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Abstract—The expected benefits of Network Function Virtu-
alization (NFV), i.e., flexibility and efficiency, require platforms
able to instantiate Virtualized Network Functions (VNFs), re-
placing traditional dedicated middleboxes. However, to fulfill
performance requirements, especially for functions operating at
high-throughput line rates, dedicated hardware acceleration may
be required and, to provide the expected flexibility, hardware
accelerators must be able to support different VNFs. Thus,
reconfigurable devices such as Field-Programmable Gate Arrays
(FPGAs) have received attention due to their ability to provide
both properties. Not all VNFs, however, require or are even
suitable for hardware acceleration and, therefore, heterogeneous
platforms composed of FPGAs and General Purpose Processors
(GPPs) can be used. Even for a single network function, distinct
VNF Components (VNFCs) may have different demands and
restrictions, meaning that different hardware substrates may
be more suitable for their implementation. In this paper, with
the goal of promoting the efficient and seamless integration of
accelerators in NFV, we propose VNFAccel, a platform to manage
the execution of VNFCs in a heterogeneous infrastructure. We
evaluate the effectiveness of FPGAs as accelerator devices for
two VNF case studies and analyze the instantiation latency of
FPGA-based VNFCs in the platform. We also provide guidelines
to design VNFCs that are more flexible, promoting increased reuse
and reducing configuration time, and identify properties that make
them suitable for FPGA implementation.

Index Terms—FPGA, Network Function Virtualization, hard-
ware acceleration.

I. INTRODUCTION

Given the demand for efficient, reliable, and economical
network architectures, academia and industry are looking for
new methods to fulfill these expectations. Traditional networks
rely on middleboxes, e.g. Intrusion Detection System (IDS),
Network Address Translators (NATs), which are a strict com-
bination of software and application-specific hardware. This
fixed configuration generates a lack of flexibility and portability,
and maintaining a network environment using several specific
equipment incurs, in addition to high capital expenditure, in
complex integration between these devices [1].

Network Function Virtualization (NFV) is a novel paradigm
that has gained attention in the past years, which takes network
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functions off the hands of Application-Specific Integrated Cir-
cuits (ASICs) and specific hardware to put them in virtualized
infrastructures (e.g., virtual machines and containers). This
effort results in lower-cost devices handling network functions,
with more flexibility to changes and updates. In this context,
Virtualized Network Functions (VNFs) are the virtualization of
functions such as Deep Packet Inspection (DPI), firewall, load
balancing. In turn, these functions are typically built in terms of
building-block components (e.g., regex matching engine, alerts,
header classifier) that are common across different VNFs. These
fine-grained, modularized components are called Virtualized
Network Function Components (VNFC) [2].

One of the main challenges in the context of network
function virtualization is to provide the performance guarantees
similar to those achieved with middleboxes on specific hard-
ware [3]. For example, considering latency and throughput, it is
expected that a VNF implemented on dedicated hardware will
have better performance than a function based on pure soft-
ware implementations [4]. Several efforts aimed at increasing
throughput and decreasing delay on pure software approaches,
either using minimalistic VMs, such as ClickOS [5], or using li-
braries and drivers, such as Intel’s Data Plane Development Kit
(DPDK) [6]. However, these approaches rely on optimizations
for VMs running on General Purpose Processors (GPPs). The
deployment of VMs generates high consumption of resources
and possibly overheads caused by the operating system over the
hypervisor, often not providing the required performance and
throughput for VNFs. Therefore, hardware acceleration may
still be required, in tandem with software solutions, to perform
and accelerate network functions.

