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Abstract—Fault detection is one of the most important tasks
in information and communications technology (ICT) systems.
Unsupervised anomaly detection methods, which are based on
machine learning for fault detection in the ICT systems, use
various kinds of data such as traffic data, memory usage data,
CPU usage data, and text log data. The problem of deploying
unsupervised anomaly detection methods in real ICT systems
is that these data may have missing values. When a record
has missing values, existing unsupervised anomaly detection
ignores the records or imputes missing values with specific
values. However, both operations lead to decreased performance
of the anomaly detection methods. In this paper, we propose an
unsupervised anomaly detection method that can handle records
with missing values without imputation by using a neural network
that can process variable length inputs. We experimented with 22
benchmark datasets to evaluate the performance of the proposed
method for various kinds of data. The experimental results reveal
that the proposed method performs better than existing methods
in terms of area under the receiver operating characteristic
(AUROC) on average for two cases in which 1) neither training
nor test data include incomplete data, and 2) both training and
test data include incomplete data. Moreover, we experimented
with data from a Wi-Fi service that have missing values. The
results show that the proposed method outperformed existing
unsupervised anomaly detection methods.

Index Terms—anomaly detection, deep learning, missing data

I. INTRODUCTION

Fault detection is one of the most important tasks in the op-
eration of information and communications technology (ICT)
systems. If operators cannot notice the anomalous states of
ICT systems due to failures, large-scale faults may occur and
impact many services. Because, operators need to detect the
anomalous states by using anomaly detection methods before
serious problems appear, many anomaly detection methods
based on machine learning for detecting failures in ICT
systems have been developed in recent years [1]-[3].

In many cases for real systems, unsupervised anomaly
detection methods, which are trained with only normal data
and extract the intrinsic property of the data, are more com-
monly used, because of the lack of anomalous records and
the difficulty of defining the kinds of anomalies. Especially,
deep learning based unsupervised anomaly detection methods,
which detect anomalous records by learning the characteristics
of normal data, have been successfully used. For example,
Autoencoder (AE) [4], [5] learns the intrinsic property of
normal data by executing dimensional compression in latent
layers so that the output is close to the input. Some studies
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have used an AE based anomaly detection method to detect
anomalous states of ICT systems [6], [7].

To detect anomalies in ICT systems, unsupervised anomaly
detection methods based on machine learning use various
kinds of data such as traffic data, memory usage data, central
processing unit (CPU) usage data, and text log data. These
methods require that no records have missing values. On the
other hand, records having missing values may be mixed in
datasets from ICT systems for various reasons such as system
maintenance, the absence of traffic by chance, or errors in col-
lecting information about the state of each network instrument
due to faults in monitoring equipment or applications. In this
case, these records with missing values have to be ignored
or imputed with estimated values in a specific way. Ignoring
records with missing values causes the anomalous records to
be overlooked for two reasons: an anomaly detection model
is not trained enough due to the shortage of training records
and anomalous test records with missing values are ignored
in the detection phase. Imputing missing values in estimated
values in a specific way distorts the intrinsic property of
training data, which leads to decreased performance, because
estimated values do not consider the ICT system status that
makes records of missing values for the reasons above.

We propose a new deep learning based unsupervised
anomaly detection method that uses only existing values in
incomplete records. The AE based anomaly detection method
cannot use incomplete records without imputation, because AE
is composed of neural networks, whose encoder requires the
dimension of input data to be fixed. In the proposed method, to
overcome missing values, we represent a record by a set of the
combination of a non-missing value and the index of the value,
instead of representing a vector as usual. More specifically,
the proposed method is constructed with set transformers [8],
which enables us to handle a variable number of non-missing
attributes, and is trained to minimize the reconstruction error of
non-missing values of normal records in the same way as AE.
The reconstructions of the existing values are then outputted.
In the detection phase, the reconstruction error of each record
is calculated as the anomaly score of the record.

