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Abstract—Data-driven functions for network operation and
management are based upon AI/ML methods whose models are
usually trained offline with measurement data collected through
monitoring. Online learning provides an alternative with the
prospect of shorter learning times and lower overhead, suitable
for edge or other resource-constraint environments. We propose
an approach to online learning that involves a cache of fixed size
to store measurement samples and periodic re-computation of
ML models. Key to this approach are sample selection algorithms
that decide which samples are stored in the cache and which
are evicted. We present and evaluate four sample selection
algorithms, all of which are derived from well-studied algorithms,
and we specifically argue that feature selection algorithms can
be used for our purpose. We perform an extensive evaluation
of these algorithms for the task of performance prediction using
data from an in-house testbed. We find that one of them (RR-SS)
leads to models that achieve a prediction accuracy close to that
obtained through offline learning, but at a much lower cost.

Keywords—Online Learning, Real-time Learning, Edge Com-
puting, Sample Selection, Performance Prediction.

I. INTRODUCTION

Data-driven network and systems engineering is based upon
applying AI/ML (Artificial Intelligence / Machine Learning)
methods to measurement data collected from a network or
compute infrastructure in order to build novel functionality and
management capabilities. This is achieved through learning
tasks that use this data for training. Examples of such tasks are
KPI prediction using regression models and anomaly detection
using clustering techniques.

The ML models are usually trained offline with measure-
ments collected through monitoring [1], [2]. This method,
although shown to achieve good results, has several draw-
backs. First, the process takes a long time, often hours, since
the system must be observed in various states to obtain
an accurate model. Second, model training incurs a high
computational cost, which increases (at least) linearly with
the number of measurements. Third, changes in the system or
the infrastructure may require new measurements and model
re-computation. In this paper, we propose an online approach
for model training, which allows for shorter learning times
and lower computational costs, suitable for training in edge or
other resource-constrained environments.

Our approach involves a cache of fixed size to store mea-
surement samples and periodic re-computation of ML models
based on using the current cache. Key to this approach are
sample selection algorithms that decide which samples are

stored in the cache and which are evicted. We present and eval-
uate four sample selection algorithms, all of which are based
on well-studied algorithms. We use Reservoir Sampling [3] as
a baseline, which maintains the cache with samples equally
likely selected from the increasing sequence of collected
measurements. Two other sample selection algorithms (RR-
SS and LS-SS) are derived from two seminal feature selec-
tion algorithms: Redundancy and Relevance Feature Selection
(RRFS) [4] and Laplacian Score (LS) [5]. Our argument is
that the sample selection problem closely relates to the feature
selection problem [6], [7], since in both cases a small subset
of elements is selected to represent a larger set in such a way
that the trained models are similarly effective. In this paper,
effective models are those that achieve a prediction accuracy
close to that obtained through offline learning.

We perform an experimental evaluation of these algorithms
for the task of performance prediction using data from an in-
house testbed that runs a video streaming and a key-value
store application under different load patterns. We find that
RR-SS leads to effective models in a much shorter time and
at a much lower cost when compared to those obtained offline.
While more research is needed to validate their effectiveness
with learning tasks other than prediction and to identify the
conditions for model re-computation, this work demonstrates
that online learning allows for fast and low-overhead model
training, and that accurate prediction is possible and should
be considered for data-driven engineering.

II. THE PROBLEM OF ONLINE SAMPLE SELECTION

Consider X as set of vectors Xt ∈ Rk, t ∈ N, where Xt is
a vector that represents a sample coming from the monitoring
system at time t. Each vector has k dimensions representing k
features, such as CPU and memory utilization of an application
server or packets and Bytes sent/received by a network router.
Also, consider Yt ∈ R, t ∈ N as a target that represents an
application KPI at the same time t. As an example, for a Video
on Demand (VoD) application, Yt can be the rate of displayed
frames per second at time t. A predictor F : Xt 7→ Ŷt is a
function that maps Xt to a predicted value Ŷt for some target,
which is effective if Ŷt is close to Yt. For comprehensive
background information about Machine Learning (ML), see
the seminal works Vapnik [1], Bishop [8], and Goodfellow et
al. [2].978-3-903176-32-4 © 2021 IFIP



