
C2QoS: CPU-Cycle based Network QoS Strategy
in vSwitch of Public Cloud

Ye Yang∗†, Haiyang Jiang∗, Yulei Wu‡, Yilong Lv§, Xing Li§ and Gaogang Xie¶†
∗ICT, CAS, China, †UCAS, China, ‡University of Exeter, UK, §Alibaba Group, China, ¶CNIC, CAS, China

Email:∗{yangye, jianghaiyang}@ict.ac.cn, ‡y.l.wu@exeter.ac.uk, §{lvyilong.lyl, lixing.lix}@alibaba-inc.com, ¶xie@cnic.cn

Abstract—The network Quality-of-Service (QoS) strategy in
vSwitch aims to guarantee the Service-Level-Agreement (SLA)
for the concurrent Virtual Machines (VMs) residing on a particu-
lar server platform. Different from a hardware switch, the traffic
forwarding tasks in vSwitch are completed by processes/threads
running on some dedicated CPU cores. Existing vSwitch QoS
strategies, inherited from the solutions in the hardware switch,
are interface-based and ignore the isolation of these IO-dedicated
CPU resources among VMs. As the result, they cannot ensure
VMs’ SLA targets due to the resource contention. In order to
resolve the issue, we propose a CPU-Cycle based QoS (C2QoS)
strategy, that contains a CPU-Cycle based Token-Bucket (C2TB)
mechanism and a Hierarchical Batch Scheduling (HBS) mech-
anism. The C2TB apportions the IO-dedicated CPU resources
to each VM for ensuring bandwidth, while the HBS schedules
the VMs’ forwarding tasks on these CPU cores to guarantee
hierarchical latency. We implement the C2QoS strategy on the
Data Plane Development Kit accelerated Open vSwitch (OVS-
DPDK) platform. Experimental results show that compared with
existing strategies, the influence of CPU resource congestion on
bandwidth is eliminated and that on latency is reduced by 80%.

I. INTRODUCTION

The public cloud has become a trend, since many enterprises
and individuals, as tenants, are deploying services on it in
the form of Virtual Machines (VMs) [1]–[4]. In a public
cloud, a number of VMs are deployed on a particular physical
server platform and share the resources like CPU, memory and
network. How to fairly share these resources among tenants
and provide Service-Level-Agreement (SLA) guarantee is the
foremost issue for Cloud Service Providers (CSPs).

Among these resources, network resources are different
from the hardware resources like CPU and memory. On a
physical server, each VM’s network connectivity is imple-
mented by a software vSwitch, that is responsible for the
packets classification and forwarding [5], [6]. As the results, all
the VMs compete with each other for the processing capacity
of the vSwitch, essentially for the CPU resources occupied by
the vSwitch. To make things worse, for a CSP it is a common
practice to increase the share of CPU resources with VMs
and thus very limited CPU resources are left for vSwitch’s
forwarding tasks, e.g., the Google cloud uses no more than
two physical CPU cores to perform forwarding tasks [7].

This work was supported in part by the Key Projects of National Key
R&D program of China (Grant NO. 2019YFB1804503), and Natural Science
Foundation of China (Grant No. 62002344).

Therefore, the VM network resources are actually a kind of
“virtual” resources, and essentially provided by the limited
IO-dedicated CPU cores in the vSwitch.

Existing network Quality-of-Service (QoS) strategies in
software vSwitch are inherited from the interface-based so-
lutions of hardware switch, and do not consider the issues of
CPU resources competition among tenants. These strategies
work well on the hardware switch, because the hardware
circuit processing capabilities are powerful and will not change
with different traffic characteristics. But in a software vSwitch,
when forwarding traffic with different characteristics, the pro-
cessing capabilities of these limited IO-dedicated CPU cores
are variable. For example, at the same bits-per-second (BPS)
rate, compared to forwarding traffic with 1518-byte packet
size, forwarding traffic with 64-byte packet size consumes 10
times more CPU cycles [8]. As a result, these QoS strategies
ignoring VM competing for variable processing capacities in
vSwitch will cause that the SLA of tenants’ networks can
hardly be guaranteed in all situations.

Some recent works [8], [9] have noticed this resources
competition issue, and they added a module for CPU resources
isolation before the traditional QoS module. The effects of
these works were limited because they are still interface-based
and the variable vSwitch forwarding capacity is still ignored.