In this paper we propose VNFAccel, a platform for ac-
celerating the execution of VNFs in heterogeneous hardware-
software infrastructures. Our platform relies on the management
and allocation of VNFCs upon heterogeneous architectures
comprised of Field Programmable Gate Arrays (FPGAs) and
GPPs, observing the potential provided by FPGAs for the
feasible execution of VNFs (or, in a fine grain, VNFCs) [7].
Our main contributions are: (i) the presentation of guidelines
and discussion of properties of VNFCs to help select the
appropriate substrate for each VNFC, based on the advantages
and disadvantages of FPGA and GPP for different processing
conditions; (ii) a platform for the deployment and management



of network functions, which allocates VNFCs on a hybrid GPP-
FPGA infrastructure; (iii) the analysis of two use cases, firewall
and DPI, demonstrating the modularization of these VNFs.
Our implementation prototype runs on a NetFPGA device built
upon Xilinx EDK [8], and experimental results comparing the
performance of VNF Components executing on the FPGA and
on pure software solutions are also presented.

This paper is organized as follows. Section II presents a
brief background on NFV and FPGA acceleration. Section III
defines guidelines for the development of VNFCs and discusses
the main design aspects of the VNFAccel platform. Section
IV presents our prototype implementation and experimental
results, while Section V reports relevant related work. Finally,
Section VI presents the concluding remarks.

II. BACKGROUND

In this section we present the background related to the basic
concepts of NFV, focusing specifically on VNFs and VNFCs.
Next we discuss the characteristics of FPGAs that can be used
to accelerate network functions.

A. Network Function Virtualization

Network Function Virtualization (NFV) is a paradigm pro-
posed and standardized by the European Telecommunications
Standards Institute (ETSI) [1]. Its main objective is to offload
network functions from physical devices developed and man-
ufactured for only a single specific purpose (e.g., firewalls,
DPI, NAT) and to execute them in a virtualized infrastructure.
The proposed ETSI architecture is divided into Virtualized
Network Functions (VNFs), NFV Infrastructure (NFVI), and
NFV Management and Orchestration (NFV MANO).

In particular, VNFs consist in the virtualization of basic
functions in Commercial Off-The-Shelf (COTS) servers, thus
lowering costs and turning the infrastructure more amenable
to improvements and updates. Network functions typically
have different objectives inside the network, either monitoring
incoming and outgoing traffic based on different rules or remap-
ping IP addresses of packets while they are in transit [9]. These
specific functions can be decomposed into generic and less
complex components, enabling the sharing of modules between
VNFs. These internal components of VNFs, responsible for a
subset of a VNF functionality, are called Virtualized Network
Function Components (VNFCs) [2].

B. FPGA Acceleration

Development in FPGA starts with the design of the requested
hardware and logic in a Hardware Description Language (HDL)
that is synthesized by a proper tool, generating a specific
bitstream to program the FPGA to perform the designed logic.
The complete process is composed of synthesis, mapping,
placement, routing, and finally generating the configuration
bitstream that programs the device. This process can take from
several minutes to hours, depending on the design complexity.

The technology behind an FPGA is a set of generic logic
blocks interconnected in a programmable switch fabric. These
blocks are programmed as boolean logic functions using
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lookup-tables (LUTs), which consist of multiplexers used to
perform combinational functions. To compute one function with
K inputs, a 2X-to-1 multiplexer is necessary to select one bit
out of 2K, This arrangement results in a K-input LUT, the most
common on standard FPGAs being 4 to 6-input LUTs. LUTs
are grouped in Configurable Logic Blocks (CLBs) alongside
with flip-flops to form the basic block of FPGAs, illustrated
in Fig. la. Additionally to these blocks, FPGAs commonly
have memory (e.g., Block RAM or BRAM), input/output blocks
(IOBs), multipliers, and high-speed interfaces, as represented in
Fig. 1b, but varying from device to device. We refer readers
interested in further details on FPGA architecture to [10].

With this programmable logic, an FPGA achieves one of
the most important characteristics demanded by NFV, which
is the reconfiguration on demand. This avoids the inflexibility
present in ASICs with superior performance compared to GPPs
for functions that can be efficiently mapped to this fabric, as
will be discussed in Section III.

