
The Horizontal INR Conflict-Detection Algorithm:
Revealing INR Reallocation and Reauthorization in

RPKI*
Hui Zou

Computer Network Information Center, Chinese Academy of Sciences
University of Chinese Academy of Sciences

ZDNS Corporation
Beijing, China

zouhui@cnic.cn

Di Ma, Qing Shao, Wei Mao
Computer Network Information Center,

Chinese Academy of Sciences
ZDNS Corporation

Beijing, China
madi, shaoqing, mao@zdns.cn

Abstract—Resource Public Key Infrastructure (RPKI) is a
promising security enhancement to the Border Gateway Protocol,
but it only requires the relying party (RP) to validate Internet
Number Resource (INR) allocation or authorization relationships
expressed in parent-child certificate pairs vertically. Therefore,
conflicts in INR allocation and authorization may exist because of
the limitations of the validation procedure of the RP software, in
other words, certification authority malfunctions in issuing RPKI
objects within a publication point cannot be detected by the RP.
We develop a model of such conflicts and propose a horizontal
INR conflict-detection algorithm with acceptable build time and
query time. The proposed algorithm was tested on real-world
RPKI data to identify actual and potential INR conflicts and
its accurateness has been tried to be evaluated. This paper also
discusses the deployment issues and the accuracy dependence
about our algorithm design.

Index Terms—BGP, RPKI, INR conflict

I. INTRODUCTION

Although it is the de-facto inter-domain routing protocol,
the Border Gateway Protocol (BGP) was designed without
considering security. Any autonomous system (AS) can hijack
destinations by advertising IP prefixes it does not control,
resulting in prefix and sub-prefix hijacks. The Resource Public
Key Infrastructure (RPKI) [1] provides a trusted mapping from
Internet Number Resources (INRs), such as IP prefixes and
autonomous system numbers (ASNs), to their holder by bind-
ing a public key and these resources in a resource certificate
(RC). Thus, INR holders can make verifiable statements to
confirm that they are authorizing autonomous systems (ASes)
to originate routes for IP prefixes in BGP by binding them in
route origin authorizations (ROAs), thereby preventing such
attacks.

RPKI mirrors the IP address allocation hierarchy. Regional
Internet Registries (RIRs) are trust anchors (TAs), allocating
IP prefixes to Local Internet Registries (LIRs) or Internet
Service Providers (ISPs). The LIRs or ISPs then allocate sub-
prefixes to other ISPs or customers, who can then further
authorize them to ASes. Accordingly, the relying party (RP)

software validates INR-encompassing relationships between a
certification authority (CA) and its subordinate CAs and/or
issued ROAs [2] [3], which requires that a CA can only
allocate or authorize INRs allocated by its superior CA.

While RPKI eliminates risks for inter-domain routing sys-
tem due to the lack of security mechanisms in BGP, it may
introduce new ones from CA malfunctions in ROAs and RCs.
Previous studies [4] [5] [6] have highlighted that it is techni-
cally feasible for a CA to allocate the same INRs to different
customers (INR reallocation), allocate unauthorized INRs to
customers (illegally INR allocation), and authorize INRs that
are reserved or already allocated (INR reauthorization). To this
end, Liu et al. [7] proposed and implemented a pre-control
mechanism to ensure the security and accuracy of resource
allocation information. In particular, as the scope of certifi-
cation of each TA expands from current holding resources
to all resources, the risk of cross-RIR INR reallocation also
increases. CA malfunctions will lead to INR conflicts [8],
making prefix hijackings legitimate and networks unreachable,
thereby adversely affecting BGP routing. However, the fact
that the INR allocation relationships expressed in RCs are
not used to guide inter-domain routing directly and the AS0
mechanism is not widely deployed, which together result in
these potential conflicts not being taken seriously.