Different from existing solutions, in this paper, we propose
a new CPU-Cycle based QoS strategy (C2QoS) to completely
solve this issue. As the “virtual” network resources are realized
by the IO-dedicated CPU cores, the VM’s network SLA can
be guaranteed by directly apportioning the CPU cycles to
VMs. The challenges to achieve this goal include: 1) How
to establish the correspondence between bandwidth and CPU
usage. 2) How to assign CPU cycles to each VM to strictly
guarantee its bandwidth. 3) How to provide the hierarchical
SLA latency, especially for the delay-sensitive applications. To
address these challenges, this paper makes the following main
contributions:

• We propose a modeling methodology to build the cor-
respondence between forwarding capacity and CPU re-
sources in vSwitch.

• Based on the model, we propose the C2QoS strategy,
containing a CPU-Cycle based Token Bucket (C2TB)
mechanism for rate limiting and a Hierarchical Batch
Scheduling (HBS) mechanism for ensuring latency.

• We implement the C2QoS strategy on the DPDK acceler-
ated open vSwitch (OVS-DPDK) [10], [11] platform. The978-3-903176-32-4 c© 2021 IFIP

experiments show that compared with existing strategies,
the influence of CPU resource congestion on bandwidth
is eliminated and that on latency is reduced by 80%.

The rest of this paper is organized as follows. Section II
introduces the background and motivation. Section III presents
the model between network performance and CPU usage.
Section IV shows the design of C2QoS, and its implementation
on OVS-DPDK is shown in Section V. Section VI carries out
performance evaluation. Section VII concludes this paper.

II. BACKGROUND AND MOTIVATION

A. Network QoS in vSwitch

Network QoS strategy is a well-studied topic in hardware
switch and a lot of works have been proposed. The sufficient
processing capacity in hardware switch is a significant ad-
vantage when dealing with the rate limiting and scheduling
issues. The main reasons are argued in [12]: the overhead
of processing each packet is fixed; the token buckets and
queues are implemented by hardware and they can complete
the corresponding functions without loss of performance; high-
precision clock and hardware feedback support [13], [14].

Unfortunately, none of the above advantages exists in soft-
ware vSwitch. The CPU cores left for vSwitch are limited,
and meanwhile their processing capacity is variable when
forwarding traffic with different characteristics. For example,
in Google’s experiments, forwarding a flow with 64-byte
packets at a speed of 512 Mbps will consume more CPU cycles
than forwarding a flow with 1518-byte packets at a speed of
2.4 Gbps [8]. On the other hand, as a software based process,
the vSwitch has particular bottleneck and resource competition
points, which are completely different from hardware switch.
These differences make that the QoS strategies inherited from
hardware switch cannot work well in the vSwitch.

B. Bandwidth issue

The existing rate limiting in vSwitch is realized by token
bucket methods which are based on the interface rate. As the
competition for IO-dedicated CPU resources is ignored, one
tenant may “legally” squeeze the CPU resources and harm the
bandwidth of others. We use the three-color-marker (TCM)
algorithm [15]–[17] in OVS-DPDK to demonstrate this issue.

It should be noted that all the experiments in this paper use
the same configurations: Intel Xeon CPU E5-4603 v2 2.20GHz
(32 logical cores on 4 NUMA nodes), 64GB DDR3 memory at
1333MHz, one Intel 82599ES 10-Gigabit Dual Port Network
Interface Controllers (NICs) and Ubuntu 16.04.1 (kernel 4.8.0)
as operation system. The cloud platform is built on QEMU
2.10, DPDK 17.11.2 and OVS 2.9.2. Each VM is assigned
with 2GB memory and 1 logical core.

In the Fig. 1(a)-(b), the VM1 and VM2 share one CPU
core in OVS-DPDK for forwarding, and their bandwidths are
limited to 2 Gbps and 8 Gbps respectively. Within the first
10 seconds, their bandwidths are well guaranteed. Starting
from the 10th second, VM1 sends small packets (reduces
the packet size to 64-byte). In order to achieve the same
throughput (2 Gbps) as before, VM1’s forwarding tasks in

0 5 10 15 20
0

2

4

6

8

10

B
a
n
d
w

id
th

 (
G

b
p
s
)

Time (s)
 VM1 VM2

(a) Bandwidth.

0 5 10 15 20
0

20

40

60

80

100

C
P

U
 u

s
a
g
e
 (

%
)

Time (s)
 VM1 VM2

(b) CPU consumption.

0 10 20 30 40
101

102

103

104

T
C

P
 l
a
te

n
c
y
 (

u
s
)

Time (s)
 1 VM 4 VMs

(c) Average TCP latency.