We experimented with 22 benchmark datasets to evaluate
the usefulness of the proposed method for various kinds of
data and found that the proposed method performs better
than existing methods in terms of area under the receiver
operating characteristic (AUROC) on average for two cases
in which 1) neither training nor test data include incomplete



data, and 2) both training and test data include incomplete data.
Moreover, we experimented with data from a Wi-Fi service
that have missing values. The results reveal that the proposed
method generates fewer false alerts than existing unsupervised
anomaly detection methods.

II. RELATED WORKS

In this section, we review existing methods for unsupervised
anomaly detection and missing data processing.

A. Unsupervised anomaly detection

Anomaly detection methods such as Local Outlier Factor
(LOF) [9], One Class Support Vector Machine (OCSVM)
[10], and Isolation Forest (IF) [11] has been extensively
studied. AE is one of the most widely used unsupervised
anomaly detection methods based on deep learning. Denoising
Autoencoder (DAE) [12], which is a derivative of AE, is
also used for anomaly detection. Since DAE is trained to
reconstruct original data from the data synthesized by adding
noise, it can train a robust model from noisy data. However,
all the above methods require that all records have no missing
values in either the training or evaluation phase. Therefore,
if missing data are used for anomaly detection, the missing
attributes have to be filled with some values.

B. Processing missing data

Many methods have also been developed for processing
missing data. The simplest methods involve filling each miss-
ing attribute with a single value using the mean of all data
values or near data point values with k-nearest neighbors [13].
A regression model using existing attributes is also used to fill
each missing attribute with a single value. However, filling a
missing attribute with a single value shifts the distribution of
data and decreases the variance of data. The multiple imputa-
tion method (MICE) [14], with which a model is trained with
the data in which the missing attributes are filled with different
values is better than the imputation of a missing attribute with
a single value. Furthermore, there are also methods for filling
missing values by using, for example, a deep learning model,
such as a context encoder [15] and a generative adversarial
network [16] based on adversarial learning. These methods
can estimate values close to true values with a deep learning
model. However, there is a computational cost for training
deep learning models for estimating missing values.

Unlike the above methods, the full information maximum
likelihood method (FIML) [17] uses incomplete records with-
out imputation for updating only the likelihood model pa-
rameters related to the existing values in the training phase.
With FIML, it is hypothesized that each likelihood model
parameter is related to some attributes of input data. However,
the parameters can be related to all attributes of input data
with the proposed method. Therefore, our method can learn
the complicated relationship between the attributes.

III. PROPOSED METHOD

To overcome missing values without using imputations, we
build a method with an encoder-decoder model using deep
learning models for sets to handle records represented by
sets with variable sizes. In this section, first, we introduce
the properties of deep learning models for sets. Second, we
explain our problem formulation of anomaly detection with
missing values. Third, we introduce a set transformer that
constitutes the proposed deep learning model. Finally, we
detail the encoder and decoder of the proposed method.

A. Deep learning model for sets

We introduce the properties of deep learning models for
sets, since the proposed method handles values of non-missing
attributes as a set. According to Zaheer et al. [18], deep
learning models for sets require the permutation invariant or
permutation equivariant property because sets do not have the
information about the order of the elements. Since we use the
permutation equivariant property in the proposed method, we
introduce the definition of the permutation equivariant prop-
erty. The following equation holds for models f(-) satisfying
the permutation equivariant property,

W(f({xlv BER) l‘n})) = f({xﬂ'(l)7 cee 7x7r(n)})7 (1)

where 7(+) is a permutation function and X = {z1,...,2,}
is a set. Zaheer et al. [18] proposed deep sets, which is a
deep learning model for sets preserving permutation invariant
or equivariant property.

B. Unsupervised anomaly detection with missing data

Next, we represent a record with missing values by a set as
follows, U, = {(Zmn, rmn)}f:f;”l, where 7,,,,, is the attribute
index of the n-th non-missing value in the m-th record, x,,
is its observed value, and [V, is the number of non-missing
attributes in the m-th record. The number of non-missing
values can differ across records. Suppose that we are given
a set of normal data with missing values U = {u,, }_,.
Our task is to learn an anomaly score function that can detect
anomalies in the test data using a given set U.

