A National Programmable Infrastructure to
Experiment with Next-Generation Networks

Paola Grosso Cristian Hesselman

University of Amsterdam SIDN Labs and University of Twente

Amsterdam, The Netherlands
p.grosso@uva.nl

Arnhem, The Netherlands

Ronald van der Pol
SURF

Stavros Konstantaras
AMS-IX
Amsterdam, The Netherlands
stavros.konstantaras @ ams-ix.net

Caspar Schutijser
SIDN Labs
Arnhem, The Netherlands
caspar.schutijser @sidn.nl

Abstract—We have set up the first multi-domain P4-
programmable network in the Netherlands, consisting of six
different sites interconnected by SURF’s optical network. The
purpose of the network is to experiment with novel inter-
domain network functions and emerging internet architectures,
in particular to improve the transparency, accountability, and
controllability of the Internet and future networks. We provide
an overview of the testbed’s set-up, examples of how we have
used it, and our lessons learned.

Index Terms—Programmable networks, testbed, SCION, INT,
P4

I. INTRODUCTION

Internet connectivity has become pervasive in the last few
decades and has revolutionized our societies. However, it was
not designed with the requirements of current applications
in mind. This is even more the case for emerging safety-
critical applications such as smart energy grids and cooperative
driving, which are more stringent in terms of security, stability,
transparency, and control over data paths. Furthermore, policy
makers, companies, citizens, and other stakeholders around
the world increasingly worry about their declining ‘“digital
sovereignty” [1], [2]: they more and more depend on systems
and services that are operated or manufactured elsewhere (e.g.,
services in the DNS or 5G network equipment) [1]-[3], but
they do not have any insight in or control over how they
depend on them.

We set up a testbed to iteratively develop, deploy, and
experiment with new network-level systems and protocols that
increase the trust and autonomy (sovereignty) of users of next-
generation networks, such as a future Internet or networks
based on SCION [4], RINA [5], or the “responsible Internet”
paradigm [6]. The testbed is part of the 2STiC (Security, Sta-

978-3-903176-32-4 © 2021 IFIP

cristian.hesselman @sidn.nl

Utrecht, The Netherlands
ronald.vanderpol @surf.nl

Luuk Hendriks Joseph Hill
University of Twente University of Amsterdam
Enschede, The Netherlands Amsterdam, The Netherlands
luuk.hendriks @utwente.nl j-d.hill@uva.nl

Joeri de Ruiter
SIDN Labs
Arnhem, The Netherlands
joeri.deruiter @sidn.nl

Victor Reijs
SIDN Labs
Arnhem, The Netherlands
victor.reijs@sidn.nl

bility, and Transparency for inter-network Communications)
research program and currently consists of six sites with P4
programmable equipment [7], a domain-specific language that
allows network developers to build data planes of packet
forwarding devices. It is the first nation-wide multi-domain
P4-programmable network in the Netherlands.

The 2STiC testbed meets our requirements because it con-
stitutes a realistic network with six different operators, three
universities and three companies. In addition, the P4 equip-
ment enables us to quickly experiment with new protocols and
systems in hardware in a realistic setting, allowing for realistic
line-speed forwarding. Traditional network equipment would
have been insufficient for our purpose because it comes with
vendor-specific software that can be reconfigured but cannot
be reprogrammed.

We identified three other testbeds that focus on enhancing
network security and/or programmable networks. The i-P4EN
initiative [8] interconnects P4-programmable networks in other
countries, such as Canada, Taiwan and the USA. FABRIC [9]
calls itself an everywhere programmable nationwide instru-
ment. It features programmable networking technologies such
as P4, but OpenFlow as well. SCIONLab [10] is a testbed that
facilitates experiments with the SCION internet architecture.

In the rest of this paper, we discuss the setup of the 2STiC
testbed in more detail. Next, we discuss various use cases that
we implemented for the testbed. We conclude with our lessons
learned and future work.

