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Abstract—In a cloud data center, the client requests are catered
by placing the services in its servers. Such services are de-
ployed through a sandboxing platform to ensure proper isolation
among services from different users. Due to the lightweight
nature, containers have become increasingly popular to support
such sandboxing. However, for supporting effective and efficient
data center resource usage with minimum resource footprints,
improving the containers’ consolidation ratio is significant for
the cloud service providers. Towards this end, in this paper,
we propose an exciting direction to significantly boost up the
consolidation ratio of a data-center environment by effectively
managing the containers’ states. We observe that many cloud-
based application services are event-triggered, so they remain
inactive unless some external service request comes. We exploit
the fact that the containers remain in an idle state when the
underlying service is not active, and thus such idle containers
can be checkpointed unless an external service request comes.
However, the challenge here is to design an efficient mechanism
such that an idle container can be resumed quickly to prevent
the loss of the application’s quality of service (QoS). We have
implemented the system, and the evaluation is performed in
Amazon Elastic Compute Cloud. The experimental results have
shown that the proposed algorithm can manage the containers’
states, ensuring the increase of consolidation ratio.

Index Terms—Container, State Management, Service Manage-
ment, Cloud Computing, Container Migration, Checkpointing.

I. INTRODUCTION

Containers [1] have emerged as an essential and effective al-
ternative for hypervisor-based virtualization that complements
the virtual machines (VMs) with a lightweight orchestration
framework while providing an isolated, standalone, and reli-
able computing environment. Containers [2] can run over bare-
metals and within a VM, and therefore, it offers significant
computation flexibility for application services deployment.
Due to its low overhead, container-based virtualization sup-
ports higher consolidation (number of container-based virtual
servers that can run over a host) compared to hypervisor-based
virtualization [3]. Consequently, it promotes the dense deploy-
ment of user applications over a physical host machine [4]-[6].

In a typical virtualized cloud environment, containers are a
good candidate for deploying stateful application servers [7]
like gaming servers, servers providing machine learning tool-
boxes like optical character recognition, speech processing,
image processing, etc., augmented reality and virtual reality
servers, and so on. These types of server applications have less
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dependency on the underlying operating system. Therefore,
a containerized version of those application servers can be
hosted on a cloud platform with less overhead. One typical
nature of such application servers is that they get executed
when some external client requests ask for services; otherwise,
they keep running in an idle state. Therefore, the application
server states can be checkpointed, and the server’s resources
can be released temporarily for the best utilization of the
hardware resources [8]. The application service can be re-
sumed from the checkpoint when some external client requests
come. Although such an approach can significantly improve
the hardware utilization and the cloud environment’s energy
efficiency, dynamic checkpointing for stateful containerized
applications has two major challenges.

i. Different containers need to be checkpointed dynam-
ically when they are idle, and their operations need
to be resumed later from that state with minimum
startup latency. Also, any partially processed data for
the containerized application needs to be stored.

ii. During the restoration of a checkpointed service, suffi-
cient hardware resources are not available at the original
physical host, due to the dynamic application workload
for various other services running over the same physical
host. Therefore, there is a need to share the checkpointed
state of the containers between different computing
servers. Moreover, the checkpointed state needs to be
migrated to a new server based on the demand for
resuming the idle container when external client requests
come for that application service.

Therefore, we require to develop a method for dynamic
checkpointing and restoration of containerized stateful ap-
plication services so that the consolidation ratio increases.
The consolidation ratio is defined as average number of
virtual instances on each host [9]. In the proposed system,
the virtual instances are containers. Accordingly, in this paper,
we propose a dynamic container checkpointing and service
migration [10], [11] strategy considering the dynamic ap-
plication demands and workloads of a containerized stateful
service. In order to solve the above-mentioned challenges, we
formulate an optimization problem and propose a checkpoint
based heuristic algorithm to solve the problem of container
deployment. The objective function considers the increase of
consolidation ratio. The major contributions of this work are:



i. The service should go to checkpointed state by freeing
the idle container’s consumed resources when no request
is coming for that service. Other services that need to
serve the clients are deployed dynamically after deallo-
cating the idle containers. However, this management is
challenging as there is a need to deallocate and allocate
containers based on the container state dynamically.

