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Abstract—Robotic systems are becoming an ever-increasing
part of everyday life due to their capacity to carry out physical
tasks on behalf of human beings. Found in nearly every facet
of our lives, robotic systems are used domestically, in small
and large-scale factories, for the production and processing of
agriculture, for military operations, to name a few. The Robotic
Operating System (ROS) is the standard operating system used
today for the development of modular robotic systems. However,
in its development, ROS has been notorious for the absence of
security mechanisms, placing people in danger both physically
and digitally. This dissertation summary presents the develop-
ment of a suite of ROS tools, leading up to the development of a
modular, secure framework for ROS. An integrated approach for
the security of ROS-enabled robotic systems is described, to set a
baseline for the continual development to increase ROS security.
The work culminates in the ROS security tool ROS-Immunity,
combining internal system defense, external system verification,
and automated vulnerability detection in an integrated tool that,
in conjunction with Secure-ROS, provides a suite of defenses for
ROS systems against malicious attackers.
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I. INTRODUCTION

Robotics is a diverse field involving the design, engineering,
and use of robots to assist humans with a wide variety of tasks.
Robotics is a sub-field of the field of cyber-physical systems,
which encompasses all devices with a physical component that
are controlled by a digital component. In particular, robots
are characterized by a particular degree of movement and
autonomy to perform tasks [1], generally consisting of sensors
and software that translate the digital world into the physical,
and the physical world into the digital. A popular example
of the marriage between robot’s cyber-physical components is
self-driving cars, where large and complex physical compo-
nents are combined with software to create autonomous tools
that can perform tasks equally or more adeptly than humans.
These systems utilize both physical cues from the environment
observed via sensors, and act upon those cues with adaptations
in the functioning of the car as determined by software.

Robots are observed plentifully in everyday life, with
applications including, but not limited to, manufacturing,
transportation, medicine, military, industrial, agricultural, and
domestic products [2]. The penetration of robotics into society
has vastly increased in the past 30 years due to the wide variety

of tasks that they can perform [3]. In western society, humans
interact with a plethora of robots and robotic systems every
day, from interacting with domestic robots within their homes,
utilizing or interacting with vehicles running robotic systems,
or benefiting from services run by robots by purchasing
products manufactured or delivered by robots. Robotics held a
market-value of $115 billion in 2019, with an expected CAGR1

of 25% [4]. Between 2000-2016, 1.6 million jobs worldwide
were lost due to automation by robots, with 20 million lost
expected by 2030 [5].

All robots must utilize control software to function, the most
popular of which is The Robotic Operating System (ROS).
ROS enables the development and distribution of robotic
systems. There are several security challenges that ROS faces,
from securing nodes and ROS middleware from attackers, to
securing the sensors themselves from data attacks. However,
the security framework of ROS has received much scrutiny in
the previous years, as there are major design flaws that have
been left unaddressed. As ROS gains popularity, increasing
security is vitally important to prevent damages, especially
physical damages.

As robotic systems become more common in everyday
life, there are growing concerns about the potential impact
security vulnerabilities may have on the real-world. This
dissertation focuses on security challenges and solutions for
ROS systems. The development of an integrated ROS security
tool is described in detail, presented with the chronological
development of the suite of tools combined to create a full
security solution. The solution is broken down into one of
three components: internal system defense, external system
verification, and automated vulnerability detection, to address
vulnerabilities in all sensitive areas of robotic security, even
providing a solution for identifying unknown, novel vulnera-
bilities. ROS-Immunity, an integrated approach for the security
of ROS-enabled robotic systems, is described, to set a baseline
for the continual development to increase ROS security. The
work culminates in the ROS security tool that addresses
all three areas of defense with an integrated tool that, in
conjunction with Secure-ROS, provides a suite of defenses
for ROS systems against malicious attackers.