A. Offline Learning

In this paper, offline learning is understood as a learning
method that acquires samples taken during an observation
period. After that, some of these samples are randomly chosen
to compose a subset, also known as the training set, which is
then used to build an ML model. The number of samples in
the training set is typically large (about 70% of the entire set
of samples) and the remaining 30%, also known as the test
set, is used to evaluate the model. Once built and tested, this
model is used for prediction and remains unchanged until a
new training set is available and a new model is generated. In
summary, offline learning uses past observations for learning
and relies on the diversity of the samples in the training set
to build effective ML models. Both training and test set are
randomly selected from the entire set of samples.

B. Online Learning

In this paper, online learning is understood as a learning
method in which the training set is continuously updated. In
our case, the training set is known as training cache, or simply,
cache. The size of the cache is usually much smaller than the
size of the training set used in offline learning. It typically
ranges from tens to hundreds of samples in online learning
and thousands to ten thousands of samples in offline learning.
As the cache is continuously updated, the ML model can be
periodically recomputed. To keep the cache small with a fixed
size and to ensure the diversity of the samples in the cache, a
sample selection algorithm is introduced. Figure 1 shows our
approach to online learning. In this figure, samples with only
features (Xt) are forwarded to the Sample Selection
algorithm to update the Cache, whose content is used as
the training set for Unsupervised Learning. The result
is an unsupervised ML Model. Similarly, samples with both
features and targets (Xt, Yt) are forwarded to the Sample
Selection algorithm to update the Cache, which is used
as the training set for Supervised Learning. The result
is a supervised ML Model. Once an ML Model is available,
samples are used for operational purposes, including cluster-
ing, prediction, and classification. In the following, we focus
on online supervised learning, leaving the investigation of
online unsupervised learning for future work.

The use case we study in this paper (see Section V) includes
measurements from a computing and networking infrastructure
that provides Video-on-Demand (VoD) and Key-Value (KV)
applications to a client base. We focus on supervised learning,
specifically QoS prediction, and assume that the management
system receives information about an application target at pre-
defined observation intervals. During an observation interval,
the set of all samples and targets received by the monitoring
system increases, but, in contrast to offline learning, only
a small portion of them are stored in the cache and used
to compute the ML model, which is updated periodically.
However, not every new sample inserted in the cache triggers
an update, making the system more stable without reacting
to transitory peaks in infrastructure measurements. The model
update can occur in different ways: after a given time period,

Fig. 1. Online Learning: Samples with both features and targets (Xt, Yt) from
the Monitoring System are forwarded to the Sample Selection al-
gorithm to update the cache for supervised learning tasks, such as predictions.
Samples with only features (Xt) are forwarded to the Sample Selection
algorithm to update the cache for unsupervised learning tasks, like clustering.
Once an ML Model is available after the training process (in the first two
rows of this figure), Xt is used as input of this ML Model for operational
purposes, including clustering, prediction, and classification.

after a given number m of samples has been received (the
approach used in this paper), or after a change in system
configuration or infrastructure.

In online learning for a prediction task, the cache holds a
set of n tuples (Xt, Yt) and is used to build a predictor F :
Xt 7→ Ŷt. The key difference to offline learning is the need
for a cache policy: while in offline learning the training set
includes a large number of samples collected offline during an
observation period, in online learning the cache is frequently
updated and, to keep the cache size fixed and to ensure an
effective prediction model, a sample selection algorithm is
required. A sample selection algorithm maintains the cache
with representative samples in order to minimize the prediction
error of the ML model built using this cache. In our use case,
the effectiveness of a sample selection algorithm is evaluated
by computing the prediction error for a predictor trained on
the cache using the Normalized Mean Absolute Error (NMAE)
metric. For a set of m samples, it is defined as follows:

NMAE =

∑m
t=1 |Ŷt − Yt|∑m

t=1 |Yt|

C. Research Questions

Considering our approach to online learning depicted in
Figure 1, the main contribution of this paper relates to the pro-
posal end experimental evaluation of online sample selection
algorithms. A sample selection algorithm makes a decision
about the insertion (or not) of each new sample in the cache
and, if the insertion is required, which sample must be evicted
to keep the cache size fixed. We are interested in a small cache
size that leads to predictors with similar accuracy than those
trained offline. This leads to the following research questions:



1) Which online sample selection algorithms allow for
effective learning using monitored metrics from a net-
worked system?