ii. To analyse the system’s performance, we have performed
experiments in Amazon Elastic Compute Cloud (Amazon
EC2) [12]. For this analysis, Amazon EC2 VMs are taken
as the servers. We have considered docker [13] as the
container engine and Checkpoint/Restore In Userspace
(CRIU) [14] as the software to freeze a running container.
Container state management is done by a shared storage
and the docker checkpoint feature. The shared storage is
created using a network file system (NFS) [15].

iii. Whenever the current server can not allocate the check-
pointed container, the system supports migration of
docker containers by moving the container’s state in a
new server and starting the container there from the
checkpointed state. The experimental results from Ama-
zon EC2 show that the proposed system can increase the
consolidation ratio.

II. RELATED WORK

A number of works have focused on various aspects of the
problem of container based service state management in the
recent literature. In [7], the authors have provided a middle-
ware to achieve high availability for cloud applications. The
solution can compensate the limitations of linux containers in
achieving high availability. They are monitoring the containers
that hosts critical components and checkpoint its state. In
case of a failure, the computation is resumed from the most
recent state. The feasibility of their solution is verified using a
case study. The authors in [16] have performed a container
migration service. It is a filesystem-agnostic and vendor-
agnostic consistent full-system migration service. The work
incorporates CRIU-based memory migration and focuses on
minimizing the migration time. However, no service response
time related analysis is present in this work. In order to do
failure recovery of multi-tier stateful applications, Gomes et
al. [17] have performed an evaluation of checkpoint services
in both virtualized and physical environments. They have
considered the checkpoint in application-level as well as in
system-level. Though analysis of failover time is given, service
response time is not considered. In [18], the authors have pro-
posed elastic provisioning of virtual machines for containers
deployment which takes into account the heterogeneity of con-
tainers requirements and computing resources. Their approach
can determine the container deployment on virtual machines
on-demand while optimizing quality of service (QoS) metrics.
It evaluates the container deployment at runtime considering
the QoS metrics. If it achieves an improvement based on the
QoS metrics, a reconfiguration is planned. The authors in
[19] have modeled the micro-service based application (con-
tainer) deployment problem to minimize total cost considering
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Fig. 1. System architecture

server capacity and service delay as the constraints. They
have proposed a communication efficient framework and a
suboptimal algorithm to determine container placement. In
[20], the authors have developed hybrid autoscaling algorithms
and a network scaling algorithm. The hybrid autoscaling
algorithm provides high availability by horizontal scaling and
fine-grained resource control by vertical scaling. The authors
in [21] have solved the problem of container placement across
heterogeneous infrastructure to minimize the overall energy
consumption and balance the load of the hosts. The prob-
lem have been formulated as a multi-objective optimization
problem. The authors have solved the problem based on an
incremental exploration of the solution space. The works of
[22] have introduced a resource allocation framework for the
containerized deployment of microservices to reduce operating
costs while providing a minimum guaranteed level of service.
From the above discussion, we observe that the existing
studies mostly look into the placement of the services along
with migration needs. Our objective is to increase the consol-
idation ratio i.e. increase the number of containers per host.

III. SYSTEM ARCHITECTURE

The proposed architecture of the system is discussed in
this section, which consists of the following components
(Figure 1).

i. Clients: Clients send service request to the manager

node of the cloud data center.

ii. Manager Node: The manager node is connected to all
the worker nodes of the cloud data center. The manager
node has a container allocation and deallocation module
to place the services in the cloud data center. This node
does the aggregation of the results. Also, the final result
is sent to the clients. We need to find the status of the
container state (active/idle). This work is performed by
the state management module. The container allocation
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and deallocation module checkpoints the idle containers.
If the current server does not have sufficient resources,
we need to migrate the container to a new worker node.
This migration is performed by the migration manager
module of the manager node. State management module
is responsible for letting the migration manager module
know about the idle containers to be migrated at each
time instant.

iii. Cloud Worker Node: The cloud worker node has
container engine (https://docs.docker.com/get-started/
overview/) to run different services as a container.

iv. Shared Storage using Network File System: The cloud
worker nodes share a storage to save the state of the
checkpointed containers. This shared storage is designed
using NFS. NFS server is configured in a worker node
that needs to share its directory with other worker nodes.
NEFES client is configured in the worker nodes that need
to access the NFS server’s directory.

