even
further. With RSSC , the received signal strength at 1 m, it can
then be expressed as follows:

RSS(d) = RSSC − 10n log(d) (3)

RSSC depends on each individual device and has to be
calibrated. The path-loss coefficient n is a factor depending on
the environment. For free-space, it is often chosen at n = 2.
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Fig. 3: BluePIL’s Data Stream Pipeline

III. BLUEPIL DESIGN

Figure 3 describe the BluePIL data pipeline, designed to-
ward a flexible deployment and operation of individual hard-
ware components (i.e., sensors, nodes, and sink). In general,
BluePIL is set up as a streaming data processing pipeline.
It allows for physical or virtual logical processing entities
in a system deployed to be configured in different ways.
BluePIL is based on a distributed node-sink setup (i.e., , a
system where many physical nodes send data to a single
physical sink), which is responsible for forwarding data to
an entity, where it can be stored or processed (e.g., the cloud).
Computations are performed as early as possible to avoid
bottlenecks downstream and to reduce the amount of data
forwarded by the sink.

A. Device Identification

The identification step allows the system to profit from the
fact that BTBR/EDR lacks any sort of MAC randomization
and avoids building a complex systems for fingerprinting
by using a unique identifier that is already available: the
BT address. The BT address consists of the LAP, the NAP,
and the UAP. While LAP is not not globally unique, it is
sufficient to identify devices under certain circumstances [32],
[7], [10]. As BluePIL’s goal is to identify mobile devices,
such as smartphones or tablets, it is important to account that
the five biggest smartphone manufacturers share 72% of the
smartphone market among them (as of the first quarter of
2020 [23]). Considering a the probability of encountering a
LAP collision as P (col), b the probability of encountering a
different OUI as P (dO), and c the probability of encountering
the same CID P (sC), it can be stated that encountering the
same LAP twice means that their OUI is different, since BT
addresses are globally unique. Thus, the probability of a LAP
collision is defined in terms of P (col) = P (sC) ∗ P (dO).
Even without any further optimization, this gives a fairly small
probability of around P (col) ≈ 5.96e−8.

Assuming that the 20 largest smartphone manufacturers
share (almost) the entire market, P (dO) ≈ 19

20 and P (col) ≈
5.66e−8 holds. Thus, if in a certain environment the system
would register 10,000 different BT addresses, for example,
the probability for a LAP collision would still only be at
1 − (1 − P (col))10,000 ≈ 0.06%. This is sufficient for the
potential use cases of BluePIL and, therefore, the LAP as
computed in [32] is used as a quasi-unique identifier. This

Fig. 4: (Left) RSSI Measurements for a Static Device Over
a Period of 5 mins Using an Ubertooth Sensor, and (Right)
RSSI Values Potentially Useful (Top Box/Green) and Those
Probably Caused by Multi-path Fading (Lower Box/Red)

identifier is also suitable to identify individuals carrying a
BT device, since all devices in a piconet use the master
device’s LAP for the construction of the access code, i.e., two
connected devices, such as a smartphone and a pair of BT
headphones, do not produce two separate identifiers.

B. RSSI Filter

RSSI values obtained from the sensor are pre-processed as
a first step. Figure 4 shows an example of RSSI measurements
for a static device over a period of five minutes. This example
illustrates the large amounts of high-frequency, high-variance
noise that must be taken into account, when working with this
type of data.

Existing research suggests that noisy parts of RSSI values
correspond to the lower set of values in the RSSI distribution.
[9], defines a unidirectional outlier filter to be effective. It
eliminates values that deviate from the maximum value by
a certain degree. [15] determines the maximum to be the
most effective filter for a pre-processing of RSSI values for
localization purposes. The signal that travels along the line
of sight, i.e., that is not influenced by multi-path fading,
covers the smallest distance and, thus, arrives at the sensor
with the highest strength. A combination of a maximum filter
followed by a mean filter is, thus, used in BluePIL. To account
for the streaming paradigm, these filters work in a purely
retrospective way, i.e., work with a local subset of the data
that only uses values from the past. To this end, a rolling
time window is implemented only containing values from the
interval [tc−∆t, tc], with tc being the current time and ∆t the
window size, which are determined by the update frequency
of the sensor and the expected variance of the data.
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C. RSSI Merger

To compute a location from pre-processed RSSI values, a
strategy has to be determined to merge data streams. This
part of the processing pipeline deals with two problems: First,
update cycles may differ between sensors, i.e., it cannot be
assumed that all sensors will have the same amount of data
available at a specific point in time. Second, data delivered by
sensors may be fairly sparse. This may be due to the quality
and capabilities of sensors themselves, due to environmental
factors or due to characteristics of the target device. The goal
of this step is to handle these problems, taking into account
the streaming paradigm implemented for BluePIL.