With the proposal of different types of RPKI-based appli-
cations (e.g. Resource Tagged Attestations (RTA) [9]) and the
support of the AS0 mechanism by trust anchors, the problems
caused by INR conflicts will become increasingly prominent
and will no longer be limited to the inter-domain routing
system. In addition, real-time detection and early-warning
mechanism are of great significance to avoid attacks. However,
except for unauthorized INR allocation, other INR conflicts
cannot be detected by RPs. This limitation can be attributed to
the fact that RP only validates INR encompassing relationships
for parent-child certificate pairs vertically, which is referred
to as the vertical INR conflict-detection algorithm (vertical
algorithm) in this study.

To mitigate risks from RPKI, an RP should be able to detect978-3-903176-32-4 © 2021 IFIP



Fig. 1. Vertical Algorithm vs. Horizontal Algorithm

all CA malfunctions in RCs and ROAs. To this end, we pro-
pose a horizontal INR conflict-detection algorithm (horizontal
algorithm), which is the supplement to the vertical algorithm.
The horizontal algorithm aims to detect INR reallocations
and INR reauthorizations under the premise of legal INR
allocations, which is guaranteed by the vertical algorithm.
Fig. 1 depicts the differences between the vertical algorithm
and the horizontal algorithm, where the former checks INR
encompassing relationship for each parent-child certificate
pair (e.g. RC B and RC C, RC B and an EE certificate
embedded in the AS0 ROA ) to reveal illegal INR allocation
and authorization (INR conflict A), and the latter checks the
existence of the last five types of INR conflicts defined in
Section 2 between RCs and ROAs issued by the same INR
holder (e.g. all RCs and ROAs issued by RC B). In summary,
the main contributions of this study are as follows:

• We first introduce three basic concepts based on the INR
usage specification: authorizable prefix set, allocatable
prefix set, and non-routed prefix set, and also define rules
for them.

• We develop the INR conflict model, which contains six
different types of INR conflicts covering all possible CA
malfunctions. These INR conflicts are divided into two
categories: INR allocation conflicts and INR authoriza-
tion conflicts.

• We propose the horizontal INR conflict-detection al-
gorithm, which works as a supplement to the vertical
algorithm, to detect more INR conflicts. This study is the
first of its kind to reveal CA malfunctions by adopting
an “after-control” mechanism.

• Numerical results demonstrate the feasibility of our pro-
posed algorithm, as the build time and query time are
within an acceptable range. Moreover, four types of INR
conflicts (three actual and one potential) are revealed in
the current RPKI deployment.

II. THE INR CONFLICTS

A. Basic Concepts

The entire IP address space can be organized into a binary
tree, in which each non-leaf node has two child nodes,
indicating that each prefix has two child prefixes. Each leaf
node represents a prefix that contains a single IP address.
As shown in Fig. 2(a), the child prefixes of P are p12 and
p34; accordingly, P is the parent of p12 and p34. Similarly,
the child prefixes of p12 are p1 and p2 , and the child

prefixes of p34 are p3 and p4. Furthermore, p1, p2, p3, p4,
p12, and p34 are collectively defined as sub-prefixes of P .
In this study, the set of all sub-prefixes of P is defined as
PrefixSET (P ). Thus, in the example in Fig. 2, p1, p2, p3, p4,
p12, p34, P ∈ PrefixSET (P ). In addition, ASN represents
all autonomous system numbers, and all IP prefixes can be
written as PREFIX.

The following example is used throughout this study. We
suppose that the INR holder (Alice) has obtained INRs from
an ISP or an RIR, and divides it into four disjoint sub-spaces
p1, p2, p3, and p4, where p1 ∪ p2 ∪ p3 ∪ p4 = P , and p1 ∩
p2 ∩ p3 ∩ p4 = ∅. The different usages of these sub-spaces
together define the usage strategy for P , where p1 is used for
numbering hosts of her network, p2 is reserved for future use,
and p3 and p4 are allocated to her customers.

1) INR Usage Specification: For each IP address space
identified by an IP prefix, there are three usage scenarios as
follows:

1) Alice uses it herself;
2) Alice reserves it for future use;
3) Alice allocates it to her customers.