Since the proposed method is built with an encoder-
decoder model using deep learning models for sets to handle
records represented by sets with a variable size, an en-
coder transforms set w,, = {(Tm1,7n1),-- s (Tmn,,, 'mN,, )}
into latent representation Z,,. Then, a decoder calculates
the set of values for the non-missing attribute, u,, =
{(Zm1,7n1), -+, (&mn,,,Tmn,, )}, where &, is the recon-
struction of the n-th non-missing attribute. The encoder-
decoder function must be permutation equivariant since when
elements in input set w,, are permutated, the elements in
output set u,, need to be permutated in the same way so that
non-missing attribute indices r,,,, correspond between u,,, and
U,,. When a permutation equivalent function is used, we only
need to reconstruct the set of values for non-missing attributes,
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w, Z, = SAB(Y,)

T
rFF(SAB(MAB(S,,, Z,)))

Fig. 1. Overview of proposed method. The broken-line circles represent
missing values. The proposed method calculates the set of the non-missing
values &, in the m-th record from the set of the non-missing values a,
and the embedding vectors in W, and Sy, corresponding to the non-missing
values in the m-th record with the permutation equivariant models.

The encoder and decoder are trained by minimizing the
following reconstruction errors over the given records,

E(u):ifjigf(x — &mn)” 2)
M — Nm —~ mn mn )

where we used the squared error assuming the observed values
are continuous. We can use other metrics for the reconstruction
error, such as cross-entropy loss when the observed values are
categorical.

In the detection phase, the reconstruction error
N—lm ij;”l(xmn — &mn)? for each record is used for its
anomaly score. The overview of the proposed method is

shown in Figure 1.

C. Set transformer

For our encoder-decoder model, we decided to use a set
transformer [8] to minimize the reconstruction error in eq.
(2). Before explaining the details of the proposed model, we
describe the properties of a set transformer. Lee et al. [§]
used the transformer [19] as a kind of attention mechanism
to construct a deep learning model preserving the permutation
equivariant property. The deep learning model is called a
Multihead Attention Block (MAB) and shown as follow,

Z = MAB(X,Y), 3)

where X,Y,Z € R™¥¢ are sets of n elements of d-
dimensional vectors represented as matrices. The MAB cal-
culates the relationship between the elements of X and
that of Y with attention mechanisms. The permutation of
elements corresponds to that of rows of the matrices. The
relationship between the input X and the output Z preserves
the permutation equivariant property and Z does not depend

on the permutation of the elements of Y. Lee et al. [8] also
define the Set Attention Block (SAB) as follows,

SAB(X) = MAB(X, X). 4)
The SAB calculates self-attention for X.

D. Details of proposed model

We explain the encoder, decoder, and property of our
proposed model.

1) Encoder: The encoder of the proposed method needs to
be able to handle sets with variable sizes. We use a transformer
for the encoder to effectively encode the information in the
given record with missing values.

We assume an embedding vector for each attribute. Let
w,; € RP be the embedding vector of the ¢-th attribute. Then,
each element in the input set (Z,,n,7mn) is represented by
the multiplication of the value and its attribute’s embedding
vector:

Ymn = Wr,,,. Tmn- (5)

The representations for all elements are written in a matrix
form, Y, = [Ym1,- - Ymn,, | € RV=*P By using a SAB,
representations Y, are encoded:

Z, = SAB(Y,,). (6)

The encoder satisfies the permutation equivariant property for
the order of the elements of Y,,,, that is the row of the matrix
Y,,. The output Z,, is also handled as a matrix Z,, € RVmxP
in the decoder.

