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Abstract— The massive growth of connected devices has made
traditional cloud systems inadequate to sustain the scalability,
mobility, and heterogeneous nature of the Internet of Things
(IoT). Distributed clouds have become a potential business
opportunity for many service providers enabling the deployment
of services on computational resources from the cloud up to the
edge. However, challenges persist in fog-cloud infrastructures.
One of them is known as Service Function Chaining (SFC), where
providers benefit from network softwarization to create virtual
chains of connected micro-services. Research has tackled SFC
Allocation (SFCA) through theoretical modeling and heuristic
algorithms, which often cannot cope with the dynamic behavior
of the network. Recent works have addressed these challenges
through Machine Learning (ML), which can be capable of
dynamically reconfiguring cloud-native service requirements over
the continuum of virtual resources in next-generation networks.
Thus, in this paper, a Deep Reinforcement Learning (DRL)
approach is proposed for SFCA in Fog Computing focused on
energy efficiency. Our agent learns about the best resource allo-
cation decisions, focused on reducing costs from a previously pre-
sented Mixed-integer linear programming (MILP) formulation.
Results show that our agent achieves comparable performance
to state-of-the-art MILP formulations during dynamic use cases,
obtaining 95% of request acceptance.

Index Terms—Resource Provisioning, Service Function Chain-
ing, Fog Computing, IoT, Reinforcement Learning

I. INTRODUCTION

The recent deployment of 5G infrastructures [1] founded
on the principles of Software-Defined Networking (SDN) [2]
and Network Function Virtualization (NFV) [3] has been
driving the digital transformation of Internet of Things (IoT)
services in multiple application domains, such as Industry 4.0,
connected vehicles and smart cities. The increased flexibility
and programmability has enabled the deployment of network
services on computational resources from the cloud up to
the edge to help bring low-latency service delivery to reality
[4]. Fog Computing (FC) [5] has been introduced as an
alternative to centralized cloud systems, bringing computing
power, storage, and memory capacity closer to end devices by
allocating services in multiple areas in the network known as
Fog Nodes (FNs) or fog locations [6]. Differences distinguish
cloud and FC, but both can coexist to create a continuum
of virtual resources to tackle the challenges introduced by
emerging use cases (e.g. high Energy Efficiency (EE), low
latency). For example, FNs can be used for data filtering
and pre-processing operations, while Cloud Nodes (CNs) can
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be reserved for heavy analytical tasks, such as Machine
Learning (ML) services [7]. Next-generation networks aim
to provide ultra-broadband and ultra-low latency connectivity
to end-users. However, challenges persist to fully achieve a
decentralized cloud-native mobile network capable of over-
coming today’s bottlenecks and limitations [4]. One remaining
challenge is Service Function Chaining (SFC) [8], [9], where
providers benefit from network softwarization to create virtual
chains of connected Micro-Services (MSs). Previously, in [10],
we have shown that SFC is a recent research topic in FC. Sev-
eral studies have addressed SFC Allocation (SFCA) through
theoretical modeling and heuristic-based algorithms, which
often cannot cope with the dynamic behavior of the network
and leads to poor resource usage and scalability issues. In
contrast, recent research has proposed solutions through ML,
which seem capable of dynamically reconfiguring cloud-native
service requirements over the continuum of virtual resources
in next-generation networks [11]. Thus, in this paper, a subset
of ML called Reinforcement Learning (RL) [12] has been
explored for SFCA in FC focused on EE. The massive number
of connected devices [13] will generate large volumes of data
that, if processed centrally by traditional clouds, would lead to
increased power consumption and latency. Efficient collabora-
tion between edge, fog, and cloud are crucial towards a more
efficient and greener cloud-native infrastructure [14]. EE will
become even more important in next-generation networks due
to the increased use of data analytics and ML services [15].
Efficient resource allocation will therefore become essential
since services can be requested from anywhere (i.e. cloud, fog,
and edge). Resource provisioning is a difficult online decision-
making problem where appropriate actions depend on fully
understanding the network environment. Based on a previous
Mixed-integer linear programming (MILP) formulation [16],
an RL environment has been implemented where agents learn
to perform SFCA in FC directly from interacting with the en-
vironment without any knowledge or information beforehand.
MILP models can provide optimal schemes, however, at a cost
of execution time and mostly in static use cases. Our results
prove that RL techniques perform comparably to state-of-the-
art ILP-based formulations but provide more scalable solutions
and the ability to deal with dynamic scenarios.

