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Abstract—Based on the concept of source routing, Segment
Routing (SR) allows the source or ingress node to inject a
sequence of segment labels into the packet header and specify the
routing path. Due to the routing flexibility, SR has been widely
used to solve traffic engineering problems such as minimizing
the maximum link utilization. However, most of the prior works
only solve the problem in a single snapshot without considering
network traffic dynamics, resulting in frequent traffic reroute.
To cope with this problem, we focus on solving the segment
routing based traffic engineering problem by taking into account
the future traffic changes. We formulate the multi-time-step
segment routing problem and leverage traffic prediction to extend
the length of routing cycles. Due to the large search space of
multi-time-step segment routing problem, we further propose a
heuristic algorithm for incrementally recomputing the segment
routing paths in sub-second. Through extensive experiments on
real backbone network traffic datasets, we show that our proposal
can achieve a near-optimal performance in term of maximum
link utilization while significantly reducing the number of routing
changes.

I. INTRODUCTION

During the last few years, Segment Routing (SR for short)
has gained increasing worldwide attention from both the
academic and industrial community as a powerful tool to
solve the traffic engineering-related problems. The key idea of
Segment Routing is to divide the routing path into segments
to control better, and thereby improve network utilization. SR
allows the source node (or ingress node) to inject a sequence
of segment labels into the packet header to specify the routing
path. Due to routing flexibility, SR is widely used to address
Traffic Engineering (TE) related problems. According to [1],
three different TE objectives have been covered by the prior
works, i.e., minimizing network energy, optimizing network
congestion, and minimizing the number of rejected requests.
In this paper, our objective is to explore the SR to minimize the
maximum link utilization (i.e., the TE problem) and thereby,
avoid network traffic congestion.

The literature shows that the TE problem has been well
studied in both theoretical and approximation approach. In
[2], Bhatia, Hao, Kodialam, ef al. introduced two network
scenarios concerning 2-segment routing (i.e., the routing path
only contains two segments) in which the TE problem was
solved with and without the knowledge of traffic matrix. In [3],
authors considered the unexpected traffic fluctuation and link
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failures problems. They then proposed a local search-based
algorithm to solve the targeted problems. Later on, Jadin,
Aubry, Schaus, et al. in [4] attained a further improvement
on the TE problems with SR by fully exploiting the SR
architecture (both node and edge segments) and proposed the
first Column Generation-based approach. In [5] and [6], the
authors used the Segment Routing to enhance the routing
management in Software Defined Networks. They proposed
efficient routing algorithms that can solve the scalability issues
and improve traffic distribution.

Although the TE problem with the Segment Routing issue
has been well studied, most of the solutions proposed so far
only addressed the local optimization, where they considered
the problem in only a single snapshot. Specifically, the pri-
mary approach is to formulate the problem under a mixed-
integer linear programming model, and then propose heuristic
algorithms using various techniques such as local search (srls)
[3], column generation (cgdsr) [4]. This approach usually used
the traffic matrix (i.e., traffic demands) of the corresponding
snapshot as the input. However, due to the network behavior’s
dynamic, the traffic matrix often varies over the snapshots;
thus, leading to the changes in the routing policy obtained.
In some rare work [2], the authors proposed a Traffic Matrix
Oblivious Segment Routing which does not require the traffic
matrix to be given prior. The proposed routing policy was
designed to work well for a wide range of traffic demands.
Although, by using a fixed routing policy, this approach can
alleviate the overhead caused by routing path change, it may
not guarantee the link utilization constraint, especially with
the network’s dynamic behavior. Besides, it was pointed out
in [3] that the Traffic Matrix Oblivious Segment Routing has
been shown to only be practical for offline traffic engineering
on relatively-small networks.

In this paper, we study the TE problem globally to overcome
the aforementioned problems. Specifically, we aim at design-
ing a Segment routing protocol in a long time horizon, i.e.,
Multi-Time-step Segment Routing (MTSR for short), which
minimizes the maximum link utilization. In this paper, instead
of considering the full Segment routing algorithm, we consider
2-Segment Routing (2-SR for short). In 2-SR, a routing path
is divided into two segments going through an intermediate
node. The reasons for choosing 2-SR are two folds. On the one
hand, by lessening the number of intermediate nodes, we can



reduce the targeted problem’s complexity. On the other hand,
as pointed out in [1], [2], fully leveraging SR can only obtain
a slightly better solution but causing a very high computation
cost.