II. TESTBED SET-UP

We use a star-shaped network for the six different sites of
the 2STiC testbed, which are distributed across the Nether-
lands. The network is centered at the SURF site in Amsterdam
(SUREF is the Dutch National Research and Education Network

operator). The central switch at SURF can be programmed
to configure different topologies for the network. Each site
contains at least one switch with a P4 programmable Intel
Tofino ASIC. We can complement the switches with addi-
tional hardware, from a simple server with a programmable
Netronome SmartNIC to a complete research group testbed.

Initially, we built the 2STiC testbed based on VLANSs over
SURF’s production infrastructure. Each link between two P4
switches used a dedicated VLAN ID for that link. On SURF’s
WAN backbone these consisted of 100 Gbit/s Ethernet-based
circuits (PBB-TE). On the university campuses, the connection
between the P4 switches and the WAN Ethernet circuits
needed to be separated from the production traffic. We tried
using Q-in-Q (IEEE 802.1ad) [11] for that purpose, but we
discovered that some production switches did not properly
support it.

To become less dependent on lower layer transport proto-
cols, we decided to separate the 2STiC testbed traffic from
the production traffic by using direct links to SURF’s optical
network. The WAN links of the testbed are now dedicated
200 Gbit/s optical wavelengths. The ports of the P4 switches
have a dedicated fiber to the optical transponder equipment. An
additional benefit is that the P4 switch ports now transparently
connect to each other. An Ethernet frame that is sent by a
switch is received by its peer unchanged, as if the two switches
are directly connected by a fiber.

P4 enables us to implement any (internetworking) protocol
on the hardware in the 2STiC testbed, as long as it aligns
with the physical layer of the Ethernet frame. That makes
it very suitable for research on new Internet functions and
(non-IP) protocols, such as SCION, RINA, and “responsible”
networks. The usage of programmable hardware switches and
interfaces augments research using network simulators and
software switches, because it offers the possibility of verifying
results on hardware, for example by showing that a protocol
can run on physical switches.

Besides the dedicated optical connections between the
testbed nodes, all nodes also have traditional IP connectivity
to connect to a management network. All testbed equipment
is connected via the Internet to a central system called the
jump host, which the members of the 2STiC consortium have
access to. From the jump host, it is possible to log in to the
rest of the equipment of the testbed. In practical terms, all
equipment will be connected to the jump host via a VPN
using WireGuard [12]. To ease user administration, we manage
authentication centrally through Kerberos, which makes it
straightforward to add new users and equipment to the testbed.

III. 2STIC USE CASES
Below we discuss several use cases that we implemented in
P4 to run on the testbed.
A. SCION

One of our use cases is a P4 implementation of the SCION
“clean slate” internet architecture [4] for the Intel Tofino ASIC.
SCION is intended to deliver more stable and secure internet

connectivity. At the same time, SCION users will benefit from
more control over and insight into the inter-domain routes
their traffic takes. Though our implementation is work in
progress, it already led to several improvements of the SCION
protocol headers, which make them easier and more efficient to
implement in hardware and which we fed back to the SCION
team. Below we discuss our suggestions that are included in
the latest version of the SCION headers.

The first improvement concerns the forwarding path in the
headers, which captures the path that a packet will traverse
(at the level of links interconnecting ASs). From sender to
receiver, such a path consists of up to three segments. For
each segment as well as each hop that is traversed, some
information is embedded in the packet (in the info fields and
hop fields, respectively), such that routers know how to process
the packet and where to forward it to. The headers indicate
which info field and hop field should be used for processing.

The forwarding path was originally structured as a nested
list in the headers: first, the info field for the first path segment,
followed by the hop fields of that segment. If present, this
was repeated for other segments as well. This is a complex
structure, which we discovered can be inefficient to use in
hardware where memory is allocated statically. We therefore
proposed to flatten the structure and, instead of the nested
structure, to use two lists, one for the info fields and one for
the hop fields.