1Compound Annual Growth Rate978-3-903176-32-4 © 2021 IFIP



II. BACKGROUND

The Robotic Operating System (ROS) is a collection of soft-
ware libraries that enables communication of both (abstracted)
hardware and (pure) software components to develop robotic
systems. It is predicted that ROS centered systems will make
up the majority of robotic systems within the next five years,
both in commercial and academic settings [6]. Even among
non-ROS systems, many design similarities exist wherein
similar methods can be applied [7]. ROS is an open-source
project, and it has a vibrant community with thousands of
developers and over nine thousand unique packages available2.
While the developers of ROS have added security features in
recent years, most notably SROS and Secure-ROS, the security
solutions in place do not provide adequate protection against
all types of vulnerabilities [8].

ROS enables the development of robotic systems at a fine-
grained scale. Briefly, the design paradigm behind ROS is that
of a Publish-Subscribe model, where a master keeps track
of the state of the system while applications called nodes
directly interact with each other through topics. A node is
a process that performs a specific computation and controls a
part of the robot’s operation. There can be a node computing
a trajectory, a node moving the wheels, a node controlling
a camera, etc.. A robotic system usually consists of many
nodes that communicate with each other by passing messages.
Messages define clean and consistent interfaces. A ROS topic
is an implementation of a channel in which messages are
passed in a publish-subscribe model. Topics act as a named
bus where nodes can join as either a publisher, a subscriber,
or both. When a publisher node sends a message over a topic,
every subscriber node to that topic receives a copy. A particular
node, namely the master node, is always present in a ROS-
enabled system.

Vulnerabilities against the robotic operating systems can be
broadly broken down into three separate categories: vulner-
abilities in the nodes that were written by developers, vul-
nerabilities in the ROS middleware itself, and vulnerabilities
inherent to the robot system. Vulnerabilities in the nodes are
ubiquitous, as with most software systems, as they are usually
maintained by small groups or individuals who are more
focused on functionality then security [9]. As such it is unwise
for any defensive security system to depend on the integrity
of all nodes since they could be compromised at any moment.
Instead, the defenses should focus on maintaining protection
for the whole system, while limiting attackers opportunities
to exploit individual nodes. One of the most critical vulner-
abilities in the ROS middleware is that the ROS master is a
singular point of failure within ROS. Without the master, nodes
would not be able to find each other, exchange messages,
or invoke services. If the master node is compromised, it is
functionally identical to the whole system being compromised.
That said, the master node has no mechanism for enforcing
good behavior among nodes, and in fact, cannot even verify

2https://metrics.ros.org/

that its internal model of the robot’s software3 matches the
actual executing software on the robot. This manipulation of
the actual software, without the master becoming aware of
it, forms the basis of many different attacks against ROS, as
once an attacker can successfully manipulate the external ROS
graph, they can take control of the robot, even in the presence
of many security features [8]. Vulnerabilities inherent to the
robot system take many forms, from power vulnerabilities to
sensor attacks, and are the hardest to defend against directly.

ROS was initially created as a pure research project, by
academics for other academics, without any security consid-
erations. As it escaped from academic confinement into ’real-
world’ use cases, concerns about its security began to grow.
Dieber et al. [10] [11] was the first serious security analysis
of ROS, however, its findings were dismal. The core ROS
system had effectively no security infrastructure, and it was
trivial for an attacker to take control of a robot and use it to
inflict damage.

Several researchers noted these issues as well and analyzed
the security challenges in robotics security, particularly among
ROS systems. Recent work highlighted a number of security
threats against ROS [12] [13] [14]. The lack of proper security
tools in ROS exposes systems to a variety of security concerns,
including but not limited to, sensor spoofing(the action of
disguising a communication from an unknown source as being
from a known one [15]), node impersonation, denial of service,
man-in-the-middle, and privilege escalation attacks. It was
found that robots targeted by sensor spoofing attacks were able
to force an incorrect behavior and undermine the success and
safety of critical operations [16], potentially causing physical
accidents in factories or other physical spaces. It became
clear that an insecure robot could irreversibly damage the
physical environment in which it is operating, including being
harmful to human beings, and few security tools were available
to prevent large breaches. The Open Robotics Foundation,
creators of ROS, acknowledges the security concerns of ROS.