Furthermore, Alice has corresponding operations in RPKI as
follows:

1) issuing an ASX ROA (X 6= 0) for INRs she uses herself
and certifying “right of use” of these INRs;

2) issuing an AS0 ROA for INRs reserved for future use,
indicating these INRs should not be advertised in the
inter-domain routing system;

3) issuing RCs for INRs allocated to her customers and
certifying ownership of INRs.

The INR holder can apply one or more of these scenarios to
the entire address space or sub-spaces of the IP prefix.

2) Authorizable Prefix Set: It should be noted that there
is no strict correspondence between holding IP prefixes and
advertising IP prefixes. As shown in Fig. 2(b), in addition
to the IP prefix P , Alice can also advertise its sub-prefixes,
including p12, p34, p1, and all sub-prefixes of p1. Sub-
prefixes she uses herself can be authorized to ASX(X 6=0) by
issuing ROAs to originate in BGP. This can be described
as: AUSET (P ) = PrefixSET (P ) − PrefixSET (p2) −
PrefixSET (p3)− PrefixSET (p4), where AUSET (P ) is the
authorizable prefix set of P .

3) Allocatable Prefix Set: According to the above example,
we know that p3, p4, and all their sub-prefixes have been
allocated to Alice’s customers. How to use the sub-prefixes
of p3 and p4 is determined by the customers themselves, and
Alice must not advertise them for her own use. For each IP
prefix P owned by the INR holder, the sub-prefixes allocated
to her customers are defined as elements of the allocatable
prefix set ALSET (P ) .

4) Non-routed Prefix Set: AS0 ROA is a mechanism for
INR holders to express their negative intent toward what
should not be seen and accepted in the context of BGP routing.
Alice can issue an AS0 ROA for her reserved IP prefix p2 to
lock on it. Thus, BGP Speakers can reject BGP announcements



whose IP prefix equals p2 if AS0 is the only origin AS for
it. For each IP prefix P owned by the INR holder, those sub-
prefixes reserved for future use belong to the non-routed prefix
set NRSET (P ).

5) Rules:
• For any IP prefix P owned by the INR holder,

AUSET (P ) ∪ ALSET (P ) ∪ NRSET (P ) =
PrefixSET (P ) and AUSET (P ) ∩ ALSET (P ) ∩
NRSET (P ) = ∅.

• Any IP prefix p ∈ AUSET (P ) can be authorized to
multiple ASes but not to AS0.

• Any IP prefix p ∈ ALSET (P ) can be allocated to only
one customer.

• Any IP prefix p ∈ NRSET (P ) can only be authorized to
AS0.

Fig. 2. Prefix(P) and three types of prefix sets

B. INR Allocation Conflict

A CA may accidentally or maliciously allocate the same set
of IP prefixes to different customers or allocate INRs it does
not own. The feasibility of such INR allocation conflicts was
previously confirmed by [4]. It is important to note that RPKI
follows the “make-before-break” rule to ensure the effective
transfer of IP addresses, and this type of INR conflict is
regarded as legal. With the increase of TA certificates in INRs,
the risk of cross-RIR INR allocation conflicts also increases.
When an INR allocation conflict occurs among INR holders
(not RIRs themselves) belonging to different RIRs, it can
be confirmed that the cross-RIR INR allocation conflict has
occurred according to the top-down allocation structure of
IP prefixes. To summarize, the three types of INR allocation
conflicts, referred to as “INR reallocations” in this study, are:

1) INR conflict A: The CA allocates/authorizes INRs
that are not allocated by its superior CA to its cus-
tomers/ROAs. This may result in conflicting INRs in
two or more RCs whose issuers are different;

2) INR conflict B: Two or more TAs allocate the same INRs
to their customers. This results in conflicting INRs in
RCs whose issuers are different;

3) INR conflict C: The CA which is not a TA allocates the
same INRs to its customers. This results in conflicting
INRs in RCs whose issuers are the same.