Interpolation is able to help with both the problem of dif-
fering update cycles and sparsity of data. In general, BluePIL
builds upon the assumption that update cycles of individual
sensors are short enough to legitimize the linear interpolation
between two data points as a valid estimation of the true state
of the system. To enable the inference of RSSI values at a
certain point in time through interpolation, measured values
must be available preceding and succeeding said point. The
signal strength merger will, therefore, delay the emission of
a value from a sensor until data is available from all other
sensors before and after the point in time, where the value
was received.

D. Localization Algorithm

Since BluePIL is completely passive, information is limited
to the signal strengths detected on an external sensor from
any ongoing BT connection. This rules out any fingerprinting-
based approaches, since they require the creation of a radio
map with the devices involved beforehand, leaving the path-
loss-model-based approaches. A path loss model requires
parameters n and RSSC to be defined beforehand in order
to calculate a distance from a signal strength value. Based
on existing research [12], [33], [9], it is viable to set n to a
fixed value based on the environment BluePIL is working in,
as long as this does not change drastically. n is dependent
on environmental factors and does not vary between devices.
The issue with RSSC , however, is not so easy to solve.
Transaction strengths may vary between BT devices. Due to
adaptive power control, they may even change over time for
the same device [7]. The choice of a fixed value for RSSC
is, therefore, not an option.

To approach this, a method was designed that dynamically
estimates the location of a BT device, and the necessary
channel parameters of the path loss model. With k the number
of sensors, (xi, yi) the location of the i-th sensor, (x, y) the
location of the target device and di the distance between the
i-th sensor and the target device, the following multilateration
problem is defined:

(x− xi)2 + (y − yi)2 = d2i , i ∈ 1..k (4)

Since it is not possible to compute di from the path loss
model directly due to the issues mentioned before, the path
loss model equation for distance is solved and then combined
with the multilateration problem above:

RSS(d) = RSSC − 10n log(d)

d = 10
RSSC−RSS(d)

10n

(5)

(x− xi)2 + (y − yi)2 = 10
RSSC−RSS(di)

5n , i ∈ 1..k (6)

A non-linear set of k minimizable equations is defined
in terms of x, y and RSSC , with RSSC the calibration
signal strength 1 m away from the target device and RSSi
the RSS measurement for the i-th sensor. This corresponds
to a problem that can be solved using a non-linear optimiza-
tion algorithm. BluePIL uses Levenberg-Marquardt (LM), an
iterative minimizer that can be described as a combination
of the Steepest Descent and the Gauss-Newton methods [27]
[28]. With p = (x, y,RSSC), the parameter vector, the
vector p+ is determined where fi(p+) is minimal for all i.
LM works through a local linearization of the non-linear set
of equations at a certain area of interest according to the
statement f(p + δp) ≈ f(p) + Jδp, where J is the Jacobian
matrix. For BluePIL’s set of equations, the Jacobian matrix is
defined as:

J =



∂f1
∂x

∂f1
∂y

∂f1
∂RSSC

...
...

...
∂fi
∂x

∂fi
∂y

∂fi
∂RSSC

...
...

...
∂fk
∂x

∂fk
∂y

∂fk
∂RSSC


=



2(x− x1) 2(y − y1) − log105n ∗ 10
RSSC−RSS1

5n

...
...

...
2(x− xi) 2(y − yi) − log105n ∗ 10

RSSC−RSSi
5n

...
...

...
2(x− xk) 2(y − yk) − log105n ∗ 10

RSSC−RSSk
5n


(7)

With the Jacobian defined, LM then iteratively adjusts p
by δp in a descending direction until convergence is reached.
To ensure that this convergence is to a global minimum, an
appropriate starting point p0 has to be defined. For the problem
posed, it is important that the minimum is found in the area
of overlap of all sensors. To guaratee this, p0 is chosen at the
center of the area spanned by the sensors and with a value for
RSSC that approximates the range of values that are expected
from the relevant device class.

p0 = (

∑
i xi
k

,

∑
i yi
k

,−30) (8)

Due to the limited resources available, the problem is
generally limited to four sensors, i.e. k = 4. The localization
algorithm may, therefore, also be referred to as a quadlatera-
tion algorithm in the following.