The remainder of the paper is organized as follows. In the
next section, related work is discussed. Section III introduces
the proposed Deep RL (DRL) approach for SFCA in FC.



In Section IV, the evaluation setup is described, followed by
the results in Section V. Finally, conclusions are presented in
Section VI.

II. RELATED WORK

In recent years, resource provisioning gained significant
attention in FC. In [17], a provisioning algorithm focused
on optimizing service elasticity in FC has been proposed.
Results have shown that their algorithm can efficiently allocate
resources while minimizing response time and maximizing
throughput. In [18], the authors have proposed an FC scheme
for the support of IoT crowdsensing applications, which has
then formulated as a MILP model focused on cost-efficient
provisioning and task distribution. Results have confirmed
that their approach can outperform traditional clouds. In [19],
a particle swarm optimization algorithm has been presented
for resource allocation in FC focused on smart building use
cases. Results have demonstrated that their algorithm can
reduce the response time, the amount of transferred data, and
allocation costs. In [20], the trade-off between maximizing
the reliability and minimizing the overall system cost has
been studied for the resource allocation problem in FC. A
highly complex ILP model has been described followed by
a heuristic algorithm able to find suboptimal solutions, albeit
achieving better time efficiency. In [21], two service placement
strategies for FC have been introduced based on matching
game algorithms. The first strategy focuses on SFC concepts
by considering an ordered sequence of services, while the
second procedure overlooks the chain structure to lower the
computation complexity without compromising performance.
Recently, in [22], both the scalability and the volatility of
an FC infrastructure have been studied. The authors have
proposed a scheduling algorithm to allocate resources in a
large-scale deployment capable of reacting to the network
demand. In contrast to [23], this paper focuses on maximizing
EE and reducing costs while their approach minimizes the time
consumption of safety-related applications in vehicular FC.
Results have confirmed that their allocation schemes reduce
time consumption compared to traditional clouds.

Although most of the cited research has dealt with pro-
visioning issues in FC, most works have only considered
theoretical modeling and simulation studies, which limit their
practical implementation. These approaches can only be ap-
plied when the total network demand is known, which does not
happen in practice. Service providers will only benefit from
solutions that can react to sudden network changes and adapt
the service allocation scheme accordingly. Previously, in [24],
we have presented an early approach for SFCA in FC based
on a standard RL algorithm called Q-Learning. Results have
shown the potential of RL in resource allocation problems,
but the approach still could not fully address dynamic use
cases due to the reduced complexity of the evaluated RL
environment since to ease the learning process of the Q-
learning algorithm, the Observation Space (OS) has been
limited. Thus, the present work builds further on our previous
one since the RL environment has been extended to include
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Fig. 1: The representation schema of most RL scenarios [24].

further information about the SFCA problem. The OS has been
increased to include information about the available resources
in the infrastructure. Furthermore, a different RL algorithm
has been implemented based on a DRL technique known as
Deep Q-Network (DQN), where its full applicability has been
shown in the evaluation section based on the reimplemented
RL environment.

III. TOWARDS DEEP REINFORCEMENT LEARNING (DRL)
IN FOG COMPUTING (FC)

This section introduces the DRL approach for SFCA in FC.
The RL concept is explained, followed by the presentation of
the SFCA problem. Next, the OS and the Action Space (AS)
are described. Lastly, the Reward Function (RF) and the agent
are introduced.

A. Reinforcement Learning (RL)

Lately, RL methods have become an important area in ML
research [25], [26]. Fig. 1 represents a typical scenario in
RL. RL is often used to solve sequential decision-making
problems where agents learn to perform actions directly from
experience by interacting with an environment. The envi-
ronment represents the problem to be solved. At first, the
agent knows nothing about the problem at hand and learns
by performing predefined actions in an environment. For
each chosen action, the agent collects a reward, and a new
observation of the environment is returned, describing the new
state of the environment after applying the agent’s selected
action. Depending on the purpose and how well the agent
is performing on the given assignment, the reward can be
positive or negative. The agent learns to be successful by
repeated interactions with the environment, by determining
the inherent synergies between states, actions, and subsequent
rewards. Agents attempt to maximize the total collected reward
during multiple problem executions. For instance, an agent is
allocating resources in a fog-cloud infrastructure, and for each
applied action, it receives a reward. If the action translates into
an appropriate allocation scheme, the agent receives a positive
reward. Otherwise, if the performed action is inadequate (e.g.
terminate a service when needed), the returned reward is
negative. To maximize the collected reward, the agent needs to
apply actions that translate into proper allocation schemes at
all times. The goal in this scenario is to train an agent capable
of selecting adequate actions to maximize performance and
minimize costs. Based on our expertise, RL is well-suited
for resource allocation problems. By continuously receiving



TABLE I: A sample fraction of the gym-fog OS.