Fig. 1. Bandwidth and latency issues in the existing QoS strategies. (a)-(b)
use pkt-gen from netmap [18] inside VMs as traffic generator, and (c) uses
qperf [19] to measure TCP latency.

vSwitch consume nearly 20% more CPU cycles as shown in
Fig. 1(b). That leads to up to 20% bandwidth drop to VM2
due to reduced available IO-dedicated CPU resources.

C. Latency issue

In addition to the bandwidth, the VM latency also cannot
be guaranteed in vSwitch. The existing traffic scheduling
mechanisms in vSwitch only work at the egress packet pro-
cessing stage [20]–[22]. The main task in this stage is to
send packets out on interfaces. These mechanisms guarantee
the latency in the egress stage but ignore the latency in
the other stages, such as the ingress (copying packets from
interfaces) and classification stages. For the hardware switch,
these mechanisms work well because the powerful processing
capabilities make the resource contentions mainly occur in
the egress stage, especially when traffic gathering happens on
a particular port. But in vSwitch, during the ingress stage,
concurrent VMs compete for CPU resources to execute the
expensive packet copying. Due to the absence of scheduling
in the ingress stage, VMs indiscriminately queue up for packet
copying tasks to be completed, which causes mutual influence
and high latency.

We also use experiments to demonstrate this issue. Fig. 1(c)
shows the comparison of average TCP latency when running
1 VM and 4 VMs on one host. In both cases, one CPU core
is used to forward traffic in the vSwitch. It can be seen that
with 4 VMs, each tenant suffers hundreds of times higher
latency indiscriminately due to waiting for the CPU core to
sequentially process other VMs’ ingress operations.

D. Motivation

The reason why VM’s bandwidth and latency cannot be
guaranteed is that the existing QoS strategies ignore the IO-
dedicated CPU resources competition inside the vSwitch. The
lack of management and apportionment of CPU resources
brings a series of flaws including bandwidth isolation and
high latency, which may be exploited by greedy tenants and

VM

slow path

fast path

Datapath
classifier

N
IC

Tx

EMC
lookup

Poll
&

copy

virtqueue

virtqueue

vSwitch PMD procedure

Host OS

①
②

③

VM

hit
miss

Fig. 2. Datapath in OVS. The process of sending packets from VM to NIC
can be divided into three stages: 1©ingress, 2©classification and 3©egress.

attackers. Some previous works have mentioned this issue,
and some solutions have been proposed, e.g., Addanki et
al. [9] considered separately apportioning IO-dedicated CPU
resources and bandwidth on the software router, and Kumar
et al. [8] proposed a method by using a CPU-based weighted
fair queue to isolate CPU competition among VMs. But all of
these works have limited effects because they only add a CPU
isolation module before or after the existing interface-based
QoS mechanisms, but fail to consider the variable vSwitch
forwarding capacity and the different resource competition
points in the software vSwitch process.

Essentially, the network forwarding capacity of vSwitches
is not a kind of hardware resources, but a kind of “virtual”
resources that are provided by IO-dedicated CPU resources
in the vSwitch. Starting from this point, the motivation of
this paper is to adopt the CPU resources apportionment, that
reflects the network forwarding capacity more directly, into the
VM network QoS solution. In order to do that, we first propose
a modeling methodology to build the relationship between
CPU resources and network forwarding capacity in vSwitch.
Based on the vSwitch network performance model, we design
and implement a new VM network QoS strategy.

III. BANDWIDTH-CPU MODEL

To guide the design of QoS strategy, we first need to model
the correspondence between forwarding capacity and CPU
usage in vSwitch. Our modeling is based on OVS-DPDK
platform, which is the state-of-the-art implementation and has
been widely adopted by the industry.

A. OVS Packet forwarding procedure

In the OVS-DPDK, several Polling Mode Driver (PMD)
threads are launched and bound to IO-dedicated CPU cores.
As shown in Fig. 2, the PMD procedure in the vSwitch consists
of three stages delivering packets from the VM to the external
network. The first stage is ingress, the PMD thread copies a
batch of packets from the VM memory to the vSwitch buffer.
Next, in classification stage, the PMD thread looks up their
destination port based on the five-tuple. If the five-tuple is
found in the Exact Match Cache (EMC), it goes to the next
stage. But if it is missed, the PMD thread will use more CPU
cycles to search in the more comprehensive classifiers and then
go to the next stage. Finally, it is in the egress stage that the
PMD thread writes the packet descriptors to the NIC queue,
and then the NIC can send packets out. According to these

three stages, we divide the CPU cycles consumed by the VM
forwarding tasks into three parts:

C = Cingress + Cclassification + Cegress (1)
Then we experiment to study how these three parts are

affected by factors including traffic characteristics and other
deployment issues.