2) Do different algorithms vary in their effectiveness with
respect to the application target or load pattern?

3) How does the cache size relate to the effectiveness of
the learning task?

III. RELATED WORK

The use of AI/ML in network management is still a chal-
lenge, especially because most ML models are trained offline,
and retraining of a model from scratch can be computationally
intensive, time-consuming, and prohibitive [9]. Online feature
selection algorithms are a well-known research topic in lit-
erature [7], [6], [10]. However, the use of these algorithms
for sample selection is a novelty. In this paper, two classical
feature selection algorithms are adapted and evaluated for the
sample selection problem. The first algorithm is based on the
Relevance and Redundancy Feature Selection (RRFS) [4], and
the second is based on the Laplacian Score (LS) [5].

Perform unsupervised learning with limited-samples and
high-dimensions is known as a High-Dimensional Limited-
Sample Size (HDLSS) problem. Most works on HDLSS
tackles the problem of unsupervised learning with a few high-
dimensional samples. In [11] a variational autoencoder for
dimensionality reduction and an unsupervised classification
model is used to deal with HDLSS data, but it is applied
only in unsupervised ML models, with no relation to the
sample selection problem. The problem of target prediction
using a small number of samples is presented by Fursov [12]
et al. with no consideration about the use of cache or sample
selection algorithms. Their goal is to remove noised-samples
from this small set to reduce the prediction error. Nikolov
et al. [13] present a passive data rate estimation method
by utilizing an Adaptive Similarity-based Regression (ASR)
approach. A sample selection method is presented in ASR,
but it is specific for the problem of data rate estimation and
cannot be adapted to general prediction tasks.

An approach to improve online Support-Vector Machine
(SVM) with unlearning criteria is presented in [14], which
proposes a strategy to remove the ”least relevant” sample from
the training set. The sample selection algorithm used in [14] is
applied only for unsupervised learning and they don’t consider
training sets of small size (caches). Online predictions using
reinforced learning is a hot topic in literature [15] but with
no relation to the sample selection problem. In summary, the
proposal of online sample selection algorithms for resource-
constrained infrastructures is the main contribution of this
paper.

IV. ONLINE SAMPLE SELECTION ALGORITHMS

In this section, four different algorithms for online sample
selection are presented. The first is based on the classical
Reservoir Sampling (RS) algorithm [3] and the second, moti-
vated by the availability of some application target measure-
ments, is a supervised version of the RS algorithm, named

Supervised RS. Supervised RS is classified in this paper as
a ”supervised sample selection algorithm” because it also
depends on the values of the target. As the approach used
in this paper is to investigate the use of some feature selection
algorithms for sample selection, the third and the fourth
algorithms are based on modified versions of two classical
algorithms for feature selection, specifically the Relevance and
Redundancy Feature Selection (RRFS) [4] and the Laplacian
Score (LS) [5]. Both RRFS and LS do feature selection based
on the intrinsic characteristics of the features, independently
from the values of the targets. The third proposal is named
Relevance and Redundancy Sample Selection (RR-SS) and the
fourth is named Laplacian Score Sample Selection (LS-SS). In
this paper, RR-SS, and LS-SS are classified as ”unsupervised
sample selection algorithms” because they do not rely on the
values of the target to decide about cache updates. RS, RR-SS
and FS-SS can be used for online supervised and unsupervised
learning (see Figure 1).