TABLE II: A sample fraction of the gym-fog AS.

feedback from the environment, agents can adjust their action
selection and achieve long-term objectives in complex situa-
tions, such as the considered SFCA problem in FC.

B. Problem Formulation - SFC allocation in Fog Computing

The SFCA problem in FC has been modeled as a MILP
formulation previously presented in [16]. A set of IoT appli-
cations A composed of MSs S are allocated on nodes e N.
Each application a has a given SFC identifier id € ID. All
MSs have a maximum number of replicas given by (3. The
replication factor for a particular MS s¢ .S for the application
a with the SFC identifier id is given by [, 4. Thus, the
model determines the exact number of replicas for each MS
based on the considered objective. Each MS s has a CPU
and a memory requirement represented by ws (in cpu) and
vs (in GB) respectively. Also, each MS s has a minimum
bandwidth requirement represented by d5 (in Mbit/s). A binary
placement matrix P is used to represent in which node n, the
replica 3; of an MS s has been allocated. Additionally, w,,
corresponds to the associated node weight (e.g. FNs have a
lower weight than CNs). An RL environment called gym-fog
! has been previously developed based on the MILP model
where RL agents learn how to perform SFCA in FC depending
on the current status of the network infrastructure [24]. The OS
and the AS of the gym-fog environment have been extended
to provide further information to the agent. The purpose of
the agent is to minimize the overall allocation cost, which
translates into increased EE. This objective can be expressed
as shown in Eq. 1.

DD DD D Pen) xwm X ws X s x 85 (1)
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C. Observation Space (0S)

The OS corresponds to the state representing the envi-
ronment at a given step. For example, considering an agent
performing MS allocations in a fog-cloud infrastructure, the
OS should include information about the specific services
previously allocated and the available amount of resources at
the given moment. The OS has been designed as shown in
Tab. I. For an easier understanding of our methodology, a small
infrastructure scenario has been considered with two cluster
nodes (n1,nz) where all User Requests (URs) coming to our

Thttps://github.com/jpedro1992/gym-fog

Metric Description Action Label Description

ur The number of user requests at the given moment. DoNothing The RL agent does nothing.

ar The percentage of accepted requests at the given step. Add — sin; Allocate an instance s; on node n;.

rl; /mp; The number of s; instances allocated by the agent / MILP. Stop — sin; Terminate the s; instance deployed on node n;.
rlC'/mpC' | The allocation scheme cost provided by the agent / MILP.

Sin; The binary flag of s; in n;.

Ch, The available CPU of n;.

My, The available memory of n;. system are made based on a single application decomposed
By, The available bandwidth of n;.

in two individual MSs (s1, s2). The OS is then constituted by
18 metrics. First, two metrics (ur and ar) represent the total
number of URs and the percentage of acceptance at a given
step, respectively. Thus, the agent perceives the current request
acceptance based on the current allocation scheme. Then, two
metrics (rl; and rls) represent the total number of allocated
MS instances by the agent for s; and s,. The same procedure
applies for the MILP model thus two more metrics have been
added (mp; and mpo). Furthermore, two metrics represent the
overall cost of both the agent and the MILP model (r!C and
mpC'). The agent can then compare its performance to the
MILP formulation since it recognizes the optimal cost at each
step. Additionally, four binary flag metrics (s;n;) have been
included to express the exact allocation of each MS instance
in the infrastructure. If any of these metrics are equal to 1,
at least one MS instance has been allocated on that node.
These metrics help the agent in finding adequate actions in
terms of MS reallocation since the exact allocation of MS
instances is known. Therefore, the agent only terminates MS
instances when the correspondent flag is equal to 1. Finally, six
metrics (Cy,, ..., Bp,) have been added regarding the available
resources in the infrastructure to guarantee that the agent can
learn adequate actions based on capacity constraints included
in the MILP model. Otherwise, the agent cannot learn when
it can deploy or terminate an MS instance accordingly. By
adding this deployment information, the agent acknowledges
when a given action would compromise a node since it knows
if the selected node has enough capacity to support the given
MS. As noted, the OS increases linearly with the number of
MSs considered in the service chain and the number of nodes
available in the FC infrastructure.