B. Impact of network traffic characteristics

The network traffic characteristics that can be changed by
the tenant behavior inside VM include: sending rate (packets-
per-second, i.e. PPS), packet size and the number of flows. We
launch one VM on the OVS-DPDK platform and assign one
CPU core as the IO-dedicated CPU resources. During each
experiment, we vary one characteristic and record the results
while keep the other two with a certain value.

Sending rate (PPS). In Fig. 3(a), we find the CPU cycles
consumed in the three stages are proportional to the PPS (1500
packet size and single flow during the experiment).

Packet size. As shown in Fig. 3(b), when sending rate
(PPS) remains constant, increasing the packet size will only
increase Cingress and have nothing to do with Cclassification

and Cegress. The increase of Cingress is due to the fact that
only the stage ingress contains packet copying, so the larger
packet requires more time to copy (105 PPS and single flow
during the experiment).

Number of flows. In Fig. 3(c), comparing with only sending
one flow, sending concurrent flows will cause the packet
classification to frequently miss in EMC lookup, and will enter
the longer search path. Thus Cclassification is increased (1500
packet size and 105 PPS during the experiment).

The existing QoS strategies adopted by CSPs only consider
one of the above three characteristics (i.e., PPS), but the other
two characteristics can easily undermine the SLA performance
via affecting CPU consumption (see Figs. 3(b)-(c)). From
the experiments, a certain bandwidth-CPU relationship for
single VM in the vSwitch can be established if the traffic
characteristics are included in the SLA. So in this way, we
can allocate particular CPU resources for each VM according
to the bandwidth-CPU relationship, and further isolate the IO-
dedicated CPU consumption among VMs, which will resolve
the SLA issue. For example, as the iMIX traffic represents the
average packet size and number of flows, CSPs can calculate
the CPU resources Csingle, required for purchased bandwidth
of single VM under iMIX traffic, and allocate to the VM.

C. Impact of deployment issues

In multi-tenant scenario, we still need to consider the
influence of deployment issues, which include: VM memory
location, the number of VMs on the same server and the
number of CPU cores used for forwarding.

VM memory location. In Fig. 3(d), when forwarding at the
same rate, the VMs on NUMA [23], [24] node 1, 2 and 3 need
40% more CPU cycles than the VM on node 0 to complete the
forwarding task. That is mainly due to the increase in Cingress

by memory access across nodes (the IO-dedicated CPU core
located on NUMA node 0).

101 102 103 104 105 106
10-3

10-2

10-1

100

101

102
C

P
U

 u
s
a
g
e
 (

M
 c

y
c
le

s
/s

)

throughput (PPS)

 egress

 classification

 ingress

(a) CPU usage - PPS.

64 128 256 512 1024 1500
0

50

100

150

200

250

C
P

U
 u

s
a
g
e
 (

M
 c

y
c
le

s
/s

)

packet size (Byte)

 egress

 classification

 ingress

(b) CPU usage - packet size.

0

50

100

150

200

250

multiplesingle

1500512

C
P

U
 u

s
a
g
e
 (

M
 c

y
c
le

s
/s

)

packet size (Byte)

 egress

 classification

 ingress

64
single multiple single multiple

(c) CPU usage - multiple flows.

node0 node1 node2 node3
0

30

60

90

120

150

C
P

U
 u

s
a
g
e
 (

M
 c

y
c
le

s
/s

)

NUMA node

 egress

 classification

 ingress

(d) CPU usage - VM location.

2 4 6 8 10 12 14 16
1.0

1.1

1.2

1.3

1.4

1.5

1.6

in
c
re

a
s
e
 r

a
ti
o

VMs

 MAX

 MIN

(e) CPU usage increase ratios - one core.

2 4 6 8 10 12 14 16
1.0

1.2

1.4

1.6

1.8

2.0

2.2

in
c
re

a
s
e
 r

a
ti
o

VMs

 MAX

 MIN

(f) CPU usage increase ratios - two cores.

Fig. 3. The relationship between CPU consumption and bandwidth. (a)-(c) show the impact of traffic characteristics on CPU consumption, and (d)-(f) depict
the impact of different deployment situations. The “M cycles/s” in Figs means million cycles/s. Pkt-gen from netmap is used as traffic generator in all cases.

Number of VMs. As shown in Fig. 3(e), with the number
of VMs grows, the competition on memory bus and cache
will increase the CPU consumption of all VMs’ forwarding
tasks. The maximum and minimum curves show the CPU
consumption increase ratio when increasing the number of
VMs on the same NUMA node and on different nodes.
It is obvious that the former situation will lead to higher
competition.