The management of a container’s states is a very challenging
task as a container goes through many states in its life-
cycle. We discuss the state transition of a docker container in
Figure 2. When a docker is running and serving the requests,
it goes to an active state. The docker container goes to an
idle state when it is running but not serving any requests.
Docker containers can be checkpointed to save the current
running state of the container. The docker container goes to
a checkpointed state when we save the running state of the
container. The checkpointed container can be resumed to make
it active again. After the complete service completion, the
docker container goes to a terminated state.

IV. SERVICE STATE MANAGEMENT OF CONTAINERIZED
APPLICATIONS

Let us consider ¢ containers and s servers present in the
system at a particular time instant. We denote S = {S; : i €
(1,...,s)} and C = {C; : j € (1,...,¢)} as sets of cloud
data center servers and containers respectively.

A. Average Startup Latency of the Services

We need to start the checkpointed service whenever a
request comes. Therefore, the startup latency for the check-
pointed container is defined as

Startup_latency; = Container_resumption_time;+
Migration_time;

where Container_resumption_time; is the time taken by

the system to resume the container 7 and Migration_time;

is the communication time needed to transfer the state from

the source node to the destination node for the container <.
We define the startup latency for the new container as

Startup_latency; = Container_deployment_time;

where Container_deployment_time; is the time taken by
the system to deploy the new container i. Startup_latency;
is the individual startup delay of a service i. Therefore, the
average startup latency is defined as

S°¢_, Startup_latency;
Avgstartup_latency = L :

c
B. Average Response Time of the Services

We define the response time of a service as
Resp_time; = Startup_latency; + Service_running_time;

where Service_running_time; is the processing time taken
for a service in a server. Now, we define the average response
time of the services as,
c )
> iy Resp_time;

Avgresp_time = c ;

where Resp_time; is the individual response time of a service
i.

C. Constraints

We define PV, CFAM, and CPW as the CPU, RAM, and
bandwidth resources needed by a container C; respectively.
The available CPU, available RAM, and available bandwidth
of the server S; are ReS’"V, Rel!AM and ReP"W respectively.

We find k servers K=(S4,..., Si) from the set of all servers
S where K C S such that the following conditions are true.

TC;

P P
chc Uxa:m»SReio UXyi (D)
j=1

TC;
Z CJRAM X T j < RelRAM X Y; 2)
i=1

BW BW

Z Cj X Ty 4 < Rei X Yi 3)

j=1
where 7 =1,...,s and 0 < j < c. We define z; ; as the decision
variable to denote if a container C; has been placed in the
server S;. Also, y; is the decision variable to denote if a server
S; is used for placement or not. T'C; is the total number of
containers present in the server .S;.
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The following equation states that all the containers should
be deployed in the system.

k
Z TC; = 1|C|
i=1

where |C] is the cardinality of the set C.
We have another constraint that one container can be placed
in exactly one server.

(6)

)

k
Y;l‘@j =1

D. Problem Definition

Given a set of containers (C) with resource requirement and
a set of physical servers as workers (S) with resource avail-
ability, our objective is to deploy the containers dynamically
by checkpointing the idle containers so that the consolidation
ratio (Consolidation_ratio) increases. Therefore, we present
the objective function in Equation (8).

()

maximize Consolidation_ratio
subject to the constraints given in IV-C.

It can be shown that the bin packing problem [23], a
known NP-Hard problem, is polynomial time reducible to
our containerized service state management problem given in
Equation (8). Therefore, the problem of containerized service
state management in the cloud data center is NP-Hard.

V. ALGORITHM DESIGN

We propose a heuristic algorithm called Service Deployment
Algorithm to find a near optimal solution. Also, we present
Container Checkpointing Algorithm and Container Resump-
tion Algorithm to checkpoint and resume the containers re-
spectively. We discuss the algorithms below.