D. Action Space (AS)

The AS corresponds to all actions that the agent can perform
in the environment. The AS of the gym-fog environment
has been designed as shown in Tab. II assuming the small
infrastructure previously presented. The AS is composed of
9 discrete actions. The AS also increases linearly with the
number of MSs and the number of nodes available in the
infrastructure. The first action is called DoNothing as the
agent performs no allocation or termination actions. The agent
should only select this action when the current allocation
scheme meets the current network demand. The second set
of actions corresponds to the allocation of MS instances
(Add — s;n;). The agent selects the MS to be allocated and on
which node the instance should be deployed. For example,
an ML service should be allocated in a CN where more
computing resources are available, despite their higher weight



compared to edge and FNs. Agents can select the same action
several times to guarantee that the deployed number of MS
instances meet the current network demand. Finally, the last
set of actions corresponds to the termination of MS instances
(Stop — s;n;). As in deploying actions, the agent chooses the
MS to be terminated based on a particular cluster node thus
the MS instance allocated on the selected node is terminated.

E. Reward Function (RF)

Algorithm 1 Reward Function of the gym-fog environment

Input: Observation state after action step in
Output: Reward out

1: // Return the reward for the given state

2: getReward(obs):

3: r=20
4 uryar,rll,r12, mpl, mp2, rlC, mpC = obs.get()
5. // Reward based on Keywords for MILP constraints
6: if MaxInstancesOnNode == True then return 0
7. if StopWithoutDeploy == True then return 0
8 if MaxInstancesReached == True then return 0
9:  if MaxNodeCapacity == True then return 0

1:  r=r+getM(ril,mpl) // MSI calculation
122 r =71+ getM(rl2,mp2) // MS2 calculation
13:  if ar == 0 then return r

14. r =714 ar // Request Calculation

15 r=r+ getC(riC,mpC) // Cost Calculation
16:  if i1 == mpl and ri2 == mp2 then

17: if rIC == mpC then

18: r=r+ 100

19:  return r

The purpose of the RF is to teach the agent how to maxi-
mize the accumulated reward by selecting appropriate actions
depending on the observation provided by the environment.
For each action, a particular reward is retrieved. Thus, the
agent learns if its chosen action has been appropriate based
on the received reward. The design of a proper RF through
the manual tuning of ML parameters is needed to ensure the
agent learns what it is supposed to. The implemented RF is
shown in Alg. 1. The objective is to lead the agent to allocate
MSs in a fog-cloud infrastructure according to the MILP
formulation. The MILP model provisions MSs by minimizing
the overall cost, as shown previously. Therefore, the closer the
agent is to achieve the MILP’s solution, the higher the reward
it receives. First, rewards are returned based on constraints
added to the MILP model. For example, capacity constraints
have been added to the environment. If an allocation action is
selected, and the chosen node does not have enough resources
to allocate the MS instance, the deployment is revoked, and
a null reward is returned. The agent learns what forced this
constraint due to the extension of the OS, meaning that the
particular action would not be selected again if the same state
occurs since a null reward would be expected by the agent.
Then, MS rewards have been calculated as shown in (2).

5.0
0 Otherwise

if 7l ==mp

getM (rl, mp) = { ()

If the number of allocated MS instances by the agent is
equal to the ones allocated by the MILP model, 5 is returned.
The agent is incentivized to provision the exact number of
MS replicas as the MILP model. If the agent allocates a
higher number of replicas (i.e. over-provisioning) or if the
agent provisions fewer instances (i.e. under-provisioning), 0 is
returned. After the MS reward calculation, the percentage of
accepted requests is verified. If the acceptance is 0%, the cur-
rent accumulated reward is returned. The agent learns that zero
acceptance leads to low rewards. The agent receives a positive
reward when it deploys the same number of allocated replicas
of a given MS as the MILP model. Otherwise, a zero reward
is given. If the percentage of acceptance is higher than 0%,
the current percentage is added as a reward, meaning that if all
requests are accepted, 100 is added to the accumulated reward.
Thus, the agent learns that higher acceptance rates translate
into higher rewards. A linear increase has been applied since
it led the agent towards better allocation decisions rather than
an exponential function in the conducted experiments. Then, a
cost RF has been applied as shown in (3). If the agent’s cost is
equal or up to 10% higher than the MILP one, 10 is returned
since the agent is performing similar to the MILP model.
Then, depending on how higher the agent cost is compared
to the MILP cost, a decreasing negative reward is returned,
meaning that the agent is being taught that the closer it stays
to the MILP cost, the higher reward it receives. Lastly, a bonus
reward is given to the agent if the agent’s allocation scheme is
the exact one provided by the MILP model. A bonus reward
of 100 has been given if both the agent’s cost matches the
MILP cost and the number of MS instances are equal, the
ultimate purpose of our agent: learning how to allocate MSs
in a fog-cloud infrastructure as a MILP formulation.