2) Decoder: We make the encoder-decoder permutation
equivalent function by inputting non-missing value indices
{mn N into the decoder. As in the same way with the
encoder, we assume an embedding vector for each attribute
for the decoder. Let s; € R be the embedding vector of
the i-th attribute for the decoder. The embedding vectors for
all non-missing attributes in the m-th record are written in
a matrix form, S,, [Smrpys-- ]T € RNmxD
by aligning with non-missing value indices {r,} ™. We
decode latent representation Z,, using embedding matrix S,
with the following procedure. First, the embedding matrix S,
is transformed by a MAB into latent representation Z,,:

5 SmrmN,,

S,, = MAB(Sy, Zm), (7)

where the number of rows in S, is N,,. By this transfor-
mation, encoded information for each non-missing attribute is
obtained in each row of S/ . Then, we reconstruct the non-
missing values by

& = 1FF(SAB(S),), (8)

where the rFF means a row-wise feedforward network, which
processes each row of SAB(S],) identically and indepen-
dently and #®, = {&m1,.-.,%mn,, }. Using a SAB and
row-wise feedforward network, we can learn the interaction
between attributes, and their nonlinear relationship.



3) Property of proposed method: Our encoder-decoder
function satisfies the permutation equivariant property for the
order of the elements of w,,. Therefore, the proposed method
satisfies the requirement for a deep learning model for sets
and handles variable length records, that is, records with
missing values. Although the proposed method minimizes the
reconstruction error to obtain the characteristics of normal data
in the middle of the model as AE does, the proposed method
obtains the characteristics by not using dimensional reduction
but the attention mechanisms to satisfy the permutation equiv-
ariant property.

IV. EXPERIMENTS

We experimented with 22 benchmark datasets and Wi-Fi
service data.

A. Benchmark datasets

We conducted two experiments using two different missing
datasets. The first experiment involved complete data without
missing values. The second experiment involved both training
and test data including missing values. In the second experi-
ment, we used the original labels, which determine whether an
incomplete test record including missing values is normal or
an anomaly. The rate of the missing attributes of each training
and test record was fixed to 0.2. This is because if the rate of
the missing attributes is too large, the original labels become
meaningless.

1) Data: We evaluated anomaly detection methods includ-
ing the proposed method with 22 benchmark datasets [20]
used for unsupervised outlier detection'. Each attribute was
normalized to the range of [0, 1]. We used 80 % of the normal
records as training data, 10% as validation data, and the other
10%, and all the anomalous records as test data. The validation
data were used for determining the number of epochs in the
training phase for deep learning based methods. We used
AUROC:s of test data as the evaluation metric and then discuss
the average AUROCS of each dataset and all datasets for five
sets in Section IV-A3.

Some values in the records were deleted artificially. We
chose the missing completely at random setting [21]. In the
second experiment, floor(0.2n) attributes in each record were
randomly chosen and the values were deleted, where n is
the number of attributes and floor(-) is a floor function. With
the proposed method, we do not impute missing values and
uses only non-missing values in records. In the comparison
methods, we complemented the missing values with two
methods: mean and MICE. Mean means that missing values
were complemented with the means of existing values for
each attribute. MICE was introduced in Section II-B. We used
scikit-learn 0.23 [22] for the mean and MICE imputation.

2) Comparison methods for anomaly detection: The com-
parison methods were LOF, OCSVM, IF, AE, and DAE.

With LOF, a record is determined to be normal or an
anomaly on the basis of the ratio of the local density of the

IThese datasets are available at https://www.dbs.ifi.Imu.de/research/outlier-
evaluation/DAMI/ along with the detailed information of each dataset.

record to that of the neighboring records. We set the number
of neighboring points to 1, 3, 5, 15, and 35. Section IV-A3
presents the highest results among the above parameters.
Parameters of the below methods were selected in the same
manner as LOF.

OCSVM is an expansion of the SVM for unlabeled datasets.
We used the radial basis function (RBF) kernel and set the
kernel hyperparameter to 1073,1072,107!, and 1.

IF is a random forest method. We set the number of decision
trees to 1, 5, 10, 20, and 30.