A. Reservoir Sampling

Algorithm 1: Reservoir Sampling (RS): Iteratively
read sample Xt and decide on updating cache of size
n
Input: X = {X1, X2, ..., Xt, ...}
Result: Updated cache

1 t ← 1;
2 while (Monitoring System is Up) do
3 Xt ← MonitoringSystem.Acquire(t);
4 r ← RandomInt(0, t);
5 if (r < n) then
6 cache[r] ← Xt;
7 end
8 t ← t+ 1;
9 end

The Reservoir Sampling [3] is a family of randomized algo-
rithms for choosing uniformly a random set of n samples (also
known as ”reservoir”) from a population of unknown size, in
a single pass over each sample. The size of the population
is not known to the algorithm in advance and is typically
too large to fit into the main memory for post-processing.
In the online sample selection problem, the reservoir is the
cache and the population is composed of each sample coming
from the monitoring system. Algorithm 1 summarizes our
implementation of the Reservoir Sampling algorithm for online
sample selection. In summary, for each sample Xt acquired
from the MonitoringSystem at time t (Line 3) and a
cache of size n, a random number r is drawn from the range
[0..t] (Line 4) using the RandomInt function. If r is lower
than n (Line 5), the new sample is inserted in the cache
in its corresponding r position (Line 6), replacing the older
sample in this position. Otherwise, Xt is discarded. In the
beginning, the first n samples are automatically added to the
cache. As it is a one-pass algorithm for each input sample



Xt, with complexity O(1) – which means that its behavior is
independent of the size of Xt – the results of the Reservoir
Sampling algorithm are used as the baseline for the other
sample selection algorithms presented in this paper.

B. Supervised RS

Once for the training of supervised algorithms the target
values Yt are available, the Reservoir Sampling algorithm is
modified to take advantage of additional information: Ŷt =
F (Xt), which is the prediction of Yt using the current ML
model, F . This new algorithm is called Supervised Reservoir
Sampling, or simply, Supervised RS. Instead of simply using
the randomness of the RS algorithm on the decision to insert
(or not) a sample and target value in the cache, in the
Supervised RS algorithm it is also verified if the prediction
error of the current sample using the current prediction model
F , |Ŷt−Yt|

|Yt| , is lower than the prediction error of the current
prediction model (currentPredError) obtained from the
evaluation with the current cache, both measured as NMAE.
The main idea behind this modification is to not increase the
error of the current model when inserting a new sample and
target in the cache. This process is summarized in Algorithm
2.

Algorithm 2: Supervised RS: Iteratively read sample
(Xt, Yt) and decide on updating cache of size n

Input: X = {(X1, Y1), (X2, Y2), ..., (Xt, Yt), ...}
Result: Updated cache

1 t ← 1;
2 while (MonitoringSystem is Up) do
3 (Xt, Yt) ← MonitoringSystem.Acquire(t);
4 r ← RandomInt(0, t);

5 if (r < n) and ( |Ŷt−Yt|
|Yt| < currentPredError

then
6 cache[r] ← (Xt, Yt);
7 end
8 t ← t+ 1;
9 end

In summary, considering a sequence of samples
with both features Xt and target Yt coming from the
MonitoringSystem at time t (Line 3), and a cache
of size n, the Supervised RS algorithm uses both the
probabilistic behavior of the RS algorithm and the value
of the target Yt on the decision about when to update the
cache with both (Xt, Yt). Supervised RS also keeps the
cache size fixed. To do this, a random number r is drawn
from the range [0..t] (Line 4) for each tuple (Xt, Yt) from
the MonitoringSystem at time t. In Lines 5-6, if r is
lower than n, and if the prediction error of Xt using the
current model (| Ŷt − Yt |) is lower than the prediction error
of the current model (currentPredError), both (Xt, Yt)
are inserted in the cache in the r position. Otherwise, both
Xt, Yt are discarded. The complexity of the Supervised RS
algorithm depends on the predictor because we need to use

the current model F and the new sample Xt to estimate Ŷt.
Algorithm 2 runs while the monitoring system is up (Line 2)
and can only be used in online supervised learning.

Note that an opposite approach can also be considered:
insert a sample in the cache if its prediction error is greater
than the prediction error of the current model. This version
may be effective after a change of the system configuration
that requires major model adjustments.