E. Localization Filter

After having calculated a location in the previous step, the
knowledge of the motion of a person carrying a BT device
can be used to improve these results further. Kalman filters
are a popular method for the improvement of positioning
calculations and have been used in many path-loss-based
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localization approaches [9] [37] [25]. They combine models
for the state of the system, the knowledge of previous obser-
vations, and models for the observation of states to estimate
the most plausible state of a system captured through noisy
observations.

To use a Kalman filter, it is necessary to define the fol-
lowing: the state transition model Fk, the observation model
Hk, the process noise covariance Qk, and the observation
noise covariance Rk. BluePIL uses a simple kinematic model
with (xk, yk) being current location’s coordinates, and (ẋk, ẏk)
the current velocity in x and y direction. The state vector is
designed in a similar manner to [37]:

sk =


xk
ẋk
yk
ẏk

 (9)

With ∆tk being the time difference to the last state estimate
sk−1, the following state-transition matrix is defined:

Fk =


1 ∆tk 0 0
0 1 0 0
0 0 1 ∆tk
0 0 0 1

 (10)

This expresses a belief that the subject carrying a BT
device will have moved in the direction gathered from the
last measurement and that the velocity of said movement
will not have changed abruptly. For BluePIL’s process noise
covariance, it is used a discrete white noise as suggested in
[24] and [3], under the assumption that the noise is a Wiener
process, i.e., is independent from previous time intervals and
constant over a time interval. With the variance σ2

v = 0.001
[24], it is defined as follows:

Qk =


1
4∆t4k

1
2∆t3k 0 0

1
2∆t3k t2k 0 0

0 0 1
4∆t4k

1
2∆t3k

0 0 1
2∆t3k t2k

 ∗ σ2
v (11)

Values obtained from the previous step in the pipeline are
used as observations, i.e., location estimates calculated through
the modified multi-lateration method. Therefore, the following
observation vector is used:

zk =

[
xk
yk

]
(12)

Then, the following observation matrix is defined to express
that the observation corresponds to the x and y coordinates of
the state vector:

Hk =

[
1 0 0 0
0 0 1 0

]
(13)

Finally, the observation noise covariance matrix is defined.
Those values used were determined experimentally and work
well with sensors used for this setting, while for a different
set of sensors, these values might have to be adjusted.

Rk =

[
0.3 0
0 0.3

]
(14)

Fig. 5: Evaluation Environments: (Left) Indoor and (Right)
Outdoor

Using the Kalman filter allows for the improvement of
values calculated in the previous step using the information
contained in previous values and the knowledge of the system
dynamics. It eliminates outliers and smooths these results
simultaneously, using plausibility as a determining factor.

IV. BLUEPIL EVALUATION

Experiments in an indoor and an outdoor space were
conducted to evaluate the effectiveness of BluePIL’s device
localization method. The respective scenes are shown in Fig-
ure 5. The indoor experiment was performed in a room at
that time being empty. This was ideal, since it allowed to
keep the amount of signal interferences as low as possible.
The outdoor experiment was done on a private terrace in a
residential area of Zürich. This allowed to decrease the amount
of signal interference from multi-path fading, since more space
was available. A 4.2 m×2.9 m area was designated to perform
the experiments. An Ubertooth One sensor was placed at each
of the four corners of this space and connected to a MacBook
Pro via a 2.5 m USB cable. Nine points were defined, where
static measurements would be carried out.

A. Experiment 1 — Indoor

This experiment was then conducted via a Nokia 7 Plus
smartphone being connected to a pair of JBL Reflect Flow
Bluetooth headphones. Music was streamed over said connec-
tion throughout the experiment to generate traffic that could be
captured passively. In order to keep the conditions as realistic
as possible, the headphones were placed in a test subject’s ears
and the smartphone in their front right pant pocket. The test
subject then stood for 5 min at each of the nine points indicated
in Figure 6. The four Ubertooth One sensors were configured
to record any packets that could be intercepted during that
time interval.