It is important to note that the reconfiguration of an FPGA
with a new bitstream takes time, although much less than
generating the bitstream itself, and makes the chip idle, thus
adding complexity in the management and orchestration of
a network. Another important metric is power efficiency, in
which FPGAs may achieve better efficiency when compared
to GPPs. However, this gain depends on the specific function
and hardware. Moreover, these gains are smaller than those
obtained with an ASIC, since the reconfigurability introduces
costs. Since one of the NFV’s goals is to reduce power usage
[11], FPGA-based VNFs can consider this metric as well.
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III. VNFACCEL: A VNF PLATFORM BASED ON FPGA
ACCELERATION

A platform for the execution of VNFs needs to provide
strict performance guarantees. Besides, it must support different
combinations of network functions. We advocate that FPGA, a
programmable hardware solution, can meet these performance
and the flexibility requirements [12]. In this section, we first
present use cases to demonstrate the modularization of VNFs
and common functionalities across different functions. Next, we
outline development guidelines and properties to help determine
which modules should execute in hardware or software. We
then discuss how the FPGA reconfiguration features can be used
to provide VNFC flexibility. Finally, we present our FPGA-
based platform, VNFAccel, to support the operation, manage-
ment, and control of VNFCs in a heterogeneous infrastructure.

A. VNF Modularization Use Cases: Firewall and DPI

Typically, VNFs can be divided into basic modules called
Virtualized Network Function Components (VNFCs). Fig. 2a
shows the components that comprise a firewall function. The
modules in light grey execute generic actions present in many
functions, such as packet forwarding. Modules for communica-
tion and that do not necessarily process packets are represented
in dark grey. Finally, some components are too specific and
have a minor chance of being shared among VNFs, represented
in white, and are classified as VNF-specific components. Fur-
ther, Fig. 2b shows the modules of a regex-based DPI, using
the same color conventions for the blocks. This exhibits the
common components between different functions.

This modularization promotes flexibility and reusability since
components can be shared between functions. Managing these
components in a heterogeneous network can reduce resource
and time consumption since functions tend to need few specific
modules. These modules must be well confined to detach their
service from generic modules, obtaining independent function-
alities. Fig. 3 presents a possible combination of VNFCs to
achieve a merged firewall and DPI functionality simultaneously.

The ability to modularize the implementation of VNFs using
common building blocks allows instantiating new functions by
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Fig. 3. Example of VNF combination through modules.

combining independent, fine-grain modules. Furthermore, these
modules may be possibly allocated in multiple Points of Pres-
ence (PoPs) in the network and reused by different functions.
Ultimately, this promotes deployment flexibility, since functions
are not dependent on fixed configurations.

B. Guidelines for the Development of VNFCs

In this section, we discuss guideline criteria to decide if a
VNEFC is more appropriate for execution on an FPGA or on a
GPP. Each module needs careful analysis before development
to exploit the advantages of hardware acceleration, avoiding a
mismatch between application and device properties. The list
below summarizes the main criteria to be considered. These
points are complementary to each other in the definition of
the proper device for each VNFC. These guidelines consider
experiences from previous work such as [7], [13]-[15].

1) Data-flow vs. control-flow intensity: Each module pro-
cesses packets employing different operations to accomplish its
specific service. Operations that involve control and conditional
constructs, without data-intensive computation, are more suit-
able for GPPs. Data-flow intensive operations, especially with
high fine-grained parallelism, are more suitable for FPGAs.

2) Priority: In a network function, modules may have prior-
ities regarding the provided service. VNFCs with low priority
and usage do not demand FPGA acceleration and could result
in resource waste. Conversely, VNFCs with high priority and
demand could not have enough throughput in GPPs.

3) Memory usage: Compared to GPPs, FPGAs typically
have less internal memory, and it is not transparent as caches.
Therefore, tasks with regular and predictable access patterns,
preferably in a streaming-like behavior, can be more easily
mapped to FPGA memory resources.

4) Development complexity: Although high-level synthesis
has gained popularity in the past years to improve the design
productivity [16], [17], FPGA development is still more cum-
bersome and less mature than software development. Therefore,
development costs, especially for highly-complex functions,
should be accounted for when choosing FPGAs over GPPs.