The main idea of our proposed approach is as follows. First,
we equally divide a time horizon into time-steps and formulate
the MTSR problem with 2-SR. Assume that we can acquire
the accurate predicted traffic matrices of the next future 7T
time-steps by leveraging advanced prediction models. Then,
instead of using the current traffic matrix as input for solving
the TE problem like in the existing approaches, we use the
predicted traffic matrices for our MTSR problem. By this way,
the routing policy obtained by solving the MTSR problem
can work well without changing in the next 7" time-step. The
period of T time-steps is called a routing cycle, and the MTSR
problem is repeatedly solved after each cycle to update the
routing policy.

It is worth noting that the MTSR problem’s performance is
significantly affected by the multi-step traffic prediction, which
remains a big challenging problem despite tremendous efforts
from researchers. Therefore, we design two modified versions
of the MTSR problem that reduce the traffic prediction’s heavy
tasks. In the first version, instead of using predicted traffic
matrices of all the next 7" time-steps, we only use the predicted
maximum demand of each flow. In the second version, we
combine multiple consecutive cycles into equal periods and
then predict each flow’s maximum demands in each period.

To further reduce the number of re-routed traffic flows, we
propose a heuristic algorithm (called LS2SR), which lessens
the difference between adjacent cycles’ routing policies. The
idea is to utilize the previous cycle’s routing paths as the
input of the MTSR problem in the next cycle. The heuristic
algorithm also helps tackle the scalability issues; thereby,
providing a better solution in the context of time-constrained
optimization. The contribution of this paper can be summa-
rized as follows:

o To the best of our knowledge, we are the first to consider
the routing path change problem in the Traffic Engineer-
ing and formulate the multi-time-step segment routing
problem with 2-SR as an Integer Linear Programming
problem. We propose a heuristic algorithm to solve that
problem in the context of time-constrained optimization.

o Although prediction accuracy is the main focus in most
traffic matrices prediction studies [7], [8], it is not
strongly related to the performance of downstream appli-
cations such as TE. In [9], the authors evaluated the im-
pact of prediction error on traffic engineering problems.
However, the evaluation scenarios are still simple when
only short-term traffic prediction is used as input to solve
the simple TE problem. In this work, we are the first to
leverage the multi-step traffic prediction results to address
the TE problem. We design two modified versions of the
TE problem that consider the impact of the prediction
accuracy.

o We conduct extensive experiments using different real
backbone network datasets to evaluate the performance

of our proposed approach.

The rest of the paper is organized as follows: we first intro-
duce the problem of TE with 2-Segment Routing in Section
II. Section IIT presents our formulations of the multi-time-
step segment routing problem and some theoretical analysis.
Section IV describes the heuristic algorithm to solve the
proposed problems. We show extensive experimental results to
evaluate our proposed approaches in Section V and conclude
the paper in Section VI.

II. TRAFFIC ENGINEERING PROBLEM WITH 2-SR

In this section, we briefly introduce the TE problem with
2-SR. This problem was introduced in [2] as a traffic matrix
aware segment routing. Therefore, some notations and figures
from [2] are reused in this paper. However, in contrast with
their problem, we do not consider that the traffic flows can be
arbitrarily split and routed by different paths.

The network is represented by an undirected graph G =
(V, E), where V is the set of nodes (|V'| = N), and FE is the set
the network’s links. Each link e € F has a capacity c(e). Let
M; € RN*N be the traffic matrix at time-step ¢ and m!; € M,
denote the traffic flow from node ¢ to j (flow 75 for short, 7, j €
V') at time step ¢. Let afj be the binary variable which afj =1
indicates that flow 4j is routed through intermediate node k,
and otherwise. Therefore afj can be considered as the routing
policy. We assume that the network is controlled by a central
controller such as SDN controller [10]. The controller plays an
important role in collecting the knowledge of the network (i.e.,
topology, traffic statistics), predicting future traffic demands,
and applying the routing policy to devices via PCEP [11].
However, the implementation of the controller is out-of-scope
and will be omitted in this paper.

