MRT#: a Fast Multi-Threaded MRT Parser

Lorenzo Ariemma, Mariano Scazzariello, and Tommaso Caiazzi
Roma Tre University — Rome, Italy

Abstract—BGP is the inter-domain routing protocol of the
Internet. BGP routers exchange BGP Updates, and adjust their
routing table to reflect changes in the network. A wide variety of
research and operational projects leverage on massive processing
of BGP Updates, so it is crucial to analyse such data in the most
efficient way. Hence, different MRT parsers have been developed.
Most of them are unsuitable for big data analyses due to various
limitations. In this paper, we present MRT#, a multi-threaded
MRT parser library written in C#. We show its architecture,
a performance comparison with other MRT parsers, and its
possible integration into a data processing pipeline.

Index Terms—BGP, MRT, Packet analysis.

I. INTRODUCTION

BGP [1] is the inter-domain routing protocol of the Inter-
net. BGP routers exchange BGP Updates, and adjust their
routing table to reflect physical or administrative changes
in the network. A wide variety of research and operational
projects leverage on massive processing of BGP data (e.g.
[2], [3]). Such data could reflect network operators’ internal
policies and configurations, hence they are rarely published.
However, there are at least four large-scale BGP archival
projects freely accessible: (i) the University of Oregon Route
Views Project [4], (ii) the RIPE NCC Routing Information
Service (RIS) [5], (iii) the Isolario Project [6], and (iv) the
Packet Clearing House (PCH) [7]. All these projects share
similar architecture. They create a BGP session from each
router they want to monitor to a so called Route Collector.
Route Collectors are servers that mimic a BGP router and,
instead of computing the best route, dump all the received
BGP messages. BGP Updates, together with other control-
plane messages, are stored using the MRT format [8].

In order to analyze this huge amount of information, several
MRT parsers have been developed. Based on [9], there are
eight currently available open-source MRT parsers. Most of
them are not able to directly manipulate parsed data as
software objects, or do not expose default mechanisms for
multi-threading, making them unsuitable for big data analyses.

In this paper, we present MRT#, a multi-threaded MRT
parser library written in C#. We illustrate its architecture and
show a performance comparison with other existing parsers.
After that, we demonstrate how MRT# can be easily integrated
into a data processing pipeline.

II. MRT# OVERVIEW

MRT# is a library written in C#, following the Object-
Oriented Programming approach. All the code is open source
and available at [10]. Its architecture, depicted in Fig. 1,

978-3-903176-32-4 © 2021 IFIP

<<external>>

MRT Source

{File/Directory/Stream} \

InputReader

{Stream} \

MRTParser

{Stream} {Stream}

BGP4MPParser TableDumpParser
{BGP4MP object} {TableDumpEntity object}
<<external>> <<external>>
Other Components Other Components

Fig. 1. MRT# Architecture.

is heavily based on the Pipes and Filters [11] architectural
pattern. This pattern defines an architecture for processing a
stream of data in which each step is encapsulated in a different
component. Each step takes an input, computes a partial result
and outputs it to another component. The output of the last
filter is the final result of the entire computation.

MRT# architecture consists of four main components:
(1) InputReader; (2) MRTParser; (3) BGP4AMPParser;
(4) TableDumpParser. The input of the system is a file, a
folder or a stream containing one or more MRT records.
The input enters the InputReader component, that can read
different MRT formats, either compressed (GZip or BZip2)
or uncompressed. The InputReader component, based on the
type of the received input, reads MRT records and passes
it to the MRTParser component. It parses the MRT header
and, based on its type, delegates the computation to either
the BGP4MPParser or the TableDumpParser component. The
output of these components is the final result: a software object
representing an MRT record. This object can be handled by
other components specified by the user for further processing.

The MRT# architecture enables a multi-threaded execution,
since the MRTParser component independently parses a set
of MRT records for each thread. Furthermore, the architecture
presents a high level of modifiability. In fact, each parsing
task (e.g. dissecting the BGP Header) is implemented in a
different class. Hence, it is easy to add functionalities to the
library, extending the set of parsable fields (e.g. adding the
BGP EVPNs SAFI support).

Finally, MRT# is a software library and not a CLI tool. So, it
can be used in any project to parse MRT records and to directly
feed other platforms, such as big data analysis frameworks like

MRT# Multi-Threaded § 00:05:38

MRT# Single-Threaded H 01:02:22

BGP Scanner H 01:10:26

BGPStream ol 03:28:11

BGPDump = 04:44:21

00:00:00 01:12:00 02:24:00 03:36:00 04:48:00 06:00:00

Time (HH:mm:ss)

Fig. 2. Benchmark Average Processing Time

MRT# Multi-Threaded i 5363

MRT# Single-Threaded } 606
BGP Scanner y 7

BGPStream J 80

BGPDump b7

1 10 100 1000
Memory (MB)

10000

Fig. 3. Benchmark Maximum Memory Usage

Apache Spark, Hadoop or Kafka.