10.0 it mp <rl <1.10 x mp

—10 if 1.10xmp <7l < 1.25 x mp

=25 if 125 xmp<rl <1.75 X mp
getC(rl,mp) = < =50 if .75 x mp < rl < 2.0 x mp

=75 if20xmp <rl <3.0x mp

—90 if3.0xmp<rl<4.0xmp

—100 Otherwise

3)
F. Agent - Deep Q-Network (DQON) methods

In [24], a Q-Learning agent based on a former version
of the gym-fog environment has been evaluated. For this
paper, a more complex RL algorithm based on DQNSs has
been assessed. The DQN algorithm has been introduced by
Google DeepMind [27], [28], which combines Q-Learning
theory with deep neural networks to teach agents RL tasks as a
supervised learning operation. The concept behind DQN is that
Q-learning is not feasible for high dimensional problems since



TABLE III: The gym-fog environment configuration.

TABLE V: The MILP model execution time.
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Fig. 2: The fog-cloud infrastructure for the evaluation.

TABLE IV: The hardware configuration of each node.

Node Type Weight | CPU (cpu) RAM (Mi) Band. (Mbit/s)
Edge 1.0 1.0 2.0 5.0
Fog 2.0 2.0 4.0 10.0
Cloud 3.0 8.0 16.0 30.0

thousands of state-action pairs are needed to compute the Q-
value function, which makes the learning process impractical.
This has been one of the main reasons why we have reduced
the state-space complexity of the gym-fog environment to
assess the performance of a Q-learning agent. However, the
agent struggled to learn all the dynamics of our environment
due to low state complexity. Thus, in this paper, a deep
neural network is used to estimate the Q-value function instead
of computing the Q-value for each state-action pair of our
gym-fog environment. Several improvements have been made
to DQN over the last few years. In the developed DQN
agent, three extensions have been applied: double [29], dueling
[30] and Prioritized Experience Replay (PER) [31]. A DQN
method applying all these concepts is named D3QN-PER, the
implemented agent for the SFCA problem.

IV. EVALUATION SETUP

The gym-fog environment has been developed based on the
OpenAi gym [32], an open-source project for RL research
written in Python. The MILP model initially developed in
Java has been rewritten in Python to ease the interaction
between the MILP model and the OpenAi gym. The envi-
ronment configuration is shown in Tab. III based on the FC
infrastructure illustrated in Fig. 2. The infrastructure considers

Name Description User Requests 1 5 10 | 20 30 40 45 47 [ 50

Applications / Micro-services 1/3 Exec. Time (s) | 0.2 0.6 1.1| 15.1] 26.5| 33.8 | 242.7| 3600.0

Locations / nodes 9/45

SFC structure ai : 81 — S2 — S3

Max. replication factor 5

éc.don / Observation spaces 241 ac{i(fns () /280 states (Is) a total area of 324 km?2, in which the MS allocation is
pisode duration 100 steps . . . . .

DON structure / layers 5 layers [280, 512, 256, 64, 241] possible in nine locations L, each managing a set of five

nodes. Tab. IV shows the hardware configurations of each
node based on the correspondent node type. Each node has
a given computing capacity and a certain weight, which is the
necessary data to calculate the overall system cost based on the
MILP formulation. As expected, CNs have more computing
power than edge or FNs, but their weight is also higher since
their usage translates into more power consumption. In the
evaluation, a dynamic use case has been assessed, in which the
network demand is changing during the episode where users
join and leave randomly. The number of URs may decrease
or increase, and the D3QN agent must adapt its allocation
scheme according to the user demand. The number of URs
has been changed every five steps between 1 and 50 based on
specific probabilities (increase: 50%, equal: 35%, decrease:
15%). The total increase or decrease is random, meaning that
at each step, users may leave or stay connected while others
may join, translating into several patterns occurring in different
episodes. The D3QN agent and the MILP formulation have
been executed on a 6-core Intel i7-9850H CPU @ 2.6 GHz
processor with 16 GB of memory.