Although conflict A is included in the INR conflict model,
it is not within the detection scope of the horizontal algorithm.

The reason is that this type of conflict can be filtered out by the
vertical algorithm, ensuring that RCs and ROAs that dissatisfy
the INR encompassing relationship are not taken as inputs of
the horizontal algorithm.

C. INR Authorization Conflict

Owing to the requirement of fine-grained traffic flow con-
trol, RPKI provides a way for a CA to authorize an IP prefix
and its more specific prefixes together in a ROA using the
maxLength attribute. In addition, multiple ROAs can exist
with different origin ASes for the same set of IP prefixes
to effectively implement traffic engineering, multi-homing,
and resource transfer. Ideally, INR holders only authorize IP
prefixes in its authorizable prefix sets. However, in practice,
maxLength misconfigurations [10] could result in INR con-
flicts in the form of reauthorization of INRs.

AS0 ROA [11] is a type of ROA with the AS value equaling
zero. For an AS0 ROA, prefixes described in this ROA, and
any more specific prefixes, should not be used in inter-domain
routing system. RPKI allows concurrent issuance of AS0
ROAs and ASX ROAs(X6=0) for the same set of IP prefixes,
and the former is used as a default setting to “lock” IP prefixes
to prevent them from being illegally broadcast by attackers.
However, opposite routing intents for the same set of INRs
may lead to potential inconsistency in the validity of BGP
announcements.

Up to now, APNIC [12], RIPE NCC [13] and AFRINIC
[14] have published AS0 ROAs covering the undelegated IPv4
and IPv6 spaces under their management, and supported the
AS0 ROA creation service for their customers. With the global
deployment of RPKI, the number of AS0 ROAs and the types
of RP softwares will increase, therefore, the differences in the
specific implementation and the network performance of RP
softwares will lead to potential conflicts. Suppose there exist
an AS0 ROA and an ASX ROA(X 6=0) for the IP prefix p.
We can assume a situation where RP A only downloads the
AS0 ROA and RP B has ASX ROA(X6=0) or both because of
differences in network performance. RP A and RP B will have
different validity states for BGP announcements that should
be validated against these ROAs. To summarize, there are
three types of INR authorization conflicts, referred to as “INR
reauthorizations” in this study:

1) INR conflict D: The CA allocates an IP prefix to its
customer and also authorizes it to ASX(X6=0) for its
own use. This results in conflicting INRs in an RC and
an ASX ROA(X6=0);

2) INR conflict E: The CA reserves an IP prefix for future
use but also authorizes it to ASX(X6=0) for its own use.
This results in conflicting INRs in an AS0 ROA and an
ASX ROA(X6=0);

3) INR conflict F: The CA reserves an IP prefix for future
use but also allocates it to its customer. This results in
conflicting INRs in an AS0 ROA and an RC.



Fig. 3. INR Conflict Model

III. HORIZONTAL INR CONFLICT DETECTION
ALGRITHOM

The horizontal algorithm can be divided into two modules:
prefix tree construction and INR conflict detection. To acceler-
ate the deployment of RPKI, some operations do not conform
to relevant specifications, e.g., RIRs provide the hosted service
for their members to help them create and store ROAs,
and “responsible grandparenting” [15] allows INR holders to
form a relationship with their grandparents for assistance in
issuing RCs or maintaining publication points. Therefore, we
mainly determine INR allocation relationships based on their
hierarchical structure, instead of subject key information (SKI)
and authority key information (AKI) matching.

