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Abstract—Software upgrades, reconfiguration, and deployment
of new services happen so frequently in the carrier-grade VNF-
based networks that operators need automated orchestration
and change management systems. The current approaches deal
independently with each service and concentrate mainly on
resource allocation or optimization of the change execution
processes. We propose a new Joint Resource Allocation and
Scheduling (JRAS) approach, where the orchestrator manages
changes, addressing the diverse requirements and dependencies
of all services together. These features result in significant gain
achieved by JRAS compared to other approaches, as shown by
the performed numerical analysis.

Index Terms—NFYV, orchestration, virtualization, change man-
agement, task scheduling

I. INTRODUCTION

There is a growing trend in telecommunication infrastruc-
tures to migrate to software-based, fully virtualized solutions
benefiting from Cloud Computing and Network Function
Virtualization (NFV) [1], [2]. The "softwarization" of the
telecommunication infrastructure makes it much more: i) flexi-
ble, allowing for fast deployment, reconfiguration, and upgrade
of services, ii) scalable, due to dynamic VNF performance
adjustment, and, iii) open to enable automated Change Man-
agement (CM) processes.

These features are attractive for carrier-grade networks,
where operation teams almost continuously apply changes
[3]. The migration towards virtual appliances enables fully
automated CM procedures reducing human-originated errors
[4]. However, any changes must be carefully introduced into
the network in a bid to minimize the risk of breakdown and
misbehavior of the offered services. Given the large scale and
complexity of carrier-grade networks, the design of the CM
process is a serious challenge for the network operators.

The main challenge in the development of automated CM
systems is the design of an efficient orchestration approach
that will schedule and execute Life Cycle Management (LCM)
actions for both currently running and future planned services.
The orchestrator must reconcile diverse service requirements,
minimize allocated resources and operation costs [5]. So,
it plans and triggers the execution of CM actions, resolves
potential conflicts, avoids service degradation, and satisfies
Zero Downtime Deployment (ZDD) objectives [6].
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The orchestration approaches widely used, e.g., in ONAP,
OSM MANO [7], or Kubernetes [8], assume that CM pro-
cesses are planned and executed independently for each of-
fered service. They ignore the impact of other actions con-
currently performed by the orchestrator, which can potentially
conflict or cancel out the execution of actions, and increase the
expected execution time. The common practice is to use the
closed loop paradigm, where actions are triggered whenever
the analysis of monitored Key Performance Indicators (KPI)
indicates the need for the system’s state change [9]-[11]. As
a consequence, any corrective actions are taken a posteriori,
so they are usually late and inadequate to the actual situation.
They also require coordination between instances [12], [13].

We propose a new orchestration approach, called Joint
Resource Allocation and Scheduling (JRAS) orchestration. It
is responsible for scheduling CM actions by taking all actions
together for all orchestrated VNF service instances. The JRAS
objectives are: i) schedule and execute VNF Components’
(VNFC) allocation actions and traffic distribution actions in the
best way, ii) guarantee the lowest possible service disruption
and the highest Service Level Agreement Satisfaction (SLAS),
iii) effectively utilize compute and network resources, and iv)
assure the low cost of performed CM operations.

As traffic demand changes over time, the JRAS algorithm
continuously manages VNF instances by adjusting their VNFC
placement to the changing traffic demands and schedules all
CM actions taking into account: i) available resources and their
cost, ii) quality of instantiated services, iii) changing demands
of additional orchestration actions required for service main-
tenance, iv) relations and constraints given by these actions
like conflicts with other actions or time of their execution, v)
features or limitations of orchestration engine (e.g. only one
action at the same time executed for VNF instance).

Our paper is organized as follows: Section II presents
the analysis of the related work and motivation for our
approach. In Section III, we formulate the JRAS problem as
a mixed-integer programming problem, and then we present
the proposed orchestration method. The results of performance
evaluation showing the benefits of our joint approach over
the others are described in Section IV. Finally, Section V
summarizes the paper and gives an outline for future work.

II. PROBLEM STATEMENT & MOTIVATION

Automated Change Management involves three primary
steps: (i) designing the CM process for a given type of change
and service, (ii) scheduling of changes involving activities,
and (iii) executing the change process. Today, CM processes



are only partially automated and typically are focused on ad
hoc point solutions. Typically, these are not readily scaled
or re-used. Change coordination is critical across groups to
minimize the risk of multiple activities causing unnecessary
customer impact and effectively manage operational resources.
The authors of [14] proposed the solution of time-based
scheduling and coordination of CM operations for physical
network functions. The paper also defines the CM process
as a composition of different building blocks that must be
well-coordinated, having in mind that their composition into
workflows depends on the use case. Nevertheless, the proposed
solution shows that the proper CM algorithm can reduce the
overall process duration and the risk of network failure, which
is critical in carrier-grade environments.