In 2-SR, we only need to select one intermediate node % for
each flow ij. Figure 1 shows the example of 2-segment routing
path for flow ¢ with the intermediate node k. The traffic from
7 to k and from k to j is routed through the shortest path
between them. The intermediate node k = ¢ or k£ = j means
that flow 7 is routed by the shortest path from 7 to j. The
problem (called Fy) can be formulated as the following integer
linear program. The variable 6 represents the maximum link
utilization.

Pol
minimize 6 (1)
Yok =1 Vijev )
keV
ZZQZ(G)QZTHZ < fcle) VeeFE (3)
ij k
of, € {0,1} VijkeV 4

We have gf;(e) = fir(e) + fx;(e), in which fix(e) = 1 if
link e is on the shortest path from ¢ to k& of flow ¢j with
intermediate node & and f;;(e) = 0, otherwise. Note that in
Py, the maximum link utilization € can be greater than 1,
which means the network may be congested. Equation (2) and
(4) ensure that all traffic from ¢ to j is routed and it cannot be
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Fig. 1: Illustration of 2-segment routing [2].
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split into different paths. Equation (3) depicts that total traffic
load on link e is not greater than the link’s capacity.

By solving the problem above, we can get a routing policy
for a single time-step ¢. Although we can also reuse the same
routing policy for the next 7' time-step to mitigate the routing
path’s variation, the link utilization constraint may not be
assured due to network traffic’s dynamic behavior. Therefore,
for future time-steps, we need to resolve the problem and
update the routing policy. A trivial approach to minimize the
maximum link utilization in the next 7' time-steps is to solve
the problem Fj at every time-step. As mentioned in Section
1, this approach may lead to a considerable number of re-
routed flows. To this end, in the next section, we propose
an extension of Fp, which addresses the segment routing
problem in multiple steps. We first present the mathematical
formulation and then describe some theoretical analysis.

III. THE MULTI-TIME-STEP SEGMENT ROUTING PROBLEM
A. Problem formulations

In this section, we present the formulation of the multi-time-
step segment routing problem (called P;) and its modified
versions (called P, and Ps;). As mentioned in Section I, by
solving the problems, we obtain a routing policy that can be
applied for the next routing cycle, i.e., next 7" time-steps.

Assume that M = [My, My, ..., M7] are the predicted
traffic matrices of the next 1" future time-steps, which can be
acquired by using the state-of-the-art prediction models such
as [8], [12]. We extend the problem P, for 1" future steps by
adding more constraints related to the traffic demands of each

time-step.
P11
minimize 6 (3)
Yok =1 Vijev (6)
keV
SN dhieakml; < Ge(e) Vee BvteT (T)
©j k
of, € {0,1} VijkeV ®)

It can be seen that P; is different from F, by the link
utilization constraints (7). Specifically, in P, the routing
policy afj needs to satisfy each link’s capacity constraints
at every time-step. Due to the tight constraints, problem P;
becomes more complicated than Fy. Besides that, P; requires
to predict all the traffic matrices of the next 7' time-steps,
which remains a significant challenge even with the most state-
of-the-art deep learning models. Obviously, the prediction
accuracy plays a vital role in the performance of the problem
P;. Unfortunately, the results of some proposed prediction
models [8], [12] show that the prediction performance worsens

when the prediction step increases. Therefore, to reduce the
problem complexity and alleviate the traffic prediction task’s
burden, we formulate problem P, and Ps;, which are loose
versions of P;.

Py
minimize ¢ )
Yok =1 VijeVv (10)
keV
ZZg” Yak maxmtj < fOcle) VeeE (11)
of, € {0,1} VijkeV (12)

In problem P,, we only consider the maximum values of
every flow ij over the next T' time-steps. By doing that, P,
has the same number of constraints as Py, and also, we have to
predict only one traffic matrix whose element is the maximum
value of each traffic flow.

Ps:
minimize 6 (13)
Yok =1 VijeVv (14)
keV
Zzgw wltnaxmtj < Ocle) VYee E;VI, (15)
of € {01} VijkeV (16)

In problem Pj5, the routing cycle is divided into P sub-
periods in which each of them has T}, time-steps (1}, < T).
Then, similar to P, we formulate the problem with the max-
imum values of flow ¢j in each sub-period T},. Accordingly,
to solve P53, we only need to predict P traffic matrices, which
are the maximum traffic of every flow 75 in each sub-period
T,. The number of predicted traffic matrices depends on the
way we divide the routing cycle.