1) Prefix tree construction. The prefix allocation tree is a
binary tree with left and right branches representing 0
and 1 character respectively, and all characters on the
path from the root node to a specific node together
constitute the bit string of an IP prefix. All valid RCs and
ROAs that have passed the vertical algorithm are inputs
of the horizontal algorithm and IP prefixes extracted
from valid RCs are added in a prefix allocation tree
based on trie data structure, using the bit string of an IP
prefix as key and related information about a RC that
contains this prefix as values, e.g. SKI and AKI fields.
The node also stores VRPs (Validated ROA Payloads)
[8], which are represented as a set of tuples (ASN, ROA
prefix, prefix length, max length) and generated from
valid ROAs. These VRPs meet the condition that ”ROA
prefix/prefix length” in it should be equal to or is the sub-
prefix of the prefix represented by this node. Normally,
only one RC is stored in a node, indicating that an IP
prefix only belongs to only one INR holder.

2) INR conflicts detection. The horizontal algorithm aims
to detect all types of INR conflicts except INR conflict A
defined in the INR conflict model. For a given IP prefix,

the horizontal algorithm first finds the RC it belongs
to. Then, it finds all RCs and ROAs issued by this RC
and classifies these objects into three categories: AS0
ROAs, ASX ROAs(X 6=0), and RCs. We assume that
all three types of these RPKI objects exist. If there
are two or more RCs, we can determine the type of
INR reallocation conflict by comparing their AKI fields.
If their AKI fields are same, INR conflict C can be
determined, namely the INR holder issues two or more
RCs for the same IP prefix, e.g. RC C and RC D. If
their AKI fields are different, INR conflict B can be
determined, meaning cross-RIR INR reallocation must
occur, e.g. RC A and RC E. Two or more conflicting
RIRs can be found by tracing upward in the way of SKI
and AKI fields matching, e.g. RIR 1 and RIR 2. The
INR reauthorization conflict is determined by checking
whether AS0/ASX(X 6=0) ROA pairs and ROA/RC pairs
contain conflicting INRs. If there exists one AS0 ROA
and ASX ROA(X6=0) pair containing the same IP prefix,
INR conflict E can be determined, e.g. ROAs issued by
RC H. If an ASX ROA(X 6=0) and a RC or an AS0 ROA
and a RC has the same IP prefix, INR conflict D (e.g.
RC G and ROA issued by RC F) or INR conflict F (RC
I and ROA issued by RIR 3) can be determined.

In particular, detection of potential INR conflict D is also
carried out. For INR holders who have issued ROAs and whose
customers may not apply for RCs at present, the customers
getting RCs may lead to INR conflict D. We begin by finding
invalid BGP announcements validated against ROAs and select
those due to AS mismatch. If there exists the provider-
customer relationship according to CAIDA’s AS relationship
dataset [16] between the AS in an invalid BGP announcement
and the AS in the ROA validates this BGP announcement,
the potential existence of INR conflict D can be confirmed.
That is to say, the INR holder has issued a ROA containing
IP prefixes allocated to its customer with its own ASN instead
of the customer’s ASN.

IV. EVALUATION AND ANALYSIS

In this section, we evaluate the performance of the horizon-
tal algorithm in terms of build time and query time in the first.
Our results indicate that the proposed horizontal algorithm
has fast build time and query time, and both are within the
acceptable range. Then, we introduce the characteristics of
RPKI system and illustrate the limitations of the horizontal
algorithm. Finally, we analyze false positives.

A. Experimental Setup

The horizontal algorithm was implemented in the Python
language and tested on a PC with Intel Core i7 2.2 GHz CPU
and 16 GB DDR3 SDRAM. We collected all RPKI objects
using the RPstir2 [17] software, and BGP announcements
from all BGP collectors were provided by RouteViews [18]
and the RIPE routing information service [19] on April 14,
2020. The results indicated that 17,173 valid RCs had passed
the vertical algorithm and the number of ROAs was 31,790.



These valid RPKI objects were used as our experimental
dataset. Because our work is the first of its kind to reveal INR
conflicts results from CA malfunctions by adopting an “after-
control” mechanism, there is no other similar existing works
to compare, thus we designed two groups of experiments for
comparison. The control group did not use any data structure,
that is, for any INR holder, the brute-force method was used
to find out all RCs and ROAs issued by it and INR conflicts
are revealed based on rules in Section 2. The study group is
the implementation of our proposed algorithm.