C. RR-SS Algorithm

Algorithm 3: RR-SS: Iteratively read sample Xt and
decide on updating cache of size n

Input: X = {X1, X2, ..., Xt, ...}
Result: Updated cache

1 t ← 1;
2 while (Monitoring System is Up) do
3 Xavg ← AvgOfAllSamples(cache);
4 cacheRankList ← Rank(cacheT , cacheT );
5 rankAvgSample ← Rank(Xavg

T
, cacheT );

6 Xt ← Monitoring.AcquireSample(t);
7 rankNew ← Rank(Xt

T , cacheT );
8 if (rankNew > rankAvgSample) then
9 i ← GetLowestIndex(cacheRankList);

10 cache[i] ← Xt;
11 Xavg ← AvgOfAllSamples(cache);
12 rankAvgSample ← Rank(Xavg

T
, cacheT );

13 end
14 t ← t+ 1;
15 end
16 Procedure Rank(matrix ∈ Ri×j , cache ∈ Rn×k):
17 redundanceList ← CosineSim(matrix, cache);
18 relevanceList ← EuclideanDist(matrix, cache);

19 rankList← relevanceList

redundanceList
;

20 return rankList;
21 end

A modified version of the RRFS algorithm for online feature
selection is the Adapted Relevance Redundancy (ARR) algo-
rithm, presented in [16]. As ARR is already adapted to online
learning, the RR-SS algorithm for online sample selection is
based on it and presented in Algorithm 3. In RR-SS the cache
is considered as a n × k matrix that contains samples Xt in
rows. Xt are samples coming from the MonitoringSystem
at time t. cacheT ∈ Rk×n is the transposed cache matrix, with
features as rows and samples as columns. Also, a sample Xt

is transposed to Xt
T to be seen as a feature vector. Then,

it is possible to use well-known feature selection algorithms,
such as RRFS, in the sample selection problem. In Algorithm
3, Xavg is defined as a vector with the average of each
column in the cache, i.e., a vector with the average of each
feature considering all samples in the cache (Line 3). Formally,
considering Xt with k features, Xavg = {f1, f2, . . . , fk}.



A rank list cacheRankList is generated for the cache
(Line 4). The elements of the cacheRankList represent
the rank of each sample in the cache, calculated by the
relation between each value of the relevance list and each
value of the redundancy list. The redundancyList is calcu-
lated as the average of the cosine similarity (CosineSim)
between each pair of sample vectors in the cache, while
the relevanceList is calculated as the average of the Eu-
clidean distance (EuclideanDist) between each pair of
sample vectors in the cache. In Lines 5, 7, and 12 the
Rank procedure is also used to generate a rank value
for both Xavg (rankAvgSample) and Xt (rankNew) vec-
tors. Considering a sequence of samples coming from the
MonitoringSystem at time t (Line 6), the RR-SS algo-
rithm is used to decide about cache updates. cacheT , Xavg

T

and Xt
T are the transposed versions of cache, Xavg and Xt.

If the rank of the new sample Xt (rankNew) is greater than
the rank of Xavg (rankAvgSample), the new sample is added
to the cache replacing the sample with the lowest rank in the
cache (Lines 9-12). As a design choice, we used the average,
but the median, 25% or 75% percentiles could also be used.
Algorithm 3 has complexity O(kn2), where n is the cache size
and k is the number of features in each sample.

D. Unsupervised LS-SS

An implementation of the Laplacian Score (LS) algorithm
for feature selection [5] is publicly available [17]. A modified
version of this algorithm for sample selection is described in
Algorithm 4 and called Laplacian Score Sample Selection (LS-
SS). In Algorithm 4, every new sample Xt from the monitoring
system (Line 3) is inserted in the cache (Line 4), which has
n+1 samples. A neighbor graph is constructed with all n+1
samples in the cache (Line 5). This graph has samples as its
nodes and the links correspond to the k-Nearest Neighbors
(kNN, with k=5) of each sample. The Laplacian Score for
each sample in the cache is computed (Line 6) and a list
(lapScoreList) with these scores is generated. The scores are
calculated according to a weighted matrix between all nodes
(samples) in the graph. The weights are calculated according
to the number of links in each node (sample). Then, the index
i of the sample with the highest score is identified (Line 7)
and the ith sample is removed from the cache (Line 8), that
goes back to size n. This procedure is repeated for all samples
coming from the monitoring system while the system is up.

The complexity of the LS-SS algorithm is related to the
graph construction and the generation of its corresponding
weighted matrix. According to [5], [16], adapted for the
sample selection problem, LS-SS has complexity O(nk2),
where n is the cache size and k is the number of features.