B. Traffic prediction for multi-time-step segment routing

As mentioned in the previous section, accurately predicted
traffic matrices are required as input for all the problem
formulations P;, P», and P5;. However, our objective is not
to develop a new prediction model but to leverage the existing
models’ results for addressing the traffic engineering problem.
From the literature review, although there are a large number
of proposed models for traffic matrices prediction, most of
them only focus on improving prediction accuracy [7], [8].
We modify the prediction model to meet the requirements of
the problem formulations. For example, in problem P, at the
beginning of each routing cycle, the prediction model uses the
historical data of the last H time-steps to predict the traffic of
the next 7' time-steps. In P, the prediction model only needs
to infer the maximum demand for each traffic flow.

In this paper, we use Graph WaveNet (GWN) [12] as
the prediction model. GWN can extract temporal and spatial
features in the historical network data, which help achieve
better prediction accuracy than other time-series models such
as Long Short-Term Memory (LSTM) and AutoRegressive
Integrated Moving Average (ARIMA).



C. Theoretical analysis

In this part, we theoretically analyze the performance ratios
of P5, and P3 to P;. We assume that (07, o), (05, a3), and
(0%, o) are the optimal solutions obtained by solving Py, P,
and P3, respectively. We denote by u(t, e, ;) the utilization
of link e when we apply routing policy «;, in routing cycle
t. Then, the maximum link utilization of the network when
applying routing policy (cy,), denoted as u(cy,), is defined as
follows:

i Sk gk (e)(ap)tmi;
c(e)

) = maxu(t, e, o) = max

u(al
Vt,e Vt,e

P

Theorem 1.
o 07 =u(a]); 03 > u(az); 05 > u(as)
o 07 <05 <65

Proof. According to (7), we have:

> ZL] >k gfj(e)(a

- c(e)
As 67 is the optimal solution of P, the following equation
holds:

*\ k t
1)ijmij

=u(t,e,ay) Vite

ty

T)?jmij

« Zij Dok gzkj (e)(a
c(e)

_ *
= u(a])
Concerning P», we have:

Zz] Zk g'Lg (e)(az) j maxy m ij

o>
92 = c(e) Vt, e
k *\ k
> Zij Zk 955 (6)(a2)ijm§j Vi, e
c(e)
es)(a tZ
:95 Z ma: Zl] Zkgzg( 2)( 2)1] _u(ag)

Ve c(ez)

Similarly, we have: 05 > u(a3). Now, we are going to prove
that 07 < 05 < 65.

First, we will prove the following hypothesis: “If (as, 03) is
a feasible solution of Ps, then it is also a feasible solution
of Py; if (g, 02) is a feasible solution of Ps, then it is also
a feasible solution of P3”. According to this hypothesis, we
derive that 67 < 03 and 65 < 03.

According to (15), we have:

2.2 94

As maxier, m o> m

that
Z Z ghi(e

It means that («s,03) satisfies constraint (7), thus it is a
feasible solution of P;.
Similarly, according to (11), we have:

ZZQU

maxm ; < Osc(e) VTj,e a7

. (Yt € T},), from (17), we can derive

m ; < Osc(e) Vte (18)

maxm <920( ) Ve (19)

Let T}, is an arbitrary sub-period of 7', then maxer, mﬁj <
maxser m§ .. Therefore, from (19), we have:

2.2 ai)

It means that (ao,f3) satisfies constraint (15), thus it is a
feasible solution of Py [

maxm ; < bacle) VIj,e (20)

In the following, we will analysis the performance ratio of
P and Ps to Py. As 05 > 05, we will derive the upper bound
of & * which will be also the upper bound of

Theorem 2. Let ¢* be the link with the largest capacity, and €}
be the link where the equal sign of constraint (11) in Py holds;

Then, the performance ratio of Py to Py is upper bounded by
\ = Z maxfm” c(e*)

max¢ max; f] cles)”

Proof. According to (11), we have

ZZ% (e3)(a3)} maxmi; = G3c(e3) D)
We also have
Zzgm (e3)(a3)fy maxmi; < maxmi;  (22)
Therefore, from (21) and (21), we deducje that
03c(es) < Zmzax mfj (23)

ij
Concerning P;, from constraint (7) and the assumption that
e* has the largest capacity, we have