III. COMPARISON WITH OTHER MRT PARSERS

We choose to compare MRT# with the main contributions of
the ones cited in [9]: (i) BGPdump [12], from RIPE NCC [13],
(ii)) BGPStream [14], from CAIDA [15], and (iii) BGP Scan-
ner [16], from the Isolario Project. These tools are able to
parse the main MRT packet types and the main BGP Path
Attributes [17], with no significant differences. However, they
parse a small subset of the BGP Path Attributes with respect
to MRTH#, so their result could miss some crucial information.

The tools also differ for flexibility and resources usage.
About flexibility, all of them expose a command line in-
terface, that takes an MRT file as input (both compressed
and uncompressed), and prints the MRT content directly to
standard output. So, in order to manipulate extracted data, it
is required to parse again the standard output result and load
it into another software. Of course, it is possible to analyse
data with classic Linux tools (e.g. grep, awk) but they do not
provide all the features of a programming language. On the
other hand, MRTH#, being a library, outputs software objects
that can be directly handled.

To analyse the resources usage, we compared MRT# against
the other tools. For each parser, we measure the elapsed time
and memory usage. The benchmark consists of one month
(December 2020) of MRT files collected from RIPE RIS
RRCO00, for a total amount of about 1963M BGP messages
distributed into 8 928 compressed files (49 GB).

To be fair with the other tools, that are single-threaded, we
execute two runs of MRT#, one with the default multi-threaded

configuration and another with a single-threaded configuration.
Additionally, in order to reduce possible performance gaps
introduced by printing on standard output, we discard all the
resulting output of other tools.

All tests are performed on a Debian Buster server with 24
CPUs and 64GB of RAM. Each test is repeated ten times and
both Fig. 2 and Fig. 3 show the average results with their
confidence intervals.

Fig. 2 depicts the elapsed time to parse all the MRT files,
while Fig. 3 shows the maximum memory usage of the
process. In Fig. 2, it is possible to observe that MRT#, in
its multi-threaded configuration, is about twelve times faster
than BGP Scanner, the fastest of the other tools. Instead, the
single-threaded version shows comparable performance with
it. However, MRT# has the highest memory consumption,
since it loads the whole uncompressed MRT file into memory
before parsing it. For example, an uncompressed MRT file
containing BGP Updates from RIPE RIS is about 50MB.
Besides that, this approach leads to better performance over
higher memory usage, that is still reasonable for modern
hardware.

IV. DEMONSTRATION

We will demonstrate how MRT# can be easily integrated
into a data processing pipeline. We will show how to connect
MRT# to an arbitrary source of MRT records. After that,
we will illustrate the correctness of parsed software objects,
comparing them with the result of the other tools. Then,
we will demonstrate how it easily possible to process MRT
records, manipulating the parsed objects with a sample of user-
defined functions, such as simple queries for counting received
BGP Updates for a specific prefix, or for finding the Updates
containing a specific AS Number in their AS path.

REFERENCES

[1] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-
4),” RFC 4271, IETF, Tech. Rep., 2006.

[2] M. Candela, G. Di Battista, and L. Marzialetti, “Multi-view routing
visualization for the identification of BGP issues,” Journal of Computer
Languages, 2020.

[3] L. Ariemma, S. Liotta, M. Candela, and G. Di Battista, “Long-lasting
Sequences of BGP Updates,” in International Conference on Passive
and Active Network Measurement. Springer, 2021.

[4] “Route Views Project,” http://www.routeviews.org/.

[5] “RIPE-RIS,” https://ris.ripe.net.

[6] “Isolario Project,” https://www.isolario.it/.

[7]1 “Packet Clearing House,” https://www.pch.net/.

[8] L. Blunk, C. Labovitz, and M. Karir, “Multi-Threaded Routing Toolkit
(MRT) Routing Information Export Format,” RFC 6396, IETF, Tech.
Rep., 2011.

[9] “New MRT-BGP reader six times faster than its predecessors,’

https://blog.apnic.net/2018/11/29/new-mrt-bgp-reader-six-times-faster-

than-its-predecessors/.

“MRT#,” https://gitlab.com/uniroma3/compunet/networks/mrtsharp.

D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented

Software Architecture, Volume 2. Wiley, 2000.

“BGP Dump,” https://bitbucket.org/ripencc/bgpdump/src/master/.

“RIPE Network Coordination Centre,” https://ripe.net.

“BGP Stream,” https://github.com/caida/bgpstream.

“CAIDA: Center for Applied Internet Data Analysis,” https://caida.org.

“BGP Scanner,” https://gitlab.com/Isolario/bgpscanner.

“BGP Path Attributes,” https://www.iana.org/assignments/bgp-

parameters/bgp-parameters.xhtml#bgp-parameters-2.

[10]
(11]

[12]
[13]
[14]
[15]
[16]
[17]