C. Reconfiguration Layers in FPGA-based VNFCs

Development of FPGA modules seeks performance and
flexibility using the main feature of FPGAs: reconfigurability.
However, there is a tradeoff between high performance and
flexibility to changes. When developing an FPGA-based VNFC,
different layers of abstraction and configuration can be placed



over the FPGA hardware and these affect the adaptability of
the VNFC to changing demands. For example, in a DPI or
firewall function, rules may change over time, and a VNFC
should accommodate these changes quickly and efficiently.

In this section, we discuss the two main paradigms to
support VNFC adaptation, and how these affect development
and management practices. To compare performance data, we
analyzed implementations of a regex matching module, present
in a typical DPI function. These modules commonly use a
Nondeterministic Finite Automaton (NFA) or Deterministic
Finite Automaton (DFA) to perform rule checking.

1) Fixed-configuration VNFC: These VNFCs completely
embed the desired functionality in the FPGA bitstream. As
shown in Fig. 4a, once the FPGA configuration is applied over
the FPGA hardware, the VNFC is both instantiated and fully
configured for operation. Modifications in fixed-configuration
VNFCs, however, require resynthesizing a new bitstream. As
the compilation of complex functions may demand significant
time, in the order of several minutes or even hours, this
can introduce undesirable reconfiguration latency. Nevertheless,
since these modules are developed and configured directly into
the FPGA, they usually provide high performance.

Fixed-configuration approaches of the regex module as [18]
and [19] rely on one-input character matching. Using different
techniques of compression, they can achieve throughputs up to
6 Gbps. Other proposals as [20] use multi-character inputs,
which may cause state explosion as the state combinations
increase, consuming more resources. However, they reach
11 Gbps of concurrent throughput. For these implementations,
any required change in the ruleset requires synthesizing a new
bitstream, which delays the function’s adaptation.

2) Overlay VNFC: Overlays avoid resynthesis by decou-
pling instantiation and configuration. VNFCs are instantiated
with the FPGA configuration, but their functionality is fully de-
fined only when the overlay configuration is applied, as shown
in Fig. 4b. This is typically done with user-accessible internal
memories, such as BRAMs, to configure the VNFC operation.
Thus, the VNFC can have its operation changed by rewriting
the contents of these BRAMs, without synthesizing a new
bitstream. The time required for this type of reconfiguration
depends on the amount of transferred data, but it is typically in
the order of dozens of milliseconds. This is orders of magnitude
faster than synthesizing a new FPGA configuration.

In the case of DPI functions, the ruleset being checked
depends exclusively on an interchangeable memory. However,
the use of FPGA memory increases along with the complexity
and size of rulesets. Based on [21], we implemented a module
using this method, explained in Section IV, which achieves
0.8 Gbps of throughput. If higher performance is required,
both approaches can be combined: it is possible to maintain
fixed-configuration VNFCs previously synthesized for popular
rulesets, and use the overlay version when unforeseen rulesets
are requested, or until when synthesis is completed.

The throughput and the reconfiguration time of both ap-
proaches demonstrate the tradeoff between performance and
flexibility. The fixed-configuration method presents a higher

VINFC Configuration
[Overlay configuration

VNFC Instantiation
[FPGA configuration

VINFC Instantiation
+ Configuration
|[FPGA configuration

(a) (b)

Fig. 4. Fixed-configuration (a) and overlay (b) VNFCs.

throughput. However, the downtime of overlays is much lower.
Developers should analyze the project priorities in these terms.
The need for post-deployment adaptation should also be consid-
ered. The generic and communication modules in Fig. 2, in light
and dark grey, respectively, may not need constant modification.
However, specific modules, represented in white, are likely to
require frequent adjustments.