V. TESTBED PRESENTATION AND DATASET DESCRIPTION

In this section, the experimental infrastructure and the
dataset are described, also with the services that run on this
infrastructure, namely, a Video-on-Demand (VoD) service and
Key-Value (KV) store. Figure 2 outlines the testbed at KTH.
It includes a server cluster, an emulated OpenFlow network,

Algorithm 4: LS-SS: Iteratively read sample Xt and
decide on updating cache of size n

Input: X = {X1, X2, ..., Xt, ...}
Result: Updated cache

1 t ← 1;
2 while (Monitoring System is Up) do
3 Xt ← Monitoring.AcquireSample(t);
4 cache[n+ 1] ← Xt;
5 graph ← BuildNeighborGraph(cacheT );
6 lapScoreList ← CompLaplacianScores(graph);
7 i ← GetIndexOfHighestScore(lapScoreList);
8 cache ← RemoveSample(i);
9 t ← t+ 1;

10 end

and a set of clients. The server cluster is deployed on a rack
with 10 servers. All machines run Ubuntu Server 14.04 64 bits,
and their clocks are synchronized through NTP. The OpenFlow
network includes 14 switches, which interconnect the server
cluster with clients and load generators. The load generators
emulate clients using the evaluated services.

Fig. 2. Testbed used for experiments at KTH. In all scenarios KV and VoD
performance metrics from infrastructure measurements are predicted [18]

1) The VoD application: uses VLC media player software,
which provides single-representation streaming with varying
frame rate with the ten most-viewed YouTube videos in 2013.

2) The KV store application: uses Voldemort software. It
executes on the same machines as the VoD service. Six of
them act as KV store nodes in a peer-to-peer fashion, running
Voldemort version 1.10.22.

3) The Dataset: Metrics from the cluster and network
infrastructure, namely, the input feature set Xcluster and Xport.
The union of these metrics is referenced as X. The Xcluster

feature set is extracted from the Linux kernel running on the
servers executing the VoD and KV applications. Examples
of such statistics are CPU and memory utilization and I/O
rate. It includes about 1,700 statistics per server in total and
is publicly available [19]. The Xport feature set is extracted
from the OpenFlow switches at per-port granularity. It includes
statistics from all switches in the network: i) Total number of
Bytes Transmitted per port; ii) Total number of Bytes Received
per port; iii) Total number of Packets Transmitted per port;
and iv) Total number of Packets Received per port. In this
paper, for the VoD dataset 16 features from both Xcluster

and Xport were used, while for the KV dataset 256 features



(a) Reservoir Sampling (b) Supervised RS

(c) RR-SS (d) LS-SS

Fig. 3. Prediction error (NMAE) vs cache size for four sample selection algorithms RS, Supervised RS, RR-SS, and LS-SS. The bars show mean values and
95% confidence intervals of 10 runs. Evaluations are performed for the VoD ad KV applications and two different load patterns. The horizontal dashed lines
show the results of offline predictions.

were used. These values follow the results presented in [20]
with the same applications, features, and targets. Y targets
from both applications are measured on the client device.
During an experiment, we capture the Display Frame Rate
(DispFrames) (frames/sec), i.e., the number of displayed
video frames per second for the VoD application, and Read
Response Time ReadsAvg, i.e., the average read latency.

4) Methodology: During experiments, X and Y statistics
are collected every 1s on the testbed during 10h. Each trace
has about 36,000 samples and targets. For each service running
on the testbed, the data collection framework produces a trace
in form of a time series (Xt,Yt). We interpret this time series
as a set of samples {(X1,Y1), ..., (Xt,Yt)}.

5) Service Load Patterns and Generators: The VoD load
generator dynamically controls the number of active VoD
sessions, spawning and terminating VLC clients. The KV load
generator controls the rate of KV read operations issued per
second. The VoD and the KV services run different load
patterns. In the Periodic load pattern, the load generator
produces requests following a Poisson process whose arrival
rate is modulated by a sinusoidal function with a period of
60 min. In the Flashcrowd load pattern, the load generator
produces requests following a Poisson process whose arrival
rate is modulated by a Flashcrowd model [21], whose arrival
rate starts at an initial load and peaks at flash events, which
are randomly generated, and then decreases to the initial load.