Number of CPU cores. Comparing Fig. 3(e) and Fig. 3(f),
it can be found that using two logical cores for forwarding
will consume about 1.47 times more CPU cycles than one
logical core for forwarding in any cases. It is mainly due to
competition for locks in the code, e.g. the synchronization
among multiple PMD threads.

As these deployment factors are mainly independent with
each other, the influence can be expressed as

∏
Ri ∗ Csingle,

where Ri represents the growth rate of CPU consumption
under the influence of each factor. For example, if 4 VMs
are deployed in NUMA node 1 and 2 CPU cores are assigned
for forwarding. To calculate the CPU cycles required for each
VM in practical, the coefficients Ri to be multiplied under the
above three deployment configurations are 1.5, 1.14 and 1.47,
respectively, according to Figs.3(d)-(f). Only when all these
factors are considered, the CPU cycles allocated to each VM
can really ensure its purchased bandwidth.

IV. C2QOS DESIGN

Based on the bandwidth-CPU model developed in Section
III, we are able to design C2QoS strategy. For bandwidth
guarantee, we propose C2TB mechanism using CPU cycles to
achieve isolation enhanced rate limiting. To ensure hierarchical
latency for tenants, we propose HBS mechanism to schedule
all VMs’ forwarding tasks on the IO-dedicated CPU cores. In
this section, we will illustrate in detail the designs.

A. CPU-cycle based token bucket mechanism

To guarantee VM bandwidth through the CPU resources
apportionment, C2TB needs two steps: allocating particular
VM the necessary IO-dedicated CPU resources; using the
allocated CPU resources to strictly limit the forwarding rate.

Firstly, we construct a new kind of token bucket for each
VM. Different from the traditional token buckets that use the
bits or number of packets as tokens, the tokens in C2TB are
the remaining available IO-dedicated CPU cycles of each VM.
The token generation rate of each VM is the IO-dedicated CPU
cycles/s we allocated to it. Using the modeling methodology
in Section III, we can set the token generation rate to a fit
value that can strictly ensure tenant’s purchased bandwidth.
An example of this kind of bandwidth allocation under C2TB
is shown in Fig. 4. Assuming the CPU resources required to
achieve 1 Gbps and 4 Gbps bandwidth under iMIX traffic
characteristics are 0.2G cycles/s and 0.8G cycles/s according
to the measurement-driven model. So the token generation
rates of the 4 VMs are set to 0.8G cycles/s, 0.8G cycles/s,
0.2G cycles/s and 0.2G cycles/s, respectively.

After the token generation rates have been configured, the
next step is to use the available CPU cycles of each VM
to limit its forwarding rate. The traditional token bucket
algorithms drop the packets exceeding available tokens during
batch processing. But in C2TB, since it is unknown how many
CPU cycles will be consumed, it is impossible to decide how
many packets should be dropped in one batch. For efficiency,
we adopt the following policy: we allow the number of tokens
to be negative, and whether the tokens are greater than 0
determines whether this batch I/O processing task can be
executed. For each VM, only if its tokens are greater than 0,
it can be forwarded a batch of packets and the CPU cycles
consumed is subtracted in its token bucket after the batch

4 4 1 1weight

0.8G 0.8G 0.2G 0.2G
generation rate

(cycles/s)

4 Gbps
purchased
bandwidth 4 Gbps 1 Gbps

VM1C2TB

1 Gbps

VM2 VM3 VM4

Fig. 4. Token assignment method in C2TB. Allocating necessary CPU
cycles/s to each VM that can achieve the purchased bandwidth.

processing completed. As the CPU cycles used for each VM’s
packet forwarding tasks are fairly assigned in C2TB, the VM
bandwidth can be guaranteed with good isolation.

B. Hierarchical batch scheduling mechanism

As the existing scheduling mechanisms only work at the
egress stage and cannot avoid the high latency of CPU
resources contention in other stages, we turn to think about
scheduling the entire batch I/O processing procedure (includ-
ing ingress, classification and egress) for VMs. In the field
of CPU task scheduling, we find the task scheduling model
in vSwitch is much closer to the works in [25], [26], which
schedule tasks on CPU cores to ensure that light load tasks
will not be blocked too long by heavy load tasks. That inspires
us to propose HBS to schedule batch I/O forwarding tasks on
the IO-dedicated CPU cores for hierarchical latency guarantee.