B. Build Time

Before detecting INR conflicts, our proposed algorithm must
first build up a prefix allocation tree, constructing each node
and inserting related RCs and ROAs into its place in the tree.
To estimate the build time, which is the execution time of
insertion, 95,061 IP prefixes of all valid RCs were imported.
To avoid insertion conflicts, we built two prefix allocation
trees, one is for IPv4 prefixes and the other is for IPv6
prefixes. The results show that the average build time for
the prefix allocation tree of our proposed algorithm tends
to be approximately 466.91s (≈8min). It should be noted
that the prefix allocation tree can be built only once during
initialization and subsequent modification operation can be
realized by a combination of query and insert operations.

C. Query Time

There are two usage scenarios for detecting INR conflicts:
1) reveal INR conflicts for a given IP prefix, and 2) reveal all
INR conflicts in the production RPKI. For the first scenario,
the length of an IP prefix is an important factor affecting the
query time of our proposed algorithm, and we can know the
worst-case query times to be 32 for an IPv4 prefix and 128
for an IPv6 prefix. We randomly selected 30 IP prefixes for
each prefix length to perform query operation. To investigate
the effect of prefix length on query time, Fig. 4 depicts the
required time for detecting INR conflicts in the first scenario
for our proposed algorithm against prefix length horizon from
1 to 32 for IPv4 prefixes and 1 to 128 for IPv6 prefixes
respectively. As we can see from this figure, as the length
of the prefix increases, the required time for detecting INR
conflicts also increases. The query time of IPv6 prefixes
generally takes longer than that of IPv4 prefixes, but their
difference is in the microsecond range.

Since our proposed algorithm needs to build a prefix allo-
cation tree before detecting INR conflicts, the total query time
of the study group includes the build time of the prefix tree,
which is compared to the query time of the control group in
two scenarios respectively. Fig. 5 depicts the total required
time against different query times in the first scenario for the
control and study group. In this figure, we can observe that
when the number of queries is small, the proposed algorithm
is not advantageous because of the construction of prefix tree
. As the number of query operations increases, the query
time of the control group increases sharply, while that of
the proposed algorithm increases slowly. When the number

Fig. 4. Query time for a specific IP prefix with different length for the
horizontal algorithm

of queries reaches 106, the total query time of the proposed
algorithm is less than that of the control group, therefore, we
can conclude that when INR conflict detection operations are
performed in large quantities, our proposed algorithm has a
great advantage and can significantly reduce the query time. In
addition, the average required time for detecting INR conflicts
for all IP prefixes is 467.80s (466.91s is build time and 0.89s
is query time) with our proposed algorithm against 2613.24s
with the control group, reducing by about 6 times.

Fig. 5. Total required time against different query times in the first scenario
for the study group and the control group

D. Deployment

Due to the input of the horizontal algorithm are all legal
INR allocation and INR authorization information, which are
expressed in RCs and ROAs that have passed the vertical
algorithm, the best place to deploy the horizontal algorithms
is in RP software. Since the horizontal algorithm is used as
the supplement to further filter more INR conflicts, which
does not affect validation results of the vertical algorithm,
and can provide monitoring and early-waring mechanisms
for RPKI participants, which can be used as an incentive to
motivate the deployment of this algorithm, namely the RP



TABLE I
STATISTICAL ANALYSIS OF INR CONFLICTS.

Type of INR Conflicts No. of INR Conflicts No. of Conflicting Prefixes RIR Distribution of INR Conflicts
B (real) 2 2 APNIC and RIPE: 1;APNIC and ARIN:1
C (real) 5 3,695 APNIC:3;RIPE:1;LACNIC:1

D (potential) 248 1,246 APNIC: 75;ARIN:32;RIPE:58;LACNIC: 71;AFRINIC: 12
E (real) 4 16 APNIC:2;RIPE:2

can improve diversity and quality of its service by providing
horizontal INR conflict-detection service, hence we believe
the horizontal algorithm is practical to be deployed. Our
proposed algorithm also supports incremental deployment, and
the RP that supports this algorithm can filter more illegal INR
conflicts for ASes within its service scope. In particular, when
RPs used by tier-1 ISPs support this algorithm, the illegal INR
allocation and authorization relationships on the Internet will
be greatly reduced.