D. VNFAccel Platform

VNFAccel can be used to manage VNFCs in a modular and
heterogeneous infrastructure. It is composed of, as seen in Fig.
5, VNFC Allocation Controller, VNFC repositories, and NFV
Points of Presence (PoPs). FPGA and GPP devices, linked by a
high-speed local interface such as PCle, constitute an NFV PoP.
Different VNFs can be instantiated into these PoPs, with VN-
FCs distributed in the infrastructure. Thus, multiple PoPs could
allocate resources to provide one VNF service. VNFCs are
allocated on GPP or FPGA depending on the designed modules.
The controller entity manages the service provided by the PoPs,
issuing instantiation and configuration commands. The system
maintains a repository detached from the controller, where the
developed VNFCs for GPP or FPGA are stored. In addition
to performing VNFC allocation, the GPP has a management
role, receiving controller commands, requesting VNFCs from
repositories, updating FPGA memories, and operating FPGA
reconfiguration as needed.

These PoPs are not necessarily equal in terms of availability
and system configuration. Since the fragmentation of VNFs and
management of VNFCs are the focus of VNFAccel, PoPs have
to provide flexibility in terms of resources, possibly using dif-
ferent alternatives of GPPs and FPGAs, seeking enhancement
of memory, resources, performance or throughput. Thus, the
possibilities for the allocation of VNFCs are improved, creating
a more comprehensive and adaptable system.

Once a VNF is requested to the VNFC Allocation Controller,
a sequence of events perform the deployment of VNFCs at
an NFV PoP. The diagram presented in Fig. 6 illustrates these
events. The controller sends a deployment command to the GPP
of a PoP, indicating the VNFCs required and the target device in
which to deploy. The GPP requests the VNFC implementations
and the VNFC configuration layer data (e.g. rulesets) from the
repositories. The GPP allocates the downloaded images and
instantiates the VNFCs in the corresponding devices, applying
the required configurations. Finally, the GPP confirms the VNF
deployment, and the network traffic can be processed.
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IV. PROTOTYPE IMPLEMENTATION AND EXPERIMENTAL
RESULTS

In this section, we first detail the implementation of the use
cases that illustrate the development of VNFCs for FPGA. We
then evaluate the solutions in terms of: (i) throughput compared
to software implementations; (ii) reconfiguration and downtime;
(iii) instantiation latency; and (iv) FPGA resource usage.

A. Implementation and Experimental Setup

To host the FPGA components of VNFAccel, we relied on
the NetFPGA project [22], a flexible open-source platform for
research. This system operates as an abstraction layer over
FPGA, shown in Fig. 7. The platform manages the Ethernet
and PCle communications, and provides the mapping of SRAM
and BRAM addresses. These resources handle the I/O interface
and memory access, facilitating the implementation of network
functions. This platform is largely built upon Xilinx EDK [8], a
development environment for embedded systems which enables
the development of individual modules for FPGA. It provides
a simple way of combining these components, enabling the
straightforward implementation of function components.

In our proof-of-concept prototype' we developed the com-
ponents of a firewall and a DPI function to be integrated with
the NetFPGA platform, obtaining VNFCs for allocation on
an FPGA. We implemented each component seeking module
reusability and flexibility to changes, following the organization
presented in Fig. 3. Moreover, the core matching VNFCs of
each VNF were implemented as reconfigurable overlays, pro-
viding the decoupled configuration discussed in Section III-C.

The modules were implementated in Verilog and followed
project standards of NetFPGA. The FPGA implementations
were executed on a NetFPGA-1G-CML [23] featuring a Xilinx
Kintex-7 XC7K325T FPGA. To synthesize the complete func-
tions, we used Xilinx ISE 14.6 and Vivado Design Suite 15.6,
the standard vendor tools for the employed FPGA.

To compare the results between FPGA and GPP, software
functions were executed on an Intel Core 17-7500U @2.70GHz
running Ubuntu 18.04.4 LTS directly over CPU, without any
VMs or Containers, to emulate a minimum overhead scenario.
The firewall implementation is compared to iptables [24], a
utility program that configures packet filter rules of the Linux
kernel firewall. The FPGA DPI is compared to Snort [25], an
open-source intrusion detection and prevention system. The DPI
rules used in the FPGA implementation were based on the Snort
ruleset, and the Firewall ruleset used combinations of IP/Port
of computer or router addresses to ensure stimulation of the
functions.