AE is a deep learning based unsupervised anomaly de-
tection method. The number of hidden layers was set to 3,
and rectified linear unit (ReLU) functions were used as the
activation functions between layers. We set the ratio of the
number of each hidden layer to that of the dimensions of input
to {0.75,0.5,0.75} and {0.5,0.25,0.5}. In the training phase,
the AE models were optimized with Adam [23].

DAE is an expansion of AE. In the training phase of DAE,
the training records plus random noise are input for an AE
model. Random noise was generated from the Gaussian where
the mean was 0 and variance was 0.1. Other hyperparameters
were the same as those for AE.

With the proposed method, the number of dimensions of
each element of the input D was set to 128. ReLU functions
were used as the activation function. In the training phase, the
models of the proposed method were optimized with Adam
[23].

We built the models of LOF, OCSVM, and IF with the
package of scikit-learn 0.23 [22] and those of AE, DAE, and
the proposed method with pytorch 1.4.0 [24].

3) Results: Table I lists the AUROCs with the complete
datasets. The AUROCS of the proposed method were the best
for 13 datasets and statistically highest for 18 datasets except
for ALOI, Cardiotocograph, Pima, and SpamBase. These
results indicate that the proposed method can perform better
than conventional unsupervised anomaly detection methods in
many cases.

Table III lists the AUROCS in the second experiment, in
which incomplete data were used. The average AUROCs of
the proposed method were also the highest. In the second
experiment, the AUROCs of the proposed method were also
the best for 10 datasets and statistically highest for 17 datasets
among 11 methods. Table III shows that the proposed method
achieved the best results for the highest number of datasets,
even when there were missing records in the training and
test datasets. These results indicate that the proposed method
can use incomplete data without imputing missing values for
training a model and detecting anomalous records.

B. Wi-Fi dataset

We show the results of experiments with the Wi-Fi dataset.
1) Data: The data were collected from an actual Wi-Fi
service between February 1, 2018, and July 20, 2019, and
include five attributes: association log, 2.4 GHz up, 2.4 GHz
down, 5 GHz up, and 5 GHz down. The details of each
attribute are shown in Table II. Each record in the data was



generated every hour, and the data have 12,840 records. The
five attributes have 33, 19, 19, 19, and 19 missing values,
respectively. The reason these values were lost is not known.

We used 7,272 records from February 1, 2018, to November
30, 2018, as training data, 1,488 records from December
1, 2018, to January 31, 2019, as validation data, and 4,080
records from February 1, 2019, to July 20, 2019, as test data.
The Wi-Fi service had a problem, and the traffic volume on the
service decreased from March 23 to 26, 2019, which was part
of the test period. In this experiment, we defined the records
in the period as anomaly ones and other records as normal
ones.

2) Exoerimental settings: The comparison methods were
LOF, OCSVM, IF, AE, and DAE. Since the variance of
the four attributes except the association log is large, these
attributes were log-transformed. Then, all attributes were nor-
malized to fit into the 0-1 range. In LOF, OCSVM, and IF
experiments, the reversed outputs of the decision_function
[22] were defined as the anomaly scores of input data. In
the experiments with the proposed method, the reconstruction
errors were defined as the anomaly score of input data. The
anomaly score of each test record was normalized using those
of the validation records. We also used mean and MICE
methods to fill the missing values to input records including
missing attributes into comparison methods.

The settings of the comparison methods in this experiment
are described below. In LOF, the number of neighboring points
was set to 35. In OCSVM, the RBF kernel was used and
the hyperparameter of the kernel was set to 10~!. In IF, the
number of decision trees was set to 30. In AE and DAE, the
number of hidden layers was set to three, and ReLU functions
were used as the activation functions between layers. We set
the number of nodes of each hidden layer to {4, 3,4}. Random
noise was generated from the Gaussian where the mean was
0 and variance was 0.1, for adding to input data in DAE.
With the proposed method, the number of dimensions of each
element of the input D was set to 32. ReLU functions were
used as the activation functions. In the training phase, the
models of both the proposed method and AE were optimized
with Adam [23].