VI. EVALUATION AND RESULTS

In this section, the prediction errors of the four sample
selection algorithms are presented and discussed, also with
an evaluation of the time to perform the sample selection and
to build a new prediction model. For reference, the results of
the predictions from an offline learning model are presented
in Table 1, which summarizes the results from [20]. It is
important to highlight that in offline learning, both training
and test sets are randomly selected from all samples in the
same dataset.

In all evaluation scenarios, the Random Forest [22] algo-
rithm is used to build the prediction models, which are updated
at every round of m samples. Each prediction model is used
to predict the next m samples, which is set to 100, i.e., at
every 100 samples the prediction model is updated and used
to predict the next 100 samples. n is evaluated from values
starting in 32 to 4096, growing exponentially with base 2 to
explore a large state space in a few steps. We perform 10
executions for each scenario with different random seeds of
the Random Forest algorithm. The number of trees (estimators)
is set to 20 and the depth of each tree is set to 10. In summary,
taking 1 sample at each 1s during approximately 10h we
have 36,000 samples for each load pattern and application.
Using m=100, a new model is generated approximately 360
times in each scenario (36,000/100). For each new model, its
corresponding NMAE is calculated.



(a) VoD-PeriodicLoad (b) VoD-FlashcrowdLoad

(c) KV-PeriodicLoad (d) KV-FlashcrowdLoad

Fig. 4. Prediction error (NMAE) vs cache size for three unsupervised sample selection algorithms RS, RR-SS, and LS-SS. The mean values and 95%
confidence intervals of 10 runs are shown. Evaluations are performed for the VoD ad KV applications and two different load patterns.

TABLE I
PREDICTION ERROR (NMAE) USING OFFLINE LEARNING FOR DIFFERENT

APPLICATIONS AND LOAD PATTERNS [20].

Dataset Target NMAE
VoD-PeriodicLoad DispFrames 0.080
VoD-FlashcrowdLoad DispFrames 0.075
KV-PeriodicLoad ReadsAvg 0.031
KV-FlashcrowdLoad ReadsAvg 0.019

A. Evaluation of Supervised Algorithms

In this section, both the RS and the Supervised RS algo-
rithms for online sample selection are evaluated regarding their
prediction errors (NMAE). It is important to highlight that,
while the Reservoir Sampling (Algorithm 1) is an unsuper-
vised algorithm, this section contains a comparison with the
Supervised RS. In Figure 3 each bar represents the average
of the prediction error for the VoD and KV applications with
different load patterns and cache sizes. The 95% confidence
interval is also plotted. The colored horizontal dashed lines
represent the results using offline learning, as listed in Table
I.

As expected, according to Figure 3(b) the Supervised RS al-
gorithm achieves better results when compared to the original
Reservoir Sampling, depicted in Figure 3(a). The prediction
error using the Supervised RS is closer to the offline results

represented by the dashed horizontal lines. It is also possible to
see that, in the KV-Flashcrowd load pattern, the prediction
error using the Reservoir Sampling algorithm doubles the error
of the offline results. Regarding the cache size, it is possible
to notice that there is no significant difference in choosing the
lowest or the highest ones. This fact is better discussed later,
in Section VI-C.

B. Evaluation of Unsupervised Algorithms

Two unsupervised online sample selection algorithms are
evaluated in this section, RR-SS, and LS-SS. The evaluation
is related to their prediction errors, also measured using the
NMAE. We call these algorithms ”unsupervised” because the
sample selection doesn’t depend on the value of the target nor
on the current evaluation of the prediction error.

According to Figure 3(c), considering the prediction error
for the VoD application under both load patterns, the proposed
RR-SS algorithm achieves better results than those using the
LS-SS algorithm, depicted in Figure 3(d). On the other hand,
when looking at the KV application, there is no significant
difference between the RR-SS (Figure 3(c)) and the LS-SS
(Figure 3(d)) which can lead us to conclude that there is
no winner between them and it depends on the application
and load pattern being used. Anyway, it is also possible to
see that, in all cases, the prediction error when using RR-
SS or LS-SS algorithms is lower than when using the original
Reservoir Sampling algorithm, used as our baseline. This error



for both algorithms is close to the offline results, represented
by the four colored dashed lines in the figure, except for
the KV application under the Flashcrowd load pattern, which
reinforces our perception that the choice of the best algorithm
depends on the application and the load pattern. Due to this,
in the next section, the proposed unsupervised algorithms are
compared explicitly for each application and load pattern, for
an extended range of cache sizes.