A. Service Deployment Algorithm

We present the Service Deployment Algorithm in Algo-
rithm 1. The inputs of the algorithm are container set (C') and
cloud server set (S). The output of the Consolidation_ratio.
Our aim is to maximize the consolidation ratio. The check-
pointed containers are deployed in the same server where it run
last time if the server is able to meet the resource requirement
(Eq. (1, 2, 3)). Otherwise, a new server is chosen to deploy
the checkpointed container. The proposed algorithm deploys
the containers in the selected server (S,). If the resource
requirement is not met for some containers, we find whether
a checkpoint in the selected server can give enough resources
for the container to be deployed. If a checkpoint can give
the required resources, we identify the idle containers in the

Algorithm 1: Service Deployment Procedure
Input: Container Set (C'), Cloud Server Set (S)
Output: Consolidation_ratio

1 Function Deployment(C,S):

2 Sort the containers in descending order of their
resource requirement and store in Sorted_con;

3 for all the containers in Sorted_con do

4 servers_not_available = 0;

if the deployment request is for a checkpointed

container then

6 k=-1;

/x S_last_run_C1 is server
where the checkpointed
container run last time «/

7 Sy = S_last_run_C'1;

8 else

9 k=0;

10 Sy = S[k];

11 while the resource requirement of container C;

is greater than the resource available in
server S, do

12 if checkpointing in server S, can deploy
the container C; then
13 resource_avatlable_in_server =
Checkpoint_idle_containers(Sy);
14 Break from the while loop;
15 if all servers are explored then

/% servers_not_available is set
to 1 if no servers are
found for deployent */

16 servers_not_available = 1;

17 B Break from the while loop;

18 else

19 k=k+1;

20 | Su = S[k];

21 if servers_not_available != 1 then

22 Deploy the container C; in the selected
server Sy;

23 Calculate Consolidation_ratio;

24 return Consolidation_ratio;

selected server and checkpoint them. This approach frees up
more resources that can be allocated to the new containers.
Otherwise, a new server is chosen for checking if deployment
is possible or not. In this way, the consolidation ratio is
maximized by our proposed algorithm.

B. Container Checkpointing Algorithm

The stateful applications remain in idle state for a long dura-
tion. We propose an algorithm for container status finding and
performing checkpointing of the idle containers. We describe
the Container Checkpointing Algorithm in Algorithm 2. The
input of the algorithm is the server where the containers are



Algorithm 2: Container Checkpointing Procedure

Input: Server where the checkpoint is required to be
performed
Output: Amount of resource available in the server
1 Function Checkpoint_idle_containers(Server;):

2 for all the containers in Server; do

3 Find the maximum value of CPU usage and
store it in max_cpu_usage_cont;;

4 if current_cpu_usage_cont; <
(a X max_cpu_usage_cont;) then

5 status_cont; < Idle;

6 Checkpoint the idle containers;

7 else

8 L status_cont; < Active;

9 Calculate resource_available_in_server;

10 return resource_available_in_server;

Algorithm 3: Container Resumption Procedure

Input: Services or Containers the need to be resumed
(C_resume), Container Set (C'), Cloud Server
Set (S)
Output: Consolidation_ratio
1 Function Resume_containers(C_resume,C,S):
2 C = C U C_resume;
3 con_ratio =Deployment(C,S);
4 return con_ratio;

required to be checkpointed and output of the algorithm is the
amount of resource available in the server. Here, o (0 < «
< 1) is the parameter to set the CPU usage threshold of the
active containers.

C. Container Resumption Algorithm

In this subsection, we present the Container Resumption
Algorithm for resuming the idle containers. This algorithm
is described in Algorithm 3. The inputs of the algorithm
are the containers that need to be resumed (C_resume), the
container set (C), and the cloud server set (5). The output of
the algorithm is the Consolidation_ratio.

VI. PERFORMANCE EVALUATION

We performed the experiments in Amazon EC2 (https://aws.
amazon.com/ec2/) using python 2.7.13.

A. Implementation Details

The cloud servers have Ubuntu 18.04 long-term support
(LTS) (https://www.ubuntu.com/) operating system. Also, we
use Docker [24] as the container engine in the servers. The
docker version taken for the implementation is 17.03.2-ce.
To perform the docker checkpoint, the docker experimental
feature is enabled and CRIU (https://criu.org/Main_Page) is
installed in the servers. Docker uses CRIU [25] to manage the
lifecycle of processes running inside its containers (https://criu.
org/Docker). We set up the shared storage using NFS (https:

//help.ubuntu.com/lts/serverguide/network-file-system.html) to
make the checkpointed files available in different servers. We
have taken zookeeper application (https://zookeeper.apache.
org/), PHP web application (https://www.php.net/) and redis
application (https://redis.io/) for evaluation. We have analysed
the output of the docker stats command to check the resource
status of a container. We show the values of the parameters
taken in Amazon EC2 experiments in Table I. The topology
considered for these experiments is shown in Figure 3.