V. RESULTS

The execution time of the D3QN agent is shown in Fig. 3a.
The D3QN agent solves a single episode in on average 4 and
5 seconds, which is significantly faster compared to MILP-
based calculations since the MILP model needs to calculate
the optimal scheme on each episode step. In Tab. V, the MILP
execution time is presented. For example, for more than 10
URs, the MILP model takes at least 1 second to obtain the
optimal scheme. For 40 URs or higher, a time limitation of
3600 seconds and a gap tolerance of 15% have been introduced
in the model. Otherwise, the model could have taken hours to
find the optimal solution, even though the provided solution
with these limitations has the same overall value as the optimal
one. These calculations represent a single episode step, which
proves the drawback of MILP formulations since every change
on the network would require a new calculation, making these
solutions impractical. Fig. 3b illustrates both the accumulated
reward and the average cost difference between the D3QN
agent and the MILP model during training. The D3QN agent
can reduce the overall cost reaching solutions 2% worse than
the MILP model. The agent collects accumulated rewards of
8500 in a single episode, meaning that the agent is receiving
on average a reward of 85 per step. Based on the designed RF,
the agent cannot allocate all the required MS instances in the
infrastructure based on the current demand, which affects the
percentage of accepted requests as shown in Fig. 3c. Due to
the dynamic behavior, the agent needs to constantly adjust the
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Fig. 3: Results obtained by the D3QN agent during training and testing.

allocation scheme, translating into under-provisioning or over-
provisioning schemes during some steps in a single episode.
Thus, the request acceptance oscillates between 75% and
85% during training when a smoothing window of 100 is
applied. Two markers (green triangles) have been added to
Fig. 3b to highlight two saved configurations of the trained
agent: V1 and V2. The V1 agent configuration has been
saved after completing the 1250th episode, while the V2 agent
configuration has been stored at the end of the training, after
the 2500th episode. Agents must be trained and then tested as
in supervised learning tasks. For generalization purposes, the
agent has been trained to perform SFCA in FC by experiencing
different demand patterns during training. Now, during testing,
these patterns will also be different, meaning that the agent
must be able to select adequate actions even if the current
demand has never been experienced before. Both agents have
been tested for 1000 episodes. Fig. 3d and Fig. 3e show
the accumulated reward and the cost difference of the V1
and the V2 agent, respectively. The V1 agent reduces the
overall cost reaching solutions 30% worse than the MILP
model with accumulated rewards of 6200, while the V2 agent
provides allocation schemes 2% cheaper with accumulated
rewards of 4200. The V2 agent had more training time than
the V1 agent thus the V2 agent can achieve lower costs than
the V1 agent, obtaining higher EE. However, the V2 agent
provides under-provisioning schemes, which do not accept all
user requests, as illustrated in Fig. 3f. The V1 agent obtains
95% acceptance while the V2 agent achieves 80% on average.
By further reducing costs, the allocation scheme adapts to the
current demand. When the demand increases, the agent has
less time to react, and for a few steps, some requests cannot be
accepted since the deployed MSs are overloaded. In practice,
when service providers opt for reducing costs, users may
experience short service disruptions when the network demand
increases since the allocation scheme cannot support all URs.
In contrast, other service providers may opt for maximizing
service reliability, and thus, if the demand suddenly increases,

there is still enough capacity to accept the increased number of
URs. This highlights the differences obtained by the two saved
agents. On the one hand, the V1 agent is allocating on average
30% more resources than the MILP model, responding faster
to increased demands, which translates into 95% acceptance
during testing. On the other hand, the V2 agent is reducing
costs allocating on average 2% fewer resources than the MILP
model, which in most cases cannot react quickly to increased
demands, resulting in only 80% acceptance.

VI. CONCLUSIONS

In this paper, a DRL approach for SFCA in FC has been
proposed. An environment called gym-fog has been developed
to bridge the gap between MILP formulations with RL algo-
rithms. A RF has been set up to incentivize RL agents to select
adequate actions for SFCA focused on reducing the overall
system cost, translating into higher EE. Results have shown
that RL agents can obtain comparable performance to state-
of-the-art ILP formulations while providing a more scalable
solution. The V2 agent training has been significantly longer
than the V1 agent training, resulting in reduced costs within
30% and 0% and acceptance rates of 95% to 80% compared
to the exact MILP solution. A clear trade-off between cost
reduction and request acceptance has been demonstrated. Our
approach has proven its full applicability to SFCA in FC. RL
systems capable of reallocating services in the infrastructure
by reacting to sudden network changes will be the next main
topic in the resource allocation field. As future work, our RL
approach will be extended to consider different objectives,
such as end-to-end latency reduction in service chains, and
make it less dependable on our MILP model, thus, making it
more scalable.
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