The ROS group also began work on SROS [13], a security
suite for ROS systems. However, this framework is still under
development and is not fully implemented. Noticing these
issues, Dieber et al. developed ROSPenTo [17], an automated
testing tool for ROS to demonstrate how insecure the system
is. Additionally, SRI developed SecureROS, which provides
crypto and limits nodes to a whitelist for connections, but
does not protect against external attackers connecting to nodes
[18]. The release of ROS2 mitigated some security concerns,
introducing a DDS security standard, but the system is still
largely insecure with many areas of vulnerabilities left unad-
dressed [19]. In particular, current solutions for the security
of ROS and ROS2 do not protect compromised nodes or
denial of service, do not support reactive policies that are
updated dynamically at runtime, and cannot enforce low-level
granularity network policies.

3This is called a rosgraph.



III. CHALLENGES AND JUSTIFICATIONS

To effectively monitor such robotic systems at run-time,
special monitoring software is required. However, not many
concepts and solutions have been proposed to monitor the
components of robotic systems, especially in ROS. Security
in ROS is an active concern, with few fully implemented
solutions [10]. Any such monitoring systems have to be
flexible, scalable, and secure, without sacrificing run-time.
Currently, most monitoring software is processing intensive
and slow, a double disadvantage on cyber-physical systems,
particularly robotic systems. There are no current solutions that
offer both monitoring and security without a severe processing
impact. A consistent set of security tools is crucial for security
research as it provides a foundation for further development.
Additionally, the existence of such tools allows a developer to
test their systems against similar real-world attacks and more
effectively develop secure reliable systems.

This work describes the development of a fully integrated,
secure security solution for ROS systems. The goal of this
dissertation was in pursuit of such a system that would provide
a security framework for ROS with the following design
guidelines in mind: 1) the configurations should ’speak’ the
same language as ROS (i.e. developers of ROS should not have
to learn a new system to add security features), 2) the system
should be able to efficiently communicate issues that it could
not address to users, such as newly discovered or unaddressed
vulnerabilities, and 3) the system should have a highly modular
design (a key feature of ROS functionality). Additionally,
in this dissertation, the design paradigm addressed to ROS
systems is broken down into two: centralized and decentral-
ized systems. It is assumed that these are two main design
paradigms that are applied to implement a multi-robot system
with ROS. The primary difference is the number of master
nodes in the system, with centralized systems utilizing only
one master node while decentralized systems more than one.
Both design paradigms allow for unique functionality while
carrying their challenges, and thus it is vital to create a system
that can address both types of systems.

It was also of interest to account for three core areas of
security concerns with ROS systems: internal attacks, external
attacks, and vulnerabilities (known and unknown). A signif-
icant goal of this work was to create a system that could
account for these three areas in one tool, without affecting
the users’ system.

IV. DEVELOPMENT OF THE SOLUTION

To design a security solution for ROS systems, the logical
first step was to create a reconnaissance tool. Such a tool
would allow researchers to evaluate the potential risks exposed
by the vulnerabilities in ROS. Additionally, it would serve as
an excellent testing tool for any security solution. As such,
research began with the development of ROSploit, an auto-
matic vulnerability scanner and testing framework for ROS
[20]. Similar to ROSPenTo, ROSploit contains fingerprints for
many different exploits that can be executed on a ROS system
and the ability to automatically scan a network for vulnerable

ROS systems. Unlike ROSPenTo however, ROSploit includes
the ability to identify specific nodes and store vulnerability
fingerprints for those nodes.

Once ROSploit was successfully implemented and tested,
the research could begin on a defensive solution to address
ROS’s issues. Looking at the heavily networked nature of
ROS, efforts were focused on securing ROS’s network infras-
tructure as an initial step, and then extended reach from there.
ROS-Defender, a tool built to take advantage of the flexibility
of Software Defined Networking (SDN), was the initial result
of these explorations [21]. ROS-Defender addressed many of
the vulnerabilities discussed in Section II, including enforcing
the Master’s rosgraph, anomaly detection, and user-specified
traffic filtering.