3) Results: Fig. 2 shows the anomaly score of test data with
the comparison methods. All graphs show a peak derived from
the anomalous records generated from March 23 to 26, 2019.
The peak derived from the anomalous data is prominent in the
graphs of LOF and the proposed method in Fig. 2. However,
there are low anomaly score points in the peak of anomalous
records in the graph of LOF. Many other peaks are shown,
and the peaks derived from anomalous records are buried in
the graph of the other four methods in Fig. 2.

For a quantitative discussion, the precision of the results
for the proposed and comparison methods was calculated in
the case of all anomalous records being detected, which is the
case of recall = 1. The results are shown in Table IV. The
number of false alerts is important for the operators of ICT
systems because a large number of false alerts unnecessarily
burdens the operators. The results show the proposed method

LOF OCSVM IF AE  DAE  Proposed
ALOI 0.657 0515 0.511 0.554 0557 0.563
Annthyroid 0.624 0.482  0.606 0.601 0.593 0.650
Arrhythmia 0.654 0.697 0.700 0.763  0.762 0.770
Cardiotocograph  0.705 0.724  0.651 0.747 0.764 0.701
Glass 0.749 0.524  0.608 0.689 0.724 0.924
HeartDisease 0.539 0.653 0.716 0.761 0.737 0.748
Hepatitis 0.693 0.554  0.599 0.710 0.734 0.780
Ionosphere 0.872 0.753  0.788  0.962  0.961 0.963
KDDCu99 0.874 0944 0932 0993 0.993 0.994
Lymphography 0.960 0.933  0.937 0998 0.989 0.993
PageBlocks 0.847 0.804 0.820 0.908 0.908 0.948
Parkinson 0.719 0815 0.771 0.820 0.812 0.948
PenDigits 0.925 0.448 0.559 0.793  0.826 0.902
Pima 0.550 0.550 0.586  0.703  0.686 0.645
Shuttle 0.944 0522 0.598 0.761  0.745 0.993
SpamBase 0.615 0.507 0.722  0.770  0.768 0.712
Stamps 0.848 0.639 0.906 0.826 0.839 0.919
WBC 0.778 0921 0977 0958 0.945 0.982
WDBC 0.833 0.844 0.844 0.892 0.875 0.883
WPBC 0.461 0.507 0.494 0.528 0.561 0.506
Waveform 0.676 0.510 0.566 0.673  0.680 0.627
Wilt 0.494 0.483 0463 0324 0347 0.919
average 0.728 0.651 0.698 0.761 0.764 0.821

TABLE I

AUROCS ON 22 COMPLETE DATASETS BY USING UNSUPERVISED
ANOMALY DETECTION METHODS (LOF, OCSVM, IF, AE, DAE AND
PROPOSED METHOD). BOLD VALUES MEAN THAT THE VALUES ARE NOT
STATISTICALLY DIFFERENT FROM THE BEST RESULT AMONG THE
ANOMALY DETECTION METHODS WITH A T-TEST (P-VALUE = 0.05).

Attribute name | Explanation Number of
missing values
Association log | Number of times devices were 33
connected to the access point
2.4 GHz up Traffic volume uploaded 33
on 2.4 GHz band
2.4 GHz down Traffic volume downloaded 19
on 2.4 GHz band
5 GHz up Traffic volume uploaded 19
on 5 GHz band
5 GHz down Traffic volume downloaded 19
on 5 GHz band

TABLE I
DATASET DETAILS

has better precision than the comparison methods. Specifically,
false alerts account for only 2 % of total alerts in the proposed
method, but about 30 % to 40 % of total alerts in other
anomaly detection methods.

V. CONCLUSIONS

We proposed a new unsupervised anomaly detection method
to handle missing data in ICT systems. Since in the pro-
posed method, a deep learning model for sets with attention
mechanisms handles a record as the combination of a set of
non-missing values and a set of embedding vectors of non-
missing attributes, the proposed method can be processed
without compensating for missing data, unlike conventional
unsupervised anomaly detection methods based on deep learn-
ing. We conducted anomaly detection experiments using 22
complete and incomplete benchmark datasets and data from
a Wi-Fi service having missing values. These experimental
results revealed that the proposed method outperforms other
anomaly detection methods.