In addition, CA operators, INR holders and network opera-
tors have some flexibility in using the INR conflict detection
service, for example, they can deploy their own RP (private
RP) or entrust a third-party RP (public RP) to periodically
detect conflicts of INRs they hold. In reality, RPKI participants
generally only care about whether there exist conflicts with
INRs they hold, and the third-party RP can also provides
the service to detect all INR conflicts in the RPKI system.
In the first case, the number of queries is relatively small,
which is general equal to the number of IP prefixes the INR
holder owns, therefore, a hybrid approach can be used to
support small queries using brute-force algorithm while in the
background to build up the prefix tree to respond more quickly
to subsequent large number of queries.

E. Statistics and Analysis of INR Conflicts

In this subsection, we test the horizontal algorithm on the
production RPKI and identify real-life CA malfunctions. We
explored the existence of INR conflicts (B, C, and E) and
the potential existence of INR conflict D in the current RPKI
deployment environment. We measured and analyzed INR
conflicts from several aspects, including type, quantity, RIR
distribution, and false-positive error rate. More detailed infor-
mation is given in Table I, which shows types, the number and
RIR distribution of INR conflicts, and the number of involved
conflicting prefixes. The main reasons for the non-existence
of INR conflict F we speculate are partial RPKI deployment
and the recent proposal of the AS0 ROA mechanism.

The INR conflicts caused by IP address transfers are consid-
ered as legal, and our proposed algorithm cannot distinguish
between them, which results in false positives. Therefore, we
need to determine whether the INR conflict is an IP address
transfer out-of-band and it is necessary to find the contact
information of holders who owns conflicting INRs. However,
objects in the production RPKI have no labels to indicate
whether they are involved in INR conflicts. In addition, RPKI
does not require INR holders to include identity information
in their RCs, and none of the CAs have issued ghostbusters
records [20] that used for retrieving the contact information

of INR holders. Thus, we obtained the contact information
of INR holders in the third-party database, e.g. WHOIS, and
then we can contact these entities by email to ask them about
their involvement in INR conflicts. However, the accuracy and
effectiveness of the information in the WHOIS database cannot
be guaranteed, which making correctness of our proposed
algorithm hard to evaluate. It can be seen that the false-positive
rate of our proposed algorithm depends on the proportion of IP
address transfers in all revealed INR conflicts. In addition, the
accuracy of the false positive rate depends on the accuracy of
the information in the third-party database. Thus, the issuance
of ghostbusters objects as soon as possible and the correctness
of their contents are of great significance to the accuracy of
our proposed algorithm and the early-warning service of other
monitoring or detection mechanisms

To measure false positives, we have sent emails to all
entities involved in INR conflicts, but only RIPE NCC replied
and offered us a reasonable explanation. The conflicting IP
prefix (137.74.0.0/16) had been transferred from APNIC to
RIPE NCC in 2016, but APNIC did not remove it from
its RPKI production CA, which resulted in this cross-RIR
INR reallocation. In the above case, although IP address
transfer is legal, it is unreasonable for APNIC not to have
re-issued its RC four years after the above IP address had
been transferred. Further, this leaves the legitimate INR holder
of the conflicting IP prefix(es) exposed to potential security
threats. INR conflicts detected by the horizontal algorithm can
serve as an early warning to the holders of conflicting INRs,
and the manner of handling them is the decision of the INR
holders themselves.