While ROS-Defender was an effective security system for
ROS, it did come with some drawbacks that would limit
its adaption. Chiefly among those was that ROS-Defender
required specialized SDN capable hardware and that the added
overhead could interfere with some ROS system’s operations.
As such, the novel eBPF/XDP functionality in the Linux
kernel [22] was leveraged to create ROS-FM [23]. ROS-
FM is a dramatic improvement on ROS-Defender in terms
of both performance and functionality. Additionally, ROS-
FM is far more modular in its design, allowing it to be
customized to match the target ROS-system with both security
and monitoring functionalities available to users.

After testing ROS-FM, it was discovered that it was possi-
ble to address many different types of ROS vulnerabilities,
provided that the component under attack was running on
the robot. That said, there is a whole class of vulnerabilities
that do not leave traces on the targeted system, such as
sensor attacks. To address these, a new approach was required.
Because sensor attacks involve distorting the robot’s view
of the world, through subtle or not so subtle means, any
security solution needed to be able to maintain an accurate
internal representation to detect them. To do so, focus turned
to machine learning [24]. After experimentation, a system was
devised that protected against sensor attacks. It involved the
use of autoencoders to maintain a consistent historical model
of the world using reconstruction error to detect anomalies
[25]. This solution was integrated into ROS-FM as a plug-in
to provide a novel security solution for sensor attacks.

The previous solutions provided a full suite of security
tools to defend against known attacks, however, the area
of unknown attacks was unaccounted for. This gap in ROS
security research influenced the development of DiscoFuzzer,
a novel technique for finding novel vulnerabilities in ROS
systems [26]. Building on the research on robot state analysis
discussed in the previous paragraph, it was discovered that
robots were dependent upon the continuity of their physical
space. This was utilized to hunt for vulnerabilities in the areas
where the space became discontinuous. Using several methods
of numeric analysis and feature space exploring, DiscoFuzzer
was developed as a tool that was able to find several novel
vulnerabilities that could have led to the malicious manipu-
lation of robots. Applying fuzzing technology, DiscoFuzzer
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Fig. 1. ROS-Immunity’s three components to implement an integrated security mechanism in ROS system addressing the security gaps in current ROS systems.

was developed to address the security gaps in vulnerability
detection, a very under-researched area in ROS security.

The development of the above-mentioned tools demon-
strated the need for ROS security tools, especially those that
limit the impact on the system and user implementation of
them. Development continued to combine these tools into an
integrated solution, described in the next section.

V. ROS-IMMUNITY

The pieces of work discussed in the previous section led
to unique insights into the requirements of developing an
adequate security solution for ROS systems. These insights
were used to design ROS-Immunity, a comprehensive security
system for ROS. ROS-Immunity provides a light security
solution for ROS that is capable of covering the whole chain
from discovering vulnerabilities to protecting from attacks
[27]. ROS-Immunity consists of three components: robustness
assessment, automatic rule generation, and distributed defense
with a firewall (Figure 1). The robustness assessment discovers
new vulnerabilities of the target through the combination of
different testing and analysis techniques. Then, these vul-
nerabilities are encoded in a domain-specific language and
automatically fed into the distributed firewall. Finally, the
firewall runs on the robots of the target system and can detect
and block malicious messages or other malicious behavior.
By addressing these areas, ROS-Immunity provides an all-
encompassing security solution that addresses internal system
attacks, external system verification, and automatic vulnera-
bility detection.

To account for all vulnerabilities that could affect a ROS
system, a fully integrated tool was needed. The most critical
components of such a security tool is the ability to discover
new vulnerabilities in a system, and the ability to determine
if any known vulnerabilities exist within the system. One
example of this is in the robustness assessment component
of ROS-Immunity, which combines traditional fuzzing [28],
our ROS specific fuzzing [26], and a database of other ROS
vulnerabilities [29] to collect and store vulnerabilities of the
ROS system. It then disseminates these vulnerabilities to
the firewall components of each robot, in order to apply
for protection. Additionally, it regularly leverages ROSploit
to ensure that the firewall is correctly blocking all known
vulnerabilities.