LOF OCSVM IF AE DAE proposed

mean MICE mean MICE mean MICE mean MICE mean MICE
ALOI 0.580  0.604 0.514 0.514 0510 0510 0.541 0.546  0.541 0.548 0.548
Annthyroid 0.599 0.633 0.479 0483 0.590 0.583 0.607 0.642 0.615 0.646 0.653
Arrhythmia 0.652 0.667 0.690 0.702  0.679 0.675  0.759 0.747  0.755 0.752 0.761
Cardiotocograph  0.693 0.711 0.710 0.708  0.658 0.649  0.765 0.650  0.752 0.647 0.668
Glass 0.546 0.695 0.525 0.537 0.602 0.613 0.695 0.757 0.710 0.770 0.851
HeartDisease 0.551 0.558 0.646 0.659 0.740 0.713  0.755 0.800  0.790 0.738 0.806
Hepatitis 0.618 0.426 0.557 0577 0.622  0.613 0.732 0.774  0.800 0.763 0.763
Tonosphere 0.895 0.850 0.726 0.788 0.736  0.811  0.920 0.959 0.922 0.957 0.955
KDDCu99 0.816 0.753 0.929 0.934  0.888 0.939  0.989 0.987  0.988 0.987 0.990
Lymphography 0.927 0.847 0.903 0.887  0.893 0.943 0991 0.984 0.998 0.980 0.958
PageBlocks 0.765 0.752 0.769 0.796  0.794  0.797  0.886 0.918 0.883 0.922 0.919
Parkinson 0.733 0.772 0.748 0.750  0.717 0.750  0.802 0.855 0.839 0.803 0.865
PenDigits 0.814  0.867 0.447 0463  0.458 0.524  0.739 0.796  0.724 0.795 0.749
Pima 0.575 0.580 0.548 0.535 0.584  0.588  0.698 0.673 0.679 0.664 0.667
Shuttle 0.895 0.905 0.517 0.507  0.595 0.614  0.776 0.879 0.783 0.896 0.956
SpamBase 0.648 0.670 0.510 0.514 0.726  0.720 0.723 0.800 0.728 0.788 0.716
Stamps 0.794 0.823 0.626 0.629  0.839 0.865 0.882 0.878  0.892 0.877 0.927
WBC 0.868 0.625 0.930 0925 0964 0964 0.972 0.963  0.967 0.941 0.979
WDBC 0.842 0.834 0.831 0.836 0.836  0.839 0.886 0.894 0.887 0.903 0.897
WPBC 0.486 0.485 0.470 0.501 0.478 0.488  0.564 0.505  0.576 0.478 0.520
Waveform 0.599 0.640 0.513 0.511 0542  0.567 0.631 0.517  0.695 0.519 0.591
Wilt 0.486 0.598 0.484 0.535 0.462 0.492  0.366 0.494  0.378 0.510 0.691
average 0.699 0.695 0.640 0.649  0.678 0.694  0.758 0.774  0.768 0.768 0.792
TABLE III

AUROCS ON 22 DATASETS WITH ALL INCOMPLETE RECORDS BY USING UNSUPERVISED ANOMALY DETECTION METHODS.
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Fig. 2. Anomaly score by using unsupervised anomaly detection methods (LOF, OCSVM, IF, AE, DAE and proposed method). The five methods except the
proposed method use MICE to fill missing values.

LOF OCSVM IF AE DAE proposed
mean MICE mean MICE mean MICE mean MICE mean MICE
Precision  0.138 0.692 0.628 0.692  0.701 0.701  0.701 0.701  0.651 0.651 0.982
TABLE IV

PRECISION BY USING UNSUPERVISED ANOMALY DETECTION METHODS (LOF, OCSVM, IF, AE, DAE AND PROPOSED METHOD). IN THIS EXPERIMENT,
WE FIXED RECALL = 1.
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