Experiment 1 used a static version of the localization
algorithm, which allowed for simplifying the merging of
data sets from individual sensors. The streaming interpolation
method used in the final processing pipeline could be omitted
and the data could be merged using a static interpolation
and re-sampling process. While this initial approach differs
slightly from the final system, it does not invalidate results
of this experiment as an evaluation of the device localization
method. This experiment also included an evaluation of the
filtering methods used in the BluePIL processing pipeline,

5



Fig. 6: Indoor Setup (x and y Axes in Meter)

TABLE I: Indoor Environment Experiment Results

True Point (m) Mean Estimated Mean Error Mean No.
Point (m, rounded) (m, rounded) Meas/Sensor

(2.10, 0.00) (1.798, 0.826) 0.888 258.5
(1.05, 0.00) (1.695, 1.692) 1.856 253.25
(3.15, 0.00) (3.193, 1.629) 1.718 206.25
(2.10, 1.45) – – –
(1.05, 1.45) (0.942, 1.522) 0.612 231.0
(3.15, 1.45) (2.761, 1.965) 0.671 299.5
(0.00, 1.45) (0.556, 1.238) 0.682 249.75
(1.05, 0.73) (1.118, 1.412) 0.822 190.75
(2.10, 0.73) (1.931, 1.809) 1.239 228.0
Overall Mean Error: 1.061 Overall Mean/Sensor: 293.63

namely the method used for signal strength filtering and
location filtering. The following variants were included for
signal strength filtering: a simple rolling mean filter, a rolling
maximum followed by a rolling mean filter, and a rolling
maximum followed by a rolling median filter. With regards
to location filtering, the improvement gained by the Kalman
filter was analyzed.

Tables I show the results of the indoor experiments. The av-
erage location estimation, the average localization errors, and
the average number of measurements per sensor for the Nokia
smartphone’s LAP are shown. Data for the point (2.1, 1.45)
is missing in these results from the indoor experiments, due
to the failure of one of the sensors that was only noticed after
the completion of the experiment.

B. Experiment 2 — Outdoor

A second experiment was designed to evaluate the BluePIL
device localization method under more challenging conditions
and to evaluate the system’s performance in its final streaming
architecture. A space of 5 m× 5 m was designated to perform
the experiment. An Ubertooth One sensor was placed at each
corner of the space, connected to an Asus Tinkerboard. A
MacBook Pro was used to control these nodes. 32 equally
spaced points were chosen in the 5 m × 5 m space (cf. Fig-
ure 7). A test subject holding a Nokia smartphone, which was
streaming audio to a pair of Bluetooth headphones, traversed
these points, resting at each one for one minute. During this
minute, data was captured by Ubertooth sensors.

TABLE II: Outdoor Environment Experiment Results

True Point (m) Mean Estimated Mean Error No. Localizations
Point (m, rounded) (m, rounded)

(1, 1) (0.989, 1.942) 1.263 36
(1, 4) (1.160, 3.108 1.255 33
(4, 1) (3.465, 3.188) 2.320 26
(4, 4) (3.227, 3.766) 1.065 26
(2.5, 2.5) (3.257, 1.703) 1.129 22
Overall Mean Error: 1.406 Mean No. Localizations: 28.6

A first approach repeated Experiment 1 under more chal-
lenging conditions. 32 equally spaced points were chosen in
the 5 m×5 m space. They are shown in Figure 7. Experiment
2 follows the same testing procedure as Experiment 1 (i.e.,
same test subject and moving pattern). This data was analyzed
ex-post with the same static version of the pipeline used in
Experiment 1.

Fig. 7: Outdoor Setup (x and y Axes in Meter)

This second step tested the system in its full streaming
implementation. To this end, five points were chosen in the
5 m × 5 m space. Again, the Nokia smartphone and the JBL
headphones were used to stream audio over BT. The near real-
time positioning pipeline was then run for 15 mins. During this
time, the test subject covered each of the five points, resting
at each point for 2 mins and taking a maximum of one minute
for the change between points. One minute of buffering time
was included at the beginning. These points were traversed
according to the following order: (1, 1) → (1, 4) → (4, 1) →
(4, 4)→ (2.5, 2.5).

Experiment 2 revealed concerns with the Ubertooth sensors
used. Most importantly, the performance regarding the number
of packets captured deteriorated significantly from Experiment
1. During the first part of the experiment, the number of
packets captured per second and per sensor was reduced
to about 0.38 compared to 1.0 from before. This created
problems in the location computation, especially in the first
part of the experiment: Due to the decreased number and the
fact that captured packets were not evenly spread throughout
the time interval, it occurred that, for some of the points,
there was no overlap between these points in time of the
RSSI measurements. Consequently, it was impossible to merge
the RSSI value streams between sensors. Only points that
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Fig. 8: Outdoor Experiment. (a) Point [1,1], (b) Point [1,4],
(c) Point [4,1], (d) Point [4,4], and (e) Point [2.5,2.5]

produced a sufficient overlap of a minimum of 10 s were,
therefore, analyzed for the first part of the experiment.