B. Evaluation

1) Throughput: Fig. 8a and Fig. 8b present respectively
the results for the DPI and firewall performance, comparing
FPGA and software-based implementations with an increasing
number of rules. For both, we evaluate the throughput with
a network bandwidth monitor. Experiments with snort had a
standard deviation from 4.8 to 15.6, and with iptables from 6./
to 14.3.

'Source code of VNFAccel as well as the VNF implementation in HDL are
publicly available in: https://github.com/FBachini/VNFAccel
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This analysis exhibits a better throughput performance pre-
sented by the FPGA approach over pure software solutions.
In the study of the firewall and DPI use cases, both functions
analyze multiple fields of the packet header in parallel as a
single word. This characteristic makes them suitable for allo-
cation at the FPGA, as mentioned in Section III. The translation
to a finite automaton [21] ensures the DPI implementation
maintains its throughput even for large rulesets, although at
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the cost of increased memory use, as presented in Table 1. The
firewall implementation, on the other hand, performs sequential
processing of rules, affecting its performance as the ruleset
grows. As a result, however, its resource usage is low, meaning
that parallelism can be exploited over multiple VNFC instances
if higher throughput is necessary. The memory and FPGA
resources used will be evaluated in Section IV-B4.

2) Reconfiguration and Downtime: Both firewall and DPI
functions operate rule checking on packets, employing a ruleset
determined by the network operator through the VNFC Allo-
cation Controller. The modifications after deployment expected
for these functions comprise, particularly, ruleset changes. As
the FPGA is idle while rules are allocated, it is important
to measure the required time to apply new rulesets. Both
implementations use rulesets stored in FPGA memory, which
can be modified, as required, through PCle communication. The
time consumption of the DPI and firewall implementations for
ruleset storage on FPGA memory is presented in Fig. 9. The
results are presented on a log scale due to the large difference
in memory utilization of both functions.

This evaluation exhibits the downtime of FPGA when mod-
ifications are required. The firewall time consumption for
performing memory reconfiguration is notably low compared
to the number of rules stored, increasing linearly as the ruleset
increases. The DPI time consumption begins very low, increas-
ing proportionally with the size of DFA states. The difference
in the complexity of the rules causes this notable disparity
of reconfiguration time. Firewall rules are simple, addressing
packet fields to actions. DPI rules are complicated regexes,
generating multiple DFA states to perform rule checking.

3) Instantiation Latency: To measure the time to deploy
VNFs as described in Section III-D, we analyzed the instantia-
tion time of the firewall and DPI implementations. We assume
that the bandwidth between controller, repositories, and NFV
PoP are equal and provide 100 Mbps. The bandwidth for a
SelectMAP FPGA bitstream reconfiguration is 3.2 Gbps for
the employed FPGA family [26]. Previous FPGA-enabled NFV
platforms do not emphasize decoupling VNFC instantiation
and configuration. As such, this analysis can be viewed as a
comparison between VNFAccel and these platforms.



Assuming the worst-case scenario, in which all operations are
sequentially performed as shown in Fig. 6, the time for VNFs
instantiation is presented in Fig. 10. We analyzed the four major
steps of the VNF deployment for FPGA: the download of the
bitstream and of the required ruleset, and the configuration of
the FPGA and of the VNFCs, i.e., the overlay configuration
with the desired ruleset.

For software solutions, the time to transmit rules to a PoP
ranges from 23us to 212us for the iptables firewall and from
278us to 2778us for the Snort DPI, for the same evaluated
ruleset sizes. In a scenario that the PoP has a cached FPGA
configuration file for the functions, these times would be com-
parable to those observed for FPGAs. The software instantiation
time presents a significant difference between Snort and iptables
ruleset size, reinforcing the disparity of function complexity
exhibit in Section IV-B2. The snort ruleset size varies between
30 to 280 kB while the iptables ruleset varies from 2 to 28 kB.