C. The influence of the cache size

Figures 4(a)-(d) show the average prediction error (NMAE)
for the unsupervised algorithms (including Reservoir Sam-
pling) for the different applications and load patterns. In these
evaluations, we use an extended range of cache sizes, from 32
to 4096. In each figure, the average value is plotted as a colored
line, and the shaded area represents the 95% confidence
interval. We observe that, in all cases, Reservoir Sampling
has the worst performance, while the RR-SS achieves the best
results among all unsupervised sample selection algorithms.

Surprisingly, we find that the cache size does not have a
strong influence on the prediction error. The theory of sta-
tistical learning suggests that the error declines exponentially
with increasing sample size if samples are chosen uniformly
at random [1]. When we train a Linear Regressor instead of
Random Forest on the same data, we find a much clearer
decline of the error when the cache size increases (results
are not included in this paper). Our finding merits further
investigation, since it suggests that a small cache size can
achieve similar prediction accuracy than a significantly larger
one.

Some reflection regarding the cache size: remember that
when using the offline approach we take samples from the
entire dataset (70% ratio) for training and use other samples
from the same dataset (30% ratio) for evaluating the prediction
accuracy. In offline learning, the model is built with samples
from the entire monitored time period. When using an online
algorithm, as proposed in this paper, we use samples from the
past to predict targets with samples in the future. Our results
suggest that sample selection itself is of more importance than
the number of samples in the cache, at least for our data
sets. Maybe the diversity of samples in the cache is of more
importance than the cache size for prediction accuracy.

D. Sample Selection and Model Build Time

The sample selection time is measured as the time between
a new sample is acquired and the decision is made about
performing (or not) the cache update. It is independent of the
cache size but is highly dependent on the sample selection
algorithm. For both RR-SS and LS-SS, the number of features
is also of high importance, as a cache transpose operation is
performed for both Algorithms 3 and 4: the greater the number
of features, the greater the cache size in the transposition, and
the larger the computational cost. Due to space restrictions,
these results are not detailed here, but on average they vary
from about 10ms for Reservoir Sampling to 200ms for RR-SS

Fig. 5. Model training time vs cache size for a Random Forest predictor.
The mean values and 95% confidence intervals of 10 runs are shown. Time
is measured on an Intel i7-5500U CPU 2.40GHz laptop with 16GB RAM.

on KV trace data. A more efficient implementation of both
RR-SS and LS-SS algorithms is left as future work.

The time to build a new prediction model using the Random
Forest algorithm is presented in Figure 5. We observe that this
time is highly influenced by the cache size n and the number
of features k, which agrees with the complexity of the Random
Forest algorithm, namely O(kn∗log(n)). All computations are
performed in less than 1s, which is the monitoring interval on
the KTH testbed.

VII. CONCLUSION

This paper makes a contribution to data-driven engineer-
ing for resource-constrained systems. It demonstrates, using
testbed results, that online learning can allow for fast and
low-overhead model training, and that accurate prediction is
possible using a small cache. The key to our online learning
approach is sample selection, and we evaluated four algo-
rithms: RS, Supervised RS, RR-SS, and LS-SS. Among the
unsupervised algorithms, RR-SS achieves the best accuracy
for a Random Forest predictor, across different applications
and load patterns.

Regarding the impact of the cache size on the effectiveness
of the model, we find that the cache size does not have a
strong influence on the prediction error. This is surprising and
suggests that the diversity of samples in the cache is of higher
importance than the cache size. Overall, we find that, using
our approach, sufficiently accurate predictions can be made
with a cache size that is 2-3 orders of magnitude smaller than
the number of samples used for offline prediction on the same
data traces.

As future work, we plan to further investigate the influence
of the cache size on the effectiveness of ML models. We also
want to study and evaluate the use of sample selection algo-
rithms for unsupervised online learning including clustering.
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