Table II and Figure 8 show results for the second part of
the experiment. It is noticeable that the streaming processing
pipeline handles the sparsity of sensor measurements better
than individual evaluations performed in part one of the exper-
iment. This is mostly due to the fact that the processing stream
is able to use values for interpolation that lie outside time
intervals defined as resting periods at each point. These results
are more accurate than for the first part of the experiment,
but worse than in Experiment 1 with an overall mean error
of 1.406 m. It should be noted, however, that the mean error
value for point (4, 1) forms an outlier, differing from the next
lower value by 1.057 m, more than five times the difference
between any other two points (0.198 m). This corresponds to
a pattern that was already observed in Experiment 1.

C. Discussion of Results and Findings

All evaluations were conducted in real-world environment
containing externalities such as multipath fading, interference

with other objects in the room, and other wireless signals.
Overall, the positioning accuracy in both experiments was
fairly similar, with an average error of 1.04 m and 1.061 m
for the outdoor and the indoor experiments, respectively.
The error values ranged from 0.398 m to 1.703 m for the
outdoor and 0.612 m to 1.856 m for the indoor experiment.
While the overall sensor performance was quite similar in
the indoor and the outdoor experiment, collecting around one
measurement per second, it was more stable in the indoor
environment, where the mean number of measurements per
sensor for the Nokia smartphone’s LAP ranged from 190.75
to 299.5 compared to 132.75 to 439.5 in the outdoor case.
Both sets of results show some outliers in the upper range
of the error values, most notably point (1.05, 0.00) for the
outdoor experiment and points (1.05, 0.00) and (3.15, 0.00)
for the indoor experiment.

Device localization in Experiment 1 produces results at
around 1 m accuracy on average, both in indoor and outdoor
spaces without a prior calibration of the system to estimate
RSSC and, in a completely passive manner, setting it apart
from existing approaches. Results for the indoor space were
slightly worse, which may be explained by higher amounts of
noise from multi-path fading due to the more constrained di-
mensions. The first part of Experiment 2 did not show the same
level of success. The decreased timespan allocated for each
measurement combined with the deteriorated performance of
the sensors led to large parts of the data being unusable.
The performance for remaining data points was significantly
worse than in the first experiment. The second part of the
second experiment, however, showed the effectiveness of the
streaming architecture, most notably the signal strength merger
component, which dealt well with the additional sparsity of
signal strength measurements encountered. The localization
performance was good, apart from a single outlier, a pattern
which was also observed during the first experiment. These
results are comparable to existing research, which is advanta-
geous given that the BluePIL system estimates locations and
channel parameters simultaneously.

The existence of negative outliers in localization results in
both experiments warrants discussion. An inspection of the
raw data revealed that these outliers were not caused by a
failure in the processing pipeline, but were already present in
the data received from the sensors. A plausible explanation for
this is that environmental factors, or possibly a combination
thereof, will have lead to RSSI values not representing the
location of the test subject accurately. Consequently, influenc-
ing factors, such as background noise, the topology of the
space, temperature, humidity, could not be controlled and may
have led to the disturbance of the signal. The test subject
carrying the test devices may itself have had an effect on
the signal strengths measured, as is had been suggested by
the investigation of the influence of the human body on RSSI
measurements [34].

The deterioration of sensor performance in Experiment 2
presented a further challenge. Since the environment was
identical to the outdoor space used in the first experiment and
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the frequency of measurements was lower regardless of the
distance from the sensor, these two factors do not explain the
degradation. One potential explanation could be the change
in weather conditions. While the first experiment took place
in spring, the second one was performed in mid-summer,
with temperatures exceeding 30◦C on an asphalt surface.
The sensors may have overheated, leading to the decreased
frequency and lower accuracy of measurements in the radio
components. Existing research suggests a strong influence
of operating temperature on RSSI measurements for chips
very similar to the one used in the Ubertooth One [8]. The
unpredictability of these results may have been exacerbated
by shade reaching some of the sensors over the duration of
the experiment, breaking the assumption that all four sensors
exhibit the same radio characteristics. This hypothesis could
also explain the better performance in the second part of the
experiment, which was executed at a later time on the same
day, when temperatures were lower and the entire environment
was covered by shade.