The firewall is the foundation upon which all other security
features are built. Presented in Figure 2, its design was devel-

oped based on the type of system is protected. In both cases,
its primary task is to enforce the master node’s rosgraph on the
internal state of the robot, i.e. ensure that all communications
within the robot only take place on channels the master is
aware of. It is based on the previous work of ROS-FM, and
is an eBPF/XDP based firewall, which efficiently filters out
all traffic that matches known vulnerabilities. As it runs on
each robot, it looks for anomalies in the communications and
behavior of the robot, and it can even raise an alert if it
detects a suspected attack. This anomaly detection can even
be extended to protect against external sensor attacks.

A. Results

ROS-Immunity was demonstrated with four use-cases,
addressing robotic systems from both centralized and de-
centralized systems to demonstrate the effectiveness of the
solution. The goal of ROS-Immunity for centralized systems
is to ensure that the master node is always protected and
aware of its robots, to quickly identify compromised robots
to restore them to a functioning state or a fail-safe state until
the user can intervene. On the contrary, the main concern with
decentralized ROS systems is the difficulty with applying any
cryptographic key-based system, as ROS1 relies on packages
and workarounds and does not have direct support for these
systems, while ROS2 includes limited support. In this case,
the goal is to limit the damage that anyone robot can do and
maintain a record of all activity. ROS-Immunity is tested on
two centralized systems, a self-driving car and a centralized
factory, and two decentralized systems, a robotic swarm and
decentralized factory.

In all four cases, low average CPU, memory, and network
overhead was observed, except in the case of small swarms and
large centralized factories. In the case of the small swarm, this
was due to the cost of sharing information between different
robots and reconstructing the trusted network as the underlying
mesh network shifts. As the size of the swarm increased, the
mesh network became more stable and the overhead of ROS-
Immunity was vastly reduced. Meanwhile, in the case of the
large centralized factory, the central master node created a
bottleneck leading to a noticeable increase in the overhead. In
all other cases, ROS-Immunity was demonstrated to provide
more benefit than harm, increasing the security of the systems
without impacting their functionality.

Owing to the nature of robotic systems, power usage is
the most important metric for calculating overhead. In Figure
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Fig. 3. Normalized Power Overhead

3 the per second power requirements of ROS-Immunity were
calculated versus the control system using the ARM embedded
power formula found in Mao et al. [30]4. The power draw
of each robot in the system was normalized. Overall, ROS-
Immunity had an average power cost of 7% for the car, 13%
for the Decentralized Factory, 18% for the Centralized factory,
and 16% for the swarm. This additional power overhead is very
low compared to the power requirements inherent in hardening
the network with cryptography [31].

Additionally, tests were conducted to validate ROS-
Immunity against unknown attacks. Experiments showed that
both the centralized systems were able to issue a reset of the
system within 1.31 seconds (µ = 1.16, σ = .29 seconds) in
the worst case. Additionally, the decentralized systems were
able to exclude a compromised system within 2.4 seconds
in the worst case (µ = 1.71, σ = 1.39 seconds). While
the decentralized was slower than the centralized, it was still
able to react and exclude a compromised system before any

4GPU power was excluded from the calculations

system connected to it could be compromised. These results
indicated that the system was readily able to stop compromised
systems in both cases, preventing an attacker from gaining
ample access to either type of system.

VI. DISCUSSION AND CONCLUSIONS

With the rapidly increasing presence of robotic systems
in everyday life, it is vitally important for such systems to
be secure to prevent damage in the real-world. Of particular
importance is the security of The Robotic Operating System,
one of the most popular operating systems in use today.
This dissertation focuses on security concerns, challenges, and
solutions for ROS systems. This work culminated into ROS-
Immunity, an integrated, comprehensive security system for
ROS capable of addressing the entire chain of security gaps in
current research. Specifically, this tool addressed ROS security
by providing a full security system addressing internal system
defense, external system verification, and automatic vulner-
ability detection with low-overhead. ROS-Immunity provides
the ability to discover new vulnerabilities, harden the system
against active attacks, and provide reliable security for users.
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