)2 Z Z gij(e k'mgj

As DD g5;(e)a;ml; is the total amount of traffic routed
through link e at time-step ¢, it should be greater than or equal
to the traffic of any pair ¢j routed through e, it means that

ZZQW a m >mzjxxm] (25)

(25) holds for all time-steps t. Therefore, from (24) and (25),
we deduce that

0ic(e*) > 0ic(e) Vt; Ve  (24)

Oic(e*) > max max mﬁj (26)
ij
Finally, from (23) and (26), we have
92 > maxy mj;c(e*)
9* ~ max; max; mt cles)
O

Suppose that all the network links have the same capacity,
then the performance ratio A largely depends on the current
network situation. If all traffic flows in the network have
similar demands and stable within the routing cycle, we have
A > 1. However, since most of traffic flows in the network
are mice flows and the network traffic is extremely dynamic,
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Fig. 2: Examples of redundant paths in 2-segment routing.

we have Zij max; m’;j A max; Max;, mfj, and then \ =~ 1.

Therefore, by solving the multi-time-step segment routing with
formulation P, we can reduce the problem complexity while
still achieving a good routing policy.

IV. LOCAL SEARCH ALGORITHM FOR SOLVING
MULTI-TIME-STEP SEGMENT ROUTING PROBLEM

The MTSR problem described in Section III is an integer
programming problem with a vast search space. Traditional
MILP solvers are hardly scaled to large topologies with more
than 20 nodes [3]. Thus, using heuristic or meta-heuristic
algorithms would be the most practical way to solve this
problem rapidly. Gay, Hartert, and Vissicchio proposed a local
search algorithm to solve the n-segment routing algorithm.
We adapt the algorithm proposed in [3] to propose a new
algorithm that effectively solves the multi-step segment routing
problem by exploiting the structure of 2-segment routing called
Local Search 2 Segment Routing (LS2SR). We also improve
LS2SR on solving the MTSR problem by adding a mechanism
to refine the routing policy from the previous cycle, thereby
lessening the routing policy variation over different cycles.

A. Search space reduction technique

We begin by investigating the search space of the MTSR
problem. In Section III, we have mathematically formulated
the MTSR problem by using binary variables af'j which
indicates whether a traffic flow from a source node 7 to a
destination node j goes through an intermediate node k. These
formulations contain two major sources of redundancy, namely
equivalent paths and non-simple paths.

Figure 2a shows examples of equivalence paths. Consider
a flow ¢j with a routing path ¢ — a — d — j going through
two intermediate nodes a and d. In the formulations provided
in Section III, the path ¢ = a — d — j is duplicated in the
search space as it is counted as a routing path going through
a (ie., aj; = 1), and also as a routing path going through d
(.e., afj =1).

The second type of redundancy is caused by so-called non-
simple paths, i.e., paths that visit a link more than once. Figure
2b illustrates an example of non-simple path. In this example,
the routing path from ¢ to j with intermediate node b: i —
a — b — a— d— j (represented by dotted line) visits
link (a,b) twice. Obviously, by pruning the looped route a —
b — a we obtain more efficient path i — a — d — j.
Therefore, including such non-simple paths in the search space
only causes redundant time complexity but can not improve

the solution’s goodness. It is obvious that the route constructed
by middle point a will cost less than that of middle point b.

In the following, we propose a method to construct the
routing path search space. Let P be the set of 2-segment
routing paths of all the source and destination pairs, and
Pi; € P denotes the set of 2-segment routing paths from
node ¢ to j. We construct P as follows. First, we enumerate
all possible 2-segment paths from node ¢ to j (with all possible
intermediate nodes k). Then, we remove from P;; (Vi,5 € V)
all the redundant paths defined as above. To reduce the search
space, instead of using binary variables af'j, we use integer
variables x;; which indicates the index of a routing path in P;;,
ie., z;; € {0,1,...,|P;;|}. Finally, a routing policy at routing
cycle ¢ is defined by the combination of all x;; Vi,j € V,
denoted as z¢ = [z;;].

In the following, we first present the link and flow selection
strategy in Section IV-B and then describe the details of
LS2SR in Section IV-C.