V. RELATED WORK

Fingerprinting-based approaches, e.g., [15] [5], require the
construction of a radio map of the area of interest, i.e., a set of
sensor measurements for signal strength throughout the space,
as a preliminary step. During localization, the signal strength
measured for a mobile device within this space is correlated
with individual points in the radio map. The best match is
assumed to correspond to the actual location of the device. [5],
[35] implements a BTBR/EDR-beacon-based fingerprinting
approach. In addition, it compares the performance of k-
Nearest-Neighbors and Naı̈ve Bayes classifiers for fingerprint
correlation.

The path-loss-based approaches, such as [9], [21], [25], [12],
[34], [14], rely on a model that enables them to convert signal
strengths to distances. [9] implements a log-distance path loss
model to calculate distances for BTLE beacon advertising
packets, which are used to perform tri-lateration in order
to compute a location for the target device. In addition to
this, they use a Kalman Filter to pre-process signal strength
measurements to receive a smoother result. [21] takes a
similar approach with a combination of the log-distance path
loss model and tri-lateration. [25] also uses tri-lateration, but
implements a neural-network-based path loss model that uses
empirical data to infer a mathematical representation of path
loss characteristics. Signal strengths are pre-processed using
a Kalman filter. [12] compares the performance of the log-
distance path loss model and a particle filter for the localization
problem. The tri-lateration step is avoided by heuristically
reducing the localization problem to a one-dimensional one
through assumptions on the topology of the environment they
are working in, i.e. a shopping mall. [34] uses BTBR/EDR
advertising packets to perform localization using the log-
distance path loss model and tri-lateration. This work includes
the investigation of influences of the human body on signal
strength measurements. [12] also work with the log-distance
path loss model and tri-lateration, but the calculation of a

location is not in the focus. Instead, the location is assumed
to be known and this information is used to estimate channel
parameters RSSC and n.

Finally, [37] presents an approach that fuses fingerprinting
and a polynomial regression path loss model. Distance es-
timates from the fingerprinting algorithm and the path loss
model are averaged and fed to an extended Kalman filter,
which performs the localization and smooths the result. Addi-
tionally, multiple layers of outlier detection are implemented
in order to improve the overall localization accuracy.

VI. SUMMARY AND FUTURE WORK

This paper presented BluePIL, a distributed, near real-time,
streaming system using a node-sink topology. To the best
of the authors’ knowledge, BluePIL is the first fully passive
approach for the identification and localization of Bluetooth
(BT) devices. It defines a data processing pipeline accom-
plishing the tasks of identification and localization through
passively captured BT packets in several steps, i.e., device
identification, signal strength filtering, signal strength merging,
the localization algorithm and location filtering.

The experiments demonstrated the effectiveness of BluePIL
in different scenarios, indoor and outdoor. The indoor showed
that the device localization method is sound and accurate in
controlled environment, producing results with an accuracy of
around 1 m in a 12 m2 area. The outdoor experiment evaluated
the system’s design and tested the localization method under
more challenging conditions. It showed that the streaming
architecture selected for the system is valid and that it can
localize devices with an accuracy of 1.4 m in a 25 m2 area.
This leads to the statement that contact and activity tracing
can be performed passively in a BT device setting. However,
purely BT-based tracing approaches have a relatively smaller
range (at about 5 to 10 m) than those based on Wi-Fi 802.11,
suggesting that the combination of BT and Wi-FI data and
their correlation may result in higher total accuracy of the
tracing approach. Lastly, BluePIL is open source1 based on a
Python implementation running on low-cost hardware requir-
ing minimal configuration, since most configuration is handled
automatically.

As next steps in future work, the addition of further sensors
could allow for either the extension of said range or for the
improvement of the localization accuracy. While algorithms
used for filtering and localization are theoretically capable of
working with more than four measurements, approaches to
extend the possible range would have to include strategies
for the selection of the most useful measurements during
the signal strength merger stage. Furthermore, during the
evaluation, a variety of problems with the Ubertooth One
sensors used were discovered. Running the system with an
alternative sensor could yield information on the source of
outliers discovered in those localization results. In addition, a
more precise BT sensor may enable an improvement of the
accuracy of the system overall.

1BluePIL’s code is available at: https://gitlab.ifi.uzh.ch/rodrigues/bluepil
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