The HBS design is shown in Fig. 5. All VMs are placed
in virtual queues and there are two kinds of queues: waiting
queue and ready queue. As the C2TB allows CPU to skip VMs
with negative tokens, we put these VMs that should be skipped
into the waiting queue. The VMs with tokens greater than 0 are
queued in the corresponding ready queues according to their
priorities. The CPU cores will only poll and dequeue the VMs
in the ready queues and do batch I/O forwarding, according
to the priority. So in the ready queues, the VMs in high-
priority queues have absolute execution privileges than the
VMs in low-priority queues. For example, in Fig. 5, although
the number of tokens in VM2 is the smallest among the VMs
in the ready queues, VM2 will be dequeued and forwarded one
batch of packets first because it has the highest priority. After
the batch processing, VM2 will be placed into the waiting
queue because it has consumed 41000 tokens and its available
tokens are negative. To ensure fairness that VMs in the same
queue have similar latency, each virtual queue in the HBS
follows first-in-first-out (FIFO) policy.

With hierarchical execution privileges, the worst latency of
VMs in each queue can be guaranteed and calculated. We
assume a case that the numbers of VMs in all 8 ready queues
are {N1, N2, N3, · · ·, N8}, respectively. The time used for one
batch processing is c. So the worst-case latency of VMs in
these queues are {N1∗c, (N1∗k1+N2)∗c, (N1∗k1+N2∗k2+
N3)∗c, ···, (N1∗k1+N2∗k2+···+N7∗k7+N8)∗c}(ki ≥ 1).
Compared with original sequential execution that each VM
equally suffers the worst

∑
Ni ∗ c latency, HBS can provide

hierarchical worst latency guarantee for VMs with different

VM2

VM3

VM6 VM5 VM1VM4

Ready queues

Priority 1

Priority 2

Waiting queue
VM2

……Priority 3
-41000 cycles

1000
cycles

CPU

Execute
one batch

6000
cycles

5000
cycles

2000
cycles

1000
cycles

10000
cycles

-40000
cycles

-3000
cycles

Fig. 5. HBS design. The IO-dedicated CPU cores always pick up the VM with
highest priority in the virtual “ready queues” to process batch I/O task. So
the traditional undifferentiated execution in polling running mode is replaced
by the “smart” hierarchical batch I/O scheduling.

requirements. Meanwhile, as C2TB guarantees available CPU
cycles/s for VMs, HBS will not cause VM starvation. That
helps CSPs formulate more flexible SLA policies based on
the tenants’ latency sensitivities.

V. IMPLEMENTATION

According to the design in Section IV, we implement the
C2QoS strategy in the OVS-DPDK platform. We modified the
PMD thread’s main loop function and used C2TB to replace
original port ingress policy, which is implemented by TCM
in DPDK [15]. For efficiency, we use the rdtsc instruction
[27] to calculate CPU consumption in the packet forwarding
procedure. In each PMD thread, the sequentially execution
running mode is replaced by HBS that finds VM with highest
priority in the ready queues to execute batch I/O processing.
The task of maintaining queues in HBS is undertaken by
another manager thread, which is woken up every 50us to
update the tokens of each VM. All of these modifications
require no more than 300 lines of code and are easy to realize.
The effectiveness and overhead of C2QoS will be evaluated
in detail in Section VI.

VI. EVALUATION

In this section, we evaluate the VM network QoS guarantee
under C2QoS and the OVS-DPDK existing “ovs-ingress-
policy” QoS strategy. The configurations here are the same
as that in Section II-B.

A. TCP bandwidth and latency

In this experiment, we use iperf [28] and qperf [19] tools
to evaluate VMs’ TCP bandwidth and latency. We launch 4
VMs with 4 Gbps, 4 Gbps, 1 Gbps, and 1 Gbps purchased
bandwidth, respectively. One dedicated CPU core is used in
OVS-DPDK for forwarding. In our benchmark setting, VM1
acts as a well-behaved tenant to send 1500-byte packets all
the time, while the other 3 VMs act as “noisy” neighbors and
send 64-byte packets from the 10th second.

In Figs. 6(a)-(b), with the ovs-ingress-policy, VM1 works
well and keeps 4 Gbps bandwidth within the first 10 seconds.
But in the last 10 seconds, due to the other 3 VMs send
small packets and “legally” compete for CPU resources, VM1
bandwidth is affected and reduced by up to 30%. As Fig. 6(b)

0 5 10 15 20
0

1

2

3

4

5
T

h
ro

u
g
h
p
u
t
(G

b
p
s
)

time (s)
 VM1 VM2 VM3 VM4

(a) Bandwidth (ovs-ingress-policy).