The FPGA instantiation time shows the most time-consuming
operations are the bitstream download and FPGA configura-
tion. NetFPGA utilizes several FPGA elements to create the
abstraction layer, generating bitstreams with 8 to 12 MBytes,
regardless of the complexity of the function. Nevertheless,
the time for bitstream download and configuration of FPGA
combined does not reach 1 second. If necessary, these times
can be reduced by caching frequent VNFCs in the PoPs. This
is relevant in scenarios where frequent context changes among
multiple VNFs take place. The ruleset size does not affect
noticeably the firewall instantiation time due to the relative
small size of rulesets. In the DPI implementation, however,
the ruleset size influences the instantiation time. Still, the
combination of ruleset download and configuration time is low
compared to the bitstream download.

The total instantiation time shows the contrast between the
two reconfiguration methods discussed in Section III-C. A
fixed-configuration VNFC would only require the bitstream
download and the FPGA configuration, while an overlay imple-
mentation requires all four steps. The times shown in Fig. 10,
however, indicate that the fixed configuration does not provide a
significant reduction in instantiation time compared to overlays.
On the other hand, if a new ruleset is required, the overlay
VNFC can accommodate it in a few milliseconds, while a
fixed approach requires from minutes to hours to perform a
full synthesis and bistream generation.

4) Resources Usage: We evaluated the use of resources
with the increase of the maximum ruleset size in DPI and
firewall implementations. Table I presents the use of CLBs, and
Block RAM (BRAM), the main internal memory component
for FPGAs.

This analysis exposes the costs in memory use of the overlay
approach. The variation on CLBs is very low with the increase
of the ruleset, due to the static logic of the implementa-
tions. However, BRAM consumption exhibits the modules’
dependency on memory. The DFA-based DPI implementation
experiences a high expansion in the number of states, increasing
memory consumption. Conversely, the firewall implementation
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TABLE 1
FPGA RESOURCES USAGE
[ | Maximum Ruleset size | CLBs [ BRAM |
Firewall 50 6545 (12.8%) 1 (0.2%)
DPI 8377 (16.4%) 37 (8.3%)
Firewall 100 7641 (14.9%) 1 (0.2%)
DPI 8407 (16.5%) 86 (19.3%)
Firewall 200 7876 (15.1%) 1 (0.2%)
DPI 8449 (16.5%) 128 (28.7%)
Firewall 300 8182 (15,4%) 1 (0.2%)
DPI 8502 (16,6%) | 239 (53.7%)
Firewall 400 8253 (16.1%) 1 (0.2%)
DPI 8554 (16.7%) | 353 (79.3%)
Firewall 500 8537 (16.7%) 1 (0.2%)
DPI 8612 (16.9%) | 438 (98.4%)

stores its rules directly, thus consuming less memory, although
larger rulesets will still impact BRAM usage.

For comparison, Table II presents the memory usage of the
software (RAM) and FPGA (BRAM) solutions, as we increase
the ruleset size. As FPGA embeds functionality directly on the
hardware, it can provide very efficient memory use, allowing
the storage of numerous rules within its internal memory. For
the Firewall case, the minimal memory is limited to the size of
one single BRAM.



TABLE 11
CPU AND FPGA MEMORY USAGE

[ | Max. ruleset size [ SW RAM (kB) [ FPGA BRAM (kB) |

DPI 50 154844 166.5
Firewall 1257 4.5
DPI 100 156128 387
Firewall 1347 4.5
DPI 157176 576
Firewall 200 1419 4.5
DPI 300 158416 1075.5
Firewall 1484 4.5
DPI 400 162740 1588.5
Firewall 1554 4.5
DPI 500 165756 1971
Firewall 1596 4.5

V. RELATED WORK

Several VNFs modularization and management platforms
have been proposed in the past years. In this section, we sum-
marize recent work on VNFC platforms and implementations.

The OpenBox project [27] is a software-defined platform
for development and management of VNFs. OpenBox exploits
modularization, offering the abstraction of complete functions
while utilizing VNFCs in the real processing traffic. The
platform combines and deploys the components upon virtual
instances. Similarly to our proposed infrastructure, it employs
VNFCs to compose different VNFs, although not exploring
hardware acceleration. The platform and our work are com-
plementary in the management and deployment of VNFCs.