V. CONCLUSION AND FUTURE WORK

In this paper, we first defined and formalized some relevant
concepts and rules. Then, we combed and summarized possi-
ble CA malfunctions in INR allocation and authorization and
developed the INR conflict model. Based on the above work,
we proposed a horizontal INR conflict-detection algorithm to
reveal INR conflicts in our model and measured its build
time and query time. Finally, a trace collected from an RPKI
repository was used to reveal real-life INR conflicts, and we
analyzed them from several aspects. The false positives also
evaluated by sending out-of-band emails to the owners of
conflicting IP prefixes, but owing to the characteristics of
RPKI system and the limitations of third-party information
services, we cannot accurately evaluate the accuracy of the
proposed algorithm. Future studies can focus on how to
improve the accuracy to reduce the false-positive rate.



REFERENCES

[1] M. Lepinski, S. Kent, An infrastructure to support secure internet
routing. RFC 6480, 2012.

[2] G. Huston, G. Michaelson, R. Loomans. A profile for x.509 pkix
resource certificates. RFC 6487, 2008.

[3] G. Huston, G. Michaelson, C. Martinez, T. Bruijnzeels, A. Newton, D.
Shaw. Resource public key infrastructure (rpki) validation reconsidered.
RFC 8360, 2018.

[4] Zhiwei Yan, Guanggang Geng, Hidenori Nakazato, Yong-Jin Park.
Secure and scalable deployment of resource public key infrastructure
(rpki). J. Internet Serv. Inf. Secur., 8(1):31-45, 2018.

[5] Y. Gilad, A. Cohen, A. Herzberg, M. Schapira, H. Shulman. Are we
there yet? on rpki’s deployment and security. In NDSS, 2017.

[6] Taejoong Chung, E. Aben, T. Bruijnzeels, B. Chandrasekaran, D.
Choffnes, D. Levin, et al. Rpki is coming of age: A longitudinal study
of rpki deployment and invalid route origins. In Proc. of the Internet
Measurement Conference, 2019.

[7] Xiaowei Liu, Zhiwei Yan, Guanggang Geng, Xiaodong Li. Resource
Allocation Risks by CAs in RPKI and Feasible Solutions. Computer
Systems&Applications., 25(8):16-22, 2016.

[8] A. Newton, C. Martinez-Cagnazzo, D. Shaw, T. Bruijnzeels, B. Ellacott.
Rpki multiple ”all resources” trust anchors applicability statement. draft-
rir-rpki-allres-ta-app-statement-02, 2017.

[9] G. Michaelson, G. Huston, T. Harrison, T. Bruijnzeels, M. Hoffmann. A
profile for Resource Tagged Attestations (RTAs). draft-michaelson-rpki-
rta-01, 2019.

[10] Y. Gilad, O. Sagga, S. Goldberg. Maxlength considered harmful to
the rpki. In Proc. of the 13th International Conference on emerging
Networking EXperiments and Technologies, 2017.

[11] G. Huston, G. Michaelson.Validation of route origination using the
resource certificate public key infrastructure (pki) and route origin
authorizations (roas). RFC 6483, 2012.

[12] Policy prop-132 (AS0 for unallocated space) deployed in service.
https://blog.apnic.net/2020/09/02/policy-prop-132-as0-for-unallocated-
space-deployed-in-service/.

[13] SLURM file for Unallocated and Unassigned RIPE NCC Address Space.
https://www.ripe.net/participate/policies/proposals/2019-08

[14] ASO Support in AFRINIC RPKI. https://www.afrinic.net/blog/457-aso-
support-in-afrinic-rpki.

[15] R. Bush. Responsible grandparenting in the rpki. draft-ymbk-rpki-
grandparenting-04, 2014

[16] Caida as relationships dataset. http://www.caida.org/data/as- relation-
ships/.

[17] Rpstir2. https://github.com/bgpsecurity/rpstir2.
[18] Routeviews. http://www.routeviews.org/routeviews/.
[19] Ripe routing information service(ris).

https://www.ripe.net/analyse/internet- measurements/ routing-
information- service- ris.

[20] R. Bush. The Resource Public Key Infrastructure (RPKI) Ghostbusters
Record. RFC 6493, 2012.