0 5 10 15 20
0

20

40

60

80

100

C
P

U
 u

s
a
g
e
 (

%
)

time (s)
 VM1 VM2 VM3 VM4

(b) CPU usage(ovs-ingress-policy).

0 5 10 15 20
0

1

2

3

4

5

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

time (s)
 VM1 VM2 VM3 VM4

(c) Bandwidth (C2TB).

0 5 10 15 20
0

20

40

60

80

100

C
P

U
 u

s
a
g
e
 (

%
)

time (s)
 VM1 VM2 VM3 VM4

(d) CPU usage (C2TB).

0 5 10 15 20
101

102

103

104

V
M

1
 l
a
te

n
c
y
 (

u
s
)

time (s)

 ovs_ingress_plocy C2TB C2TB+HBS

(e) VM1 TCP latency.

0 20 40 60 80 100
0

1

2

3

4

5

T
h
ro

u
g
h
p
u
t
(G

b
p
s
)

time (s)
 ovs_ingress_policy C2TB

(f) Ftp bandwidth.

1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Latency (ms)
 Native ovs_ingress_policy

 C2TB C2TB+HBS

(g) Nginx response time.

Fig. 6. Experimental results. (a)-(e) show the results of TCP bandwidth and latency. We launched 4 VMs with 4 Gbps, 4 Gbps, 1 Gbps, and 1 Gbps purchased
bandwidth respectively. (f)-(g) show the results of application performance. 2 VMs with 4 Gbps are deployed as the Ftp server, and 2 VMs with 1 Gbps are
deployed as the Nginx server. We perform a pressure test on Nginx VMs during the 30th-70th seconds.

shows, 4 VMs compete to get similar CPU resources and that
harms high weight VM1.

In C2TB, as shown in Figs.6(c)-(d), the CPU resources are
strictly allocated and isolated (VM1&2: 36%, VM3&4: 9%),
so VM1 bandwidth is stable and unaffected by other VMs’
behaviors in the last 10 seconds. But for the other 3 VMs,
they can only achieve a very low bandwidth. This is the goal
of C2TB, that only guarantees the bandwidth under specific
conditions, such as iMIX traffic characteristics. So sending
extreme traffic (small packets) will only reduce the three
“noisy” neighbors’ own bandwidth without affecting VM1.

Fig. 6(e) shows the VM1 latency tested by qperf. We can
see that compared with ovs-ingress-policy, C2TB can reduce
part of the additional latency of VM1 by skipping ports with
negative tokens. But the latency under C2TB is still unstable.
With HBS, we set VM1 to be placed in Priority 1 queue
and that ensures VM1’s forwarding tasks are always executed
first. The results show the latency of VM1 under C2TB+HBS
remains low and close to native performance.

B. Application results

To make it more practical, we consider some common
applications on the public cloud. In this experiment, 2 VMs
with 4 Gbps are deployed as Ftp servers and 2 VMs with
1 Gbps are deployed as Nginx servers. The Ftp servers send
traffic all the time, while Nginx servers bear pressure test
during 30th-70th seconds by using wrk [29]. The bandwidth of
Ftp server and response latency of Nginx server are evaluated.

The Ftp bandwidth is shown in Fig. 6(f), the Nginx servers’
traffic during 30th-70th seconds cause a bandwidth drop of
about 11% on the Ftp servers under ovs-ingress-policy, while
C2TB strictly guarantees the bandwidth of Ftp servers all the
time. For the latency in Nginx pressure test, we obtain the
request response time distribution in Fig. 6(g). Under ovs-
ingress-policy, the response time of Nginx requests is doubled
compared to native performance. When only using C2TB, 50%

additional latency is reduced by skipping ports with negative
tokens. But with C2TB+HBS, the additional latency is reduced
by more than 80% and these Nginx servers achieve almost
the native performance. Therefore, the C2QoS can ensure the
network performance of both latency-sensitive and bandwidth-
sensitive services while sharing the same physical resources.

C. Overhead

As we added a new module to vSwitch, the overhead needs
to be measured and it mainly reflects on two aspects: the
performance decrease and the additional CPU overhead. For
the first concern, in the single-VM and multi-VM experiments,
the OVS-DPDK using C2QoS strategy has no performance
drop compared with the original version. This is because the
rdtsc instruction we used to measure CPU cycles is very light
and has very little effect on forwarding performance. For the
additional CPU overhead, C2QoS only consumes 0.018% of
resources on IO-dedicated CPU cores and it will not go up
with the increase in the number of VMs. On the manager core,
2.08% of resources are used for tokens counting and queues
managing when deploying 28 VMs. So the additional CPU
overhead in C2QoS is also acceptable for cloud platforms.