PANFV [28] is an NFV architecture with a flexible data
plane, comprising software network functions as well as pro-
grammable hardware for VNF deployment, using the P4 lan-
guage. It proposes an abstraction layer above a hybrid physical
layer, containing commodity servers and programmable hard-
ware switches. However, the prototype analyzes only GPP im-
plementations. This work observes the need for heterogeneous
fabrics to support NFV, complementing our research in hybrid
platforms for VNFs deployment, in the P4-based context.

CoNFV [29], a configurable NFV system, proposes a con-
troller to a heterogeneous and scalable NFV platform. FPGA
and processor are dynamically and separately configured by
an autonomous controller. VNFs are allocated either on VMs
upon processors, with low throughput or on FPGA, with high
throughput. The controller migrates, creates, and destructs
functions between those options in real-time to meet functional
and network needs. There are other proposals to enable NFV
upon FPGA, such as VirtManager [30], a Virtual Open Sys-
tems’ technology that enables FPGA virtualization. The system
operates by dividing the FPGA in accelerators, controlled by
a context manager. This increases the management and control
over the FPGA, and also decreases reconfiguration time.

The hybrid platforms discussed above [29], [30], similarly
to VNFAccel, employ the combination of FPGA and GPP to
support the execution of network functions. However, those
implementations do not exploit the advantages of each device
for each VNFC operation. Compared to these related work,
VNFAccel can improve the development and performance of

TABLE III
RELATED WORK

[ [ TImplementation [ Research Papers |
NFA B1]
DPI DFA 1321, 33]
Firewall Comparator-Based [34], [35]
GPP [27], [28]
VNF Infrastructure GPPFPGA [29]. [30]

VNFs for FPGA or GPP through the proposed guidelines and
the focus on efficient reconfiguration of FPGA-based VNFCs.

Regarding specific VNF implementations, previous work
focused on efficiency and performance. In FPGA-based DPI
implementations, Non-deterministic Finite Automata (NFAs)
are widely used due to the multiple active states, suitable to par-
allel architectures. In [31], NFAs are mapped directly to VHDL,
generating highly optimized multi-character matching in FPGA.
Another approach to the DPI function is DFA implementations,
permitting a more straightforward approach to update the FPGA
with different expressions without reconfiguration. The feasible
execution of ruleset reconfiguration on FPGA using DFA is
observed in [32], [33].

The straightforward method to implement an FPGA-based
firewall is to use a comparator-based engine, as used in our
implementation, evaluating all rules on all packets. Some works
use simple architectures with a sequential evaluation of rules
[34], [35], attaining low resource occupation, and low power.
These efforts exploit FPGA functionalities seeking the best
performance of each VNF. Our current implementation does
not aim at maximum performance, but instead at the demonstra-
tion of the VNFCs integration in our heterogeneous platform.
Moreover, our functions exhibit the positive effects of flexible
VNEFCs (i.e. using FPGA overlays) in a heterogeneous system.

VI. CONCLUDING REMARKS

In this work, we proposed a platform for accelerating VNF
execution in heterogeneous infrastructures. We presented use
cases of the VNF modularization, identifying the components
used for two network functions. This fragmentation led to the
analysis of development and allocation properties of VNFCs.
We discussed the design of the heterogeneous FPGA-GPP
platform to manage and deploy VNFs through the allocation of
VNFCs. Finally, we developed use cases for FPGA, evaluating
the performance of two accelerated function compared to pure
software solutions. We observed the performance improvement
when VNFCs are allocated to the FPGA.

Future work includes the implementation of more VNFCs
in both FPGA and GPP context, evaluating and expanding
our proposed guidelines. Additionally, the analysis of power
consumption, latency of the VNF execution, and resource
utilization. Furthermore, we intend to investigate the placement
of VNFCs inside the heterogeneous infrastructure, considering
different hardware constraints. Other improvements include the
implementation of a cache inside the NFV PoPs, which could
maintain frequent configurations to decrease the instantiation
time.
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