B. Link and flow selection strategy

LS2SR falls into the category of improvement-based heuris-
tic algorithms, which starts from a feasible solution and
improves the solution by applying successive changes. In
particular, the initial solution of LS2SR is the shortest path
routing. Then, at each iteration, LS2SR selects a flow, which
is crucial to minimize the maximum link utilization and alters
its path. Motivated by the algorithm proposed in [3], we
design a critical flow selection strategy in which the link with
higher traffic load will have a higher chance of being selected.
Specifically, a link e is selected with a probability p. defined
® load(e)?

o= oad(e) @7

Yeer load(e)?

where 8 € [0,+00) is the intensification coefficient. If
is high, then the selection distribution will be short-tailed.
The link selection method will select a small subset of the
highly loaded edges. Otherwise, the selections becomes a more
diverse. The reason behind this heuristic is that changing the
path of flow passing through the highly loaded link will reduce
the load in that link, thereby reducing the maximum link
utilization of the whole network.

Subsequently, we select a flow passing though the selected
link e, by the probability p; ;:

- (miz)”
N 2 ijen(e) (Mis)?

where D(e) denotes the set of flows routed on link e, and ~y
is the intensification coefficient for this selection distribution.
Therefore, the large flow routed though the highly loaded link
e is rerouted.

(28)

C. Local search for multi-time-step segment routing

In this part, we present the details of LS2SR. To alleviate the
routing path change, in LS2SR, the routing path in the first
cycle is initialized by the shortest path; In each subsequent
cycle, the initial routing policy is the routing policy obtained



Algorithm 1 LS2SR Algorithm

1: Input: network G(V, E); traffic matrix M initial solution
x°71, set of all the routing paths P
Output: Routing path z*¢
P = [sort(Pi;)] Yi,jeV
xz*¢ =21 0* = MLU(G,z*¢, M)
while not timeout do
e = select_link(G, M, z*°);
i,j = select_flow(G, M, e,x*)
x¢ = select_path(xz*°,P;;); 6 = MLU(G, z°, M)
if 6* — 6 > ¢ then
¥ =2 0* =40
end if
end while

R A A T ol

_ = =
M o2

TABLE I: Details of the real traffic datasets

Dataset Brain | Abilene | Geant
Number of nodes 9 12 22
Number of links 14 15 36

Granularity (minute) 1 5 15

from the previous cycle. The details of LS2SR are presented
in Algorithm 1. We first sort the paths in P;; by the increasing
order of their cost (the sum of all the link cost in the path) and
calculate the maximum link utilization corresponding to the
initial solution (line 4). The loop from line 5 to 12 is to search
for a new routing solution that may reduce the maximum link
utilization. In each iteration, we first select the link e and flow
17 based on the selection strategies described in Section IV-B.
Then, we choose a new path from P;; for flow ij (line 8).
The new path is chosen systematically as follows: as P;; has
been sorted by the paths’ cost, we select the path that has the
next higher cost than the current path. The rationale behind this
path selection operator is to avoid the highly loaded link while
trying not to select the path with significantly high cost. If the
maximum link utilization of the newly founded solution x°¢ is
significantly lower than the current best solution (i.e. z*¢), then
we update the current best solution as line 10. After that, the
heuristic algorithm continues to find a new possible solution
until the time limit has reached. The parameter € is defined
to determine whether z*¢ is updated and help to reduce the
number of rerouted flows. We can easily obtain the routing
k

policy o after getting the final solution z*“.

V. EXPERIMENTAL STUDY

We design three types of experiment to evaluate our ap-
proach on MTSR problems in both theoretical and real sce-
narios with real backbone network datasets. The experiment’s
results can be reproduced at [13].

A. Datasets

We conduct experiments on three real datasets: Brain, Abi-
lene, and Geant, available at [14]. Due to the variation in the
number of traffic matrices in each dataset, we decide to use the
first 10000 traffic matrices of each dataset in our experiments.
Each dataset is divided into three sets: 70% for training, 10%
for validating, and 20% for testing. Table I shows the details

about each dataset. Note that, although the Brain network has
161 nodes in total, most of them are regional nodes. Therefore,
we only consider the aggregated traffic of the backbone nodes
in the Brain network.

B. Performance metrics

We evaluate the proposed approach’s performance using the
maximum link utilization (MLU) and the number of routing
changes (RC). After obtaining the routing policy, the MLU is
calculated using the actual traffic matrix from the test set. The
routing changes is the total number of flows that are rerouted
after each routing cycle.