VII. CONCLUSION

This paper focused on the VM network QoS and addressed
the key issue of competition on IO-dedicated CPU resources
among VMs. To solve this issue, we proposed C2QoS, consist-
ing of C2TB and HBS mechanisms. In C2TB, according to a
measurement-driven bandwidth-CPU model, we limited VM’s
bandwidth by directly assigning CPU cycles to a particular
VM. The HBS mechanism scheduled the VMs’ entire batch
I/O forwarding tasks on the IO-dedicated CPU cores and that
provided hierarchical latencies for VMs according to priorities.
The implementation on the OVS-DPDK platform showed that
C2QoS eliminated the influence of CPU resource congestion
on bandwidth and reduced effects on latency by 80%.

REFERENCES

[1] “alibabacloud.” https://www.alibabacloud.com/.
[2] “googlecloud.” https://cloud.google.com/.
[3] “azure.” https://azure.microsoft.com/.
[4] “aws.” https://aws.amazon.com/.
[5] D. Firestone, “Vfp: A virtual switch platform for host sdn in the public

cloud,” in Conf. on Networked Systems Design and Implementation,
2017.

[6] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, et al., “The design
and implementation of open vswitch.,” in Conf. on Networked Systems
Design and Implementation, 2015.

[7] M. Dalton, D. Schultz, J. Adriaens, A. Arefin, et al., “Andromeda:
Performance, isolation, and velocity at scale in cloud network virtu-
alization,” in Conf. on Networked Systems Design and Implementation,
2018.

[8] P. Kumar, N. Dukkipati, N. Lewis, et al., “Picnic: predictable virtualized
nic,” in Conf. of the ACM Special Interest Group on Data Communica-
tion, 2019.

[9] V. Addanki, L. Linguaglossa, J. Roberts, and D. Rossi, “Controlling
software router resource sharing by fair packet dropping,” in IFIP
Networking Conference and Workshops, 2018.

[10] “Data plane development kit.” https://www.dpdk.org.
[11] “Open vswitch.” http://www.openvswitch.org/.
[12] K. To, D. Firestone, G. Varghese, and J. Padhye, “Measurement based

fair queuing for allocating bandwidth to virtual machines,” in work. on
Hot topics in Middleboxes and Network Function Virtualization, 2016.

[13] F. Checconi, L. Rizzo, and P. Valente, “Qfq: Efficient packet scheduling
with tight guarantees,” IEEE/ACM Transactions on Networking, vol. 21,
no. 3, 2012.

[14] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, et al., “Pro-
grammable packet scheduling at line rate,” in Conf. of the ACM Special
Interest Group on Data Communication, 2016.

[15] “Dpdk traffic metering.” http://doc.dpdk.org/guides/prog guide/traffic
metering and policing.html.

[16] “Rfc2697(srtcm).” https://www.rfc-editor.org/rfc/rfc2697.html.
[17] “Rfc2698(trtcm).” https://www.rfc-editor.org/rfc/rfc2698.html.
[18] L. Rizzo, “netmap: A novel framework for fast packet I/O,” in USENIX

Annual Technical Conference, 2012.
[19] “qperf.” https://linux.die.net/man/1/qperf.
[20] “qdisc.” https://lwn.net/Articles/564978/.
[21] A. Saeed, N. Dukkipati, V. Valancius, et al., “Carousel: Scalable traffic

shaping at end hosts,” in Conf. of the ACM Special Interest Group on
Data Communication, 2017.

[22] A. Saeed, Y. Zhao, N. Dukkipati, E. Zegura, et al., “Eiffel: efficient and
flexible software packet scheduling,” in Conf. on Networked Systems
Design and Implementation, 2019.

[23] “What is numa.” https://www.kernel.org/doc/html/latest/vm/numa.html.
[24] “Numa locality.” https://www.kernel.org/doc/html/latest/admin-guide/

mm/numaperf.html.
[25] W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan, and T. Wood,

“Flurries: Countless fine-grained nfs for flexible per-flow customization,”
in Conf. on emerging Networking EXperiments and Technologies, 2016.

[26] J. Mace, P. Bodik, M. Musuvathi, et al., “2dfq: Two-dimensional fair
queuing for multi-tenant cloud services,” in Conf. of the ACM Special
Interest Group on Data Communication, 2016.

[27] Intel, Intel 64 and IA-32 Architectures Software Developer’s Manual,
2019.

[28] “iperf.” https://iperf.fr/.
[29] “wrk.” https://github.com/wg/wrk.