In addition, the current info field and the current hop field
were referred to using an absolute offset in the packet. In
hardware it can be difficult or inefficient to keep track of the
exact position in the packet of the byte that is currently being
processed. To address this, we proposed to include the indices
for these fields. Combined with the new structure of the info
and hop fields, this makes it possible to implement a packet
parser that is more efficient on certain architectures.

Another factor that complicated packet parsing was the fact
that the number of info and hop fields was implicit. This
meant, for instance, that determining whether another path
segment occurs in a packet was done by comparing the number
of processed bytes with the expected number of bytes. This
again can be inefficient to implement for certain types of
parsers if the position of the byte that is currently processed
is not automatically kept track of; therefore, we also proposed
to make the number of info and hop fields explicit.

The second improvement pertains to SCION’s address for-
mat. Different types of end-host addresses (IPv4, IPv6, and
others) are supported, which can be different in length. The
length of an address was implicit in the packet header: only
the type of the address was included in the packet. In order
to determine the length of an address, the implementation
must be aware of that specific type of address to know the
corresponding length. However, the intermediate ASs do not
process these addresses and therefore only need to know their
length. We therefore proposed to include this length explicitly.

— @Yy

Fig. 1. Adding transited node information to the IPv6 extension header.

R
i viIO[A|
V1 Vi1[A]
e —
V2

Fig. 2. Adding routing table state to the IPv6 extension header

B. IPv6 Path Tracking

Our second use case was to implement path tracking
in IPv6, a function that the network utilizes to determine
how traffic flowed through the network. We used a software
switch with BMv2, INT (In-band Network Telemetry) and the
Netronome SmartNICs for our implementation and verified
whether the traffic was routed as expected/required or took an
unintended path.

At each node, we append a Node Identifier in an IPv6
extension header and extract the complete path a packet took
from the extension header at the last node of the path. Fig. 1
illustrates this process, where the data in the IPv6 extension
header at the last node contains the three Node Identifiers: A,
B and C.

The second chunk of information we add at each node is the
routing table version (used to make the forwarding decision),
which we also include in the IPv6 extension header. Fig. 2
shows how this works: a Node Identifier field identifies the
entry point in the network ("A” in the figure) and a Version
field identifies the routing table version at the entry point in
the network (which is “V1” in the figure). The second field
flags routing table version changes along the path, which is
shown by the “1” at the exiting node C, as the routing table
changes from V1 to V2.

C. IPv6 In-switch Latency Measurements

For this use case, each P4 switch adds the in-switch latency
information to an IPv6 hop-by-hop extension header for each
packet in a flow. The switches record timestamps (In-switch
processing time) when a packet enters the switch and when
it leaves the switch. This kind of information is important
for operators to understand the latency and jitter added by a
network node, as that could influence the overall performance
of a network or an application.

Fig. 3 shows our network configuration. Each individual
switch adds its in-switch processing time to the packet us-

Elephant flow
150 Gbps

Sender

Receiver

Switch A Switch B Switch C Switch D

100,000

20,000
10,000

2,000
1,000

200
100

o 100 200 ©0 100 200 0 100 200 0 | 100 ' 200
Packet number Packet number Packet number Packet number

In-switch processing time (ns)

Fig. 3. Latency measurements through information in IPv6 extension headers.

ing INT methodology. Using the information recorded by
the switches, we can calculate the latency for each packet
associated with all switches (excluding link latency). Fig. 3
also shows that switch B handles an “elephant flow” going
through switches B and C. As a result, switch B’s latency
increases as the standing queue of the outgoing interface has
increased (during packet numbers 25 to 70). This is shown
in the bottom graph of Fig. 3. We have not yet assessed the
accuracy of the in-switch procession time in detail.