C. Results

1) Experiment 1: In the first experiment, we evaluate the
performance of the routing policy acquired from the five
problem formulations Py, P, P>, P3;, and Traffic Matrix
Oblivious Segment Routing (OR) [2]. Note that we solve
the problem P, for every time-steps and only solve the OR
problem once. In this experiment, we assume that the future
traffic matrices can be accurately predicted, then the inputs
for all the problems are the real traffic matrices from the test
set. We use the MILP solver from the PuLP library [15] to
solve all the problems and obtain the optimal solutions. In all
experiments, routing cycle length is fixed as 1" = 6.

Figure 3 shows the results of all approaches on Brain,
Abilene, and Geant datasets. Obviously, by solving the TE
problem at every time-step, P, achieves the best results in
terms of MLU on all datasets. However, although F, has
a slightly better MLU compared to P, P», and Ps (e.g.,
3.77%, 5.59%, and 4.73% on Geant dataset, respectively), it
suffers from significantly high number of routing changes.
The Oblivious Routing (OR) shows the lowest performance
in terms of MLU on all the datasets. Especially on the Geant
network, the average MLU obtained by OR is nearly twice
that of other approaches.

As mentioned in the theoretical analysis (Section III-C),
among the three formulations of the MTSR problem, P;
has come first in comparing the MLU, Ps; and P» have
come second and third. However, the gaps between them are
relatively small. Although all of the approaches have almost
the same values in terms of routing changes, P, shows a
slightly better performance in the Geant dataset. According
to the results, there are three merits of solving MTSR with
P, formulation: reducing the problem complexity, alleviating
the difficulty in the traffic prediction task, and achieving
comparable performance with other approaches. Therefore, in
the rest of the paper, the presented results of the MTSR are
obtained by solving the problem Ps.

2) Experiment 2: In this experiment, we evaluate the per-
formance of the proposed approach as an online segment
routing algorithm. We train a state-of-the-art deep learning
model called Graph WaveNet (GWN) [12] and use the trained
model for predicting future traffic matrices. The training
details are omitted in this paper but can be found at [13].
The prediction model uses historical data of H time-steps to
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Fig. 3: The maximum link utilization and number of routing changes on three datasets

predict future traffic matrices. At the beginning of each routing
cycle, after obtaining the predicted traffic matrices, we solve
the problems and acquire the routing policy. Then, the actual
traffic matrix is used to calculate the maximum link utilization
for every time-step. The MTSR problem is solved by both
the MILP solver and our heuristic algorithm to evaluate the
heuristic algorithm (LS2SR). We compare the performance of
our proposed method with three other baselines:

o Last-step: the traffic matrix of the last time-step in the
routing cycle is used as input for the segment routing
problem and then the obtained routing policy is applied
for the next cycle. We use two proposed approaches
(mip2sr [2] and srls [3]) to solve the problem. Note
that srls is a local search-based algorithm that exploits
n-segment routing.

o One-step prediction: the traffic matrix of the first time-
step in the next cycle is predicted by GWN. Then, it is
used as input for solving the P, and then the obtained
routing policy is applied for the next cycle.

¢ OR: the Traffic Matrix Oblivious Segment Routing.

In all experiments, we set the length of the routing cycle
as T' = 6 and the number of historical steps used for the
prediction model as H = 27'. The time constraint of the MILP
solver is set equal to 60s while that of the heuristic algorithms
is 1s. In LS2SR algorithm, we set 5 = 16 and v = 1 which
are adopted from [3]. Note that in the last-step experiment, we
do not use cgdsr algorithm [4], which fully exploits segment
routing, since srls produced better results than cgdsr in the
experiments with ISPs traffic (showed in [4]).