TABLE I
PARAMETERS IN AMAZON EC2 EXPERIMENT

Parameter Value
Number of Amazon EC2 virtual 10
machine instances or worker nodes
Processor of a worker node 2.5 GHz Intel Xeon Family
Number of vCPU in a worker node 1

Storage of a worker node 8 GB

Operating System used Ubuntu Server 18.04 LTS
Maximum available RAM of the 680 MB

worker node

Maximum available RAM of the 1780 MB

manager node

B. Competing Heuristics

We consider Execution Container Placement and Task as-
signment Algorithm (EPTA) [19] as a baseline. In EPTA,
the microservice controller queries a small local region for
available physical resources. The execution containers are
placed in the server, which has less node cost as well as
less link cost. The microservice controller requests physical
resources and waits for responses from the physical machines
(PM). Once the request is approved, an execution container
is built on the selected PM. If the request is rejected, the
PM is marked as infeasible. When some tasks have not been
successfully assigned, the microservice controller queries PMs
on a larger scale. We have taken first fit decreasing (FFD) as
another baseline. FFD is used in many works in the existing
literature [26], and it is a well-known heuristic for bin packing
problem. In FFD, the containers are sorted in decreasing order
of the size of the required resource. Then, FFD chooses the
first server that is large enough to place the containers.

C. Consolidation Ratio

The consolidation ratio indicates how many containers the
system can deploy per host. It is desired that the consolidation
ratio should be higher for a system. We show the consolidation
ratio in Figure 4. The baseline algorithms cannot maximize the
consolidation ratio as these are unable to deploy containers
when the system does not have resources to meet the demand
of the container. Our proposed algorithm has higher consolida-
tion ratio than the EPTA algorithm [19] and the FFD algorithm
[26] as our system is able to take checkpoint for the idle
services and make resources free for the new containers that
need to be allocated. Thus, the proposed algorithm maximizes
Consolidation_ratio.
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D. Average Response Time of the Services

We show the average response time for the proposed
approach and the baseline methods in Figure 5 (zookeeper
application), Figure 6 (PHP web application), and Figure 7
(Redis application). The EPTA algorithm [19] places the
containers of an application in the server with less node cost
and less link cost. Whereas, the FFD algorithm [26] places the
containers in the first server that is large enough. Our proposed
algorithm can deploy more containers by checkpointing the
idle containers. Our proposed algorithm has a little more
average response time for the containers than the baselines
due to this checkpointing.

E. RAM Used by the Manager Node

The manager node performs the deployment, checkpointing,
and as well as the migration of the containers, as mentioned
in section III. The manager node’s RAM consumption is
analyzed, and the RAM consumption is shown in Figure 8. Our
proposed algorithm is running the checkpoint and resumption
procedure, along with the deployment method. This consumes
more amount of manager node resources. We find that the
proposed algorithm has more RAM usage than the EPTA
algorithm and the FFD algorithm.

VII. CONCLUSION

We have performed the container-based service state man-
agement to maximize the cloud data center’s consolidation

Fig. 7. Average response time of the Redis app

EPTA Proposed EPTA FFD

Fig. 8. RAM used by the manager node

ratio. In our proposed approach, the idle containers need to
be checkpointed to save the hardware resources. However,
after the end of the idle period, the containers need to be
resumed from the last saved state. The idle containers are
migrated to a new server if the current server does not have
sufficient resources to run it. The problem of state management
of the containers is formulated as an optimization problem that
maximizes the consolidation ratio as the objective function. We
have proposed a heuristic algorithm to solve the optimization.
In order to save the state of an idle container, we have proposed
a container checkpointing algorithm. Also, an algorithm is
proposed for the resumption of idle containers when a request
comes for these services. The evaluation in Amazon EC2
shows that the proposed algorithm is able to maximize the
consolidation ratio ensuring the state management of the con-
tainers. Thus, the proposed algorithm can efficiently manage
the service state.
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