D. In-Switch Telemetry Collection with P4 and RDMA

Network telemetry data can take many forms. It may have
been inserted into packets using a framework such as Inband
Network Telemetry (INT) [13] or by capturing attributes from
the packets themselves. Additional data may also be provided
by the switch such as ingress port and timestamps.

In our fourth use case, we employed P4 to craft a telemetry
message for each packet that passes through the data plane
of a device, which typically takes place at high packet per
second rates (line speed). By creating a telemetry message for
each individual packet, the amount of state the switch needs
to track is reduced. However, processing many small packets
is more CPU intensive than processing larger packets at an
equivalent bit rate.

We used RDMA (Remote Direct Memory Access) to reduce
the workload of the system receiving the telemetry messages.
With RDMA, a NIC can write data directly to memory without
involving the CPU. A program on the collector initializes the
RDMA session and provides the switch with the parameters
needed to craft RDMA over Converged Ethernet (RoCE)
packets, which is a protocol that implements RDMA. The P4
switch subsequently extracts telemetry data from the network
traffic and sends it to the collector encapsulated in a RoCE
packet, which monitors the buffer and writes the data to disk.

Control plane
Collector

)

"’S’nk

Data plane
Transit

Transit \
S
e Transit \

® <

Fig. 4. Two methods of collecting monitoring data: through the control plane
or through the data plane.

E. Aggregate In-band Monitoring of Active Flows

Our final use case revolves around collecting in-band moni-
toring data across routers using P4, enabling path tracking and
switch latency measurements. The in-band data is transported
in IPv6 extension headers, though similar protocol fields on
layer 2 or 3 could be used.

We evaluated two methodologies for gathering/storing such
measurement data points (see Fig. 4). Firstly, via the control
plane (the red arrows to the orange collector). This typically
introduces slow-path performance issues within the switches.
Secondly, through the data plane: the INT information is
extracted from the traffic and forwarded via the data plane
to an external machine (the dark-green collector). The orange
and dark-green collectors run dedicated software to process
the incoming INT payloads.

Using the 2STiC testbed, we evaluated how those methods
perform in different scenarios by varying the nature and
volume of traffic, as well as the number and types of INT
data points inserted. We found the data plane-oriented data
collection to be faster, and closer to the concept of INT.

IV. LESSONS LEARNED

We believe open source-based programmable networks are
an important enabler to experiment with and develop mecha-
nisms that improve the security and stability of networks and
that give users more insight in and control over their data
while “in transit” on the network. However, we learned that
open programmable networks also introduce many practical
challenges for network designers, programmers, and operators
and that they need to go through a steep learning curve.

The first implementation of the 2STiC testbed was based on
Ethernet tunnels over the IP layer of the SURFnet network.
The P4 switches and the servers connected to them were
connected to the campus infrastructure. We used dedicated
VLANs to connect pairs of P4 switches and used IEEE
802.1AD (Q-in-Q) to separate the 2STiC traffic from the
campus production traffic. However, we found that not all
campus switches supported Q-in-Q. We also discovered that

trouble-shooting VLANs over multiple domains is difficult and
time consuming.

In the second and current implementation of the testbed
we connect the P4 switches directly to the optical network
of SURF. Pairs of P4 switches are connected via a dedicated
200 Gbit/s wavelength. On the P4 switches these are directly
connected to two 100 Gbit/s interfaces. This requires dedicated
fiber patches between the P4 switches and SURF’s optical
equipment. But this was not a problem because universities
have enough spare fiber infrastructure on their campuses.
This turned out to be a much easier design to implement. It
also has the advantage that the P4 switches are transparently
interconnected which makes it easier to experiment with non-
IP protocols.

Another challenge was the shared nature of the 2STiC
testbed. This required us to decide on a secure model for users
to access the switches and servers and define procedures to
reserve “time slots” on the testbed.