From Figure 4, we can see that the our approaches (gwn-p2
and gwn-p2-1s2sr) achieve the best results in terms of MLU
concerning all datasets. In overall, with traffic prediction (both

one-step and multi-step prediction) we can achieve better MLU
than the other approaches. For example, in terms of average
MLU, our approach improves by 35.47%, 33.19% and 32.46%
compared to the last-step mip2sr, srls and OR on the Geant
dataset. Similar to Experiment 1, due to the fixed routing
policy, OR cannot adapt to the network traffic dynamic and
thus suffering from a high MLU. In terms of routing changes,
our heuristic algorithm significantly reduces the number of
flows that need to be rerouted compared to other heuristic
algorithms. The average number of routing changes is close
to that of OR (zero routing change), even in the most extensive
network topology (i.e., the Geant network). In comparing our
heuristic algorithm and the MILP solver (gwn-p2-1s2sr and
gwn-p2) on solving the MTSR problem, our heuristic achieves
the same performance in terms of MLU while significantly
reduces the number of flows needs to be rerouted in a routing
cycle. Note that the LS2SR is set to find the solution within
1s, which shows the algorithm’s scalability.

3) Experiment 3: In this part, we investigate the impact of
the routing cycle’s length (7") and different prediction models
on the performance of traffic engineering (MLU). We first use
GWN as a traffic matrices predictor and conduct experiments
with different routing cycle lengths (7' = {3, 6,12}), then we
fix T'= 6 and use different prediction models such as LSTM,
ARIMA for the traffic matrices prediction task. Note that in all
experiments, we obtain the routing policy by solving problem
P, with the LS2SR algorithm.

The results in Table II show the prediction error in terms
of Mean Absolute Error (MAE) and the MLU. It is clear that
MAE increases when the prediction model needs to predict
traffic matrices in the far future. However, the increasing
of the prediction errors do not have a strong relationship
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Fig. 4: The maximum link utilization and number of routing changes with different routing approaches

Brain Abilene Geant

T MLU [ MAE MLU [ MAE MLU [ MAE

3 ] 0.0272 £0.0004 | 350993.2 [ 0.1115 £ 0.0021 | 3.1 | 0.1351 £0.0014 | 16.7

6 | 0.0271 4+ 0.0005 | 433130.0 | 0.1122 4 0.0021 3.7 0.1369 £ 0.0015 | 19.2

12 | 0.0270 £ 0.0005 | 560248.1 | 0.1145 £ 0.0025 4.7 0.1385+0.0016 | 25.6

TABLE II: Evaluate the impact of routing cycle’s length
Brain Abilene Geant

Model MLU [ MAE MLU [ MAE MLU [ MAE
ARIMA | 0.0331 +0.0007 | 2147543.5 | 0.1317 +0.0026 | 39.2 | 0.1930 £ 0.0022 | 152.9
LSTM 0.0280 £ 0.0005 459269.0 0.1122 4+ 0.0021 3.8 0.2045 £ 0.0023 91.6
GWN 0.0271 £ 0.0005 433130.0 0.1122 4+ 0.0021 3.7 0.1369 £ 0.0015 19.2

TABLE III: Evaluate the performance of different prediction models

with the MLU. For instance, concerning the Geant dataset, in
experiments with 7" = 3 and 7' = 12, while the MAE increases
by 53%, the MLU only increases by 2.5%. This phenomenon
can be explained as follows. As in P,, we formulate the MTSR
problem by considering the worst case of traffic in the next T’
time-steps, the obtained routing policy can work well within
the routing cycle. Moreover, as mentioned in Section III-A, in
P5, we only need to predict one traffic matrix, which makes the
prediction tasks much easier. Therefore, the results support the
conclusion that P, is suitable for solving the MTSR problem.

Table III shows the performance comparison of three differ-
ent prediction models in terms of MLU and MAE. The results
indicate that deep learning models outperform the traditional
statistic model (i.e., ARIMA) in the traffic prediction task.
Comparing the two deep learning models, GWN achieves the
best results in all experiments and metrics. Although having
poor results in terms of MAE, the results of ARIMA on the
traffic engineering metric are acceptable on all three datasets.

VI. CONCLUSION

In this paper, we studied the multi-time-step segment routing
problem with traffic prediction. Our objective is to lever-
age the traffic prediction for doing traffic engineering while
minimizing the number of flows that need to be rerouted.
We considered the problem complexity and the difficulty of
multi-step traffic prediction to formulate three versions of
the segment routing problem. We also provided theoretical
analysis on the solution of the three formulations. To address
the scalability issue, we proposed a heuristic algorithm for
quickly solving the multi-step segment routing and further
reduce the number of routing changes. Our evaluation on
real network datasets showed that the proposed approach can
significantly reduce the number of routing changes while still
meet the requirements on the maximum link utilization.
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