In terms of P4 programming, we learned that implementing
novel network technologies in hardware is not a trivial task
because protocols such as SCION’s are often not designed with
high-speed hardware implementations in mind. Implementing
new protocols for programmable network equipment allows us
to assess their suitability for hardware implementations in an
early stage, during which it is still easy to make changes to the
protocol. Taking a software-centric approach when designing
a new protocol might actually result in a complex hardware
implementation. Based on our SCION implementation in P4,
we recommend that protocol designers (1) do not use implicit
lengths but include them in packet headers; (2) keep their
data structures as simple as possible; and (3) avoid the use
of absolute offsets, but rather use indices.

In terms of network telemetry, we have greatly increased our
understanding of how INT can be implemented. We confirmed
our initial expectation that data plane-oriented data collection
is fastest and also closest to the in-band concept of INT and
we fed these findings back to the OPSAWG/IPPM groups and
header extensions discussions in the IETF.

V. FUTURE WORK

We are investigating how to extend the interconnection with
i-P4EN, FABRIC, and SCIONLab. In this case, our testbed
will become part of worldwide initiatives to support distributed
network research, providing a development environment for
advanced empirical experiments at a global scale.

We will also continue to experiment with new use cases
and internet architectures on the testbed to assess how they
contribute to secure, stable and transparent inter-network com-
munications.

ACKNOWLEDGMENT

We thank SUREF for providing the physical infrastructure of
the 2STiC testbed. This work is part of the 2STiC research
program (https://www.2stic.nl/), a collaboration of AMS-IX,
Delft University of Technology, NDIX, NLnet Labs, SIDN
Labs, SURF, University of Amsterdam, and University of
Twente. We thank Marijke Kaat for helping with Fig. 1-3.

[6]

[7]

[8]

[9]
(10]

[11]

[12]

[13]

REFERENCES

EIT Digital, European Digital Infrastructure and Data Sovereignty — A
Policy Perspective. EIT Digital, June 2020.

ENISA, “Consultation paper — EU ICT industrial policy: Breaking the
cycle of failure,” July 2019.

Australian Government - Department of Home Affairs, “Protecting
critical infrastructure and systems of national significance,” August
2020.

A. Perrig, P. Szalachowski, R. M. Reischuk, and L. Chuat, SCION: a
secure Internet architecture. Springer, 2017.

V. Maffione, F. Salvestrini, E. Grasa, L. Bergesio, and M. Tarzan, “A
software development kit to exploit RINA programmability,” in 2016
IEEE International Conference on Communications (ICC). 1EEE, 2016,
pp. 1-7.

C. Hesselman, P. Grosso, R. Holz, F. Kuipers, J. H. Xue, M. Jonker,
J. de Ruiter, A. Sperotto, R. van Rijswijk-Deij, G. C. Moura, A. Pras,
and C. de Laat, “A responsible internet to increase trust in the digital
world,” Journal of Network and Systems Management, vol. 28, no. 4,
pp. 882-922, 2020.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87-95, 2014.

J. Mambretti, J. Chen, F. Yeh, and S. Y. Yu, “International P4 networking
testbed,” SC19 Network Research Exhibition, 2019.

FABRIC testbed. [Online]. Available: https://fabric-testbed.net/

J. Kwon, J. A. Garcia-Pardo, M. Legner, F. Wirz, M. Frei, D. Hausheer,
and A. Perrig, “SCIONLab: A next-generation internet testbed,” in
Proceedings of the 28th IEEE International Conference on Network
Protocols (ICNP). 1IEEE, 2020, pp. 1-12.

“IEEE 802.1ad — IEEE standard for local and metropolitan area networks
— virtual bridged local area networks.”

J. A. Donenfeld, “WireGuard: Next generation kernel network tunnel,”
in 24th Annual Network and Distributed System Security Symposium,
NDSS, 2017.

The P4.org Applications Working Group. (2020) In-
band network telemetry (INT) dataplane specification —
version 2.1. [Online]. Available: https://github.com/p4lang/p4-
applications/blob/master/docs/INT_v2_1.pdf