The NFV paradigm brings new challenges for CM operation
as VNF-based services are very dynamic in terms of their
topology, allocated compute, and network resources. In carrier-
grade NFV environments, services compete for resources, and
they have demanding SLA requirements - including guar-
anteed continuity of service operation. These services need
constant maintenance (like reconfiguration, scaling, upgrade),
but the CM operations cannot impact SLA. Multiple orches-
tration actions might conflict on the same or dependent VNF
instances and hence their coordination is required to avoid
errors in the CM process. For stateful VNFs, the orchestrator
has to carefully handle the state and traffic to minimize the
disruption to the service during CM operations. For example,
in a build-and-replace approach [15], new VNF instances are
created, then the traffic is migrated, and finally the old VNF
is deleted. For stateless VNFs, this method can accomplish
hitless upgrades, but it requires sophisticated coordination
of the order of executed orchestration operations. It is also
demanding from the perspective of consumed resources. A
complete service upgrade process can double the volume of
resources consumed by service during the operation’s execu-
tion. If we want to use resources efficiently, there should be
no reserve of resources for orchestration operations executed
in the near future. As a result, virtualized services can run
with uncoordinated use of resources that can impact the SLAS
of other coexisting services. To ensure proper SLAS, the
orchestrator continuously needs to adapt virtualized services
by their scaling and redistribution of traffic.

The problem of VNF placement is well studied in the
recent literature and the spectrum of solutions for dynamic
placement of VNFs with resource optimization for SFC is
very broad [16]-[20]. These solutions address the optimal use
of resources or the end-to-end quality of the service based
on optimization, heuristic or Al approaches. However, they
do not focus on the root cause of bad VNF performance
that may lead to the necessity of VNF placement or traffic
redirection. A good example of how network update operations
and resource allocation can be coordinated is presented in
[21]. The mentioned software upgrade example shows that
orchestration operations may have many more dependencies.
Therefore, there is a need to address them in the context of any
CM or LCM operations and their influence on service quality.

The closed-loop orchestrations aim to improve the overall
service quality. They react to any service changes based on
the delayed feedback information. This approach is sufficient
for the adaptation of the service to slow changes, but CM

operations are typically unpredictable and bursty in nature.
It results in sudden changes that are hard to overcome a
posteriori for closed-loop automation. A detailed description
of closed-loop automation and its current implementation in
ONAP is presented in [22].

Major carriers and vendors are involved in enhancing and
streamlining the CM process using an open-source platform-
based approach in ONAP [23]. The key idea is the design
of the CM process from predefined building blocks and its
scheduling for orchestrator’s execution based on predefined
criteria. Unfortunately, the CM solution in ONAP is not
integrated with its orchestration engine and is not aware of
any orchestration workflows executed at the same time.

We formulate a new problem of joint scheduling of CM and
LCM operations with the management of resources for VNFC
placement. The proposed solution eliminates the negative
impact of their execution by the orchestrator. It dynamically
adjusts the consumed resources and utilizes them properly
to execute CM and LCM operations in the best moment,
from the service quality perspective. It also dynamically
schedules actions to find the best execution plan based on
actions’ properties and their relations. We also want to reduce
the uncertainty that such operations bring in for closed-loop
automation in NFV to let it deal only with inter-orchestration
changes of slow or more predictable characteristics.

ITI. THE JRAS ORCHESTRATION APPROACH

In this section, we formulate the Joint Resource Allocation
and Scheduling (JRAS) problem as a mix-integer program-
ming problem, and then we present the JRAS orchestration
approach that manages changes in a carrier-grade network.

A. The model of VNF-enabled infrastructure

Let us consider an exemplary VNF-enabled carrier-grade
infrastructure, which is modeled as a graph G(NN, E), where N
is a set of data centers with elements n; € N, indexed by their
locationsl = 1,...,k,k = |N|, and symbol | N| is the cardinal
of the set N. The set of edges E covers all links ¢; € F
connecting data center n; to an over-provisioned backbone
transport network. The over-provisioning assumption allows us
neglecting the network topology and details about the actual
traffic distribution. It can be relaxed in further works.

The resources provided by a given data center are described
by d¢, € Z7%, where [ denotes data center location, while
r € R,R = {¢,m,b} indicates a specific type of resources.
We limit their number to just three basic types that are: i)
computing power (c), expressed by the number of available
CPUs, ii) the amount of RAM memory (m) expressed in
GBs, and iii) the bandwidth (b) of access link ¢; expressed in
Gbps. One may further extend the considered set of resources
at the cost of increased computation complexity. The unit
transmission costs between two data centers are modeled by
a nonnegative square symmetric distance matrix 7'C' with
elements t¢;, ;, € RT proportional to the estimated pairwise
distance between the data center locations Iy, [5.

The modeled NFV infrastructure will host an arbitrary
number of independent VNF service instances, s € S. We
model each service s as a directed acyclic graph following a
Service Function Chain concept [24]. It defines the workflow
and dependencies between VNFC component types, v € V



of particular service s. In the considered case, a service s
is composed of two types of VNFC components that are: i)
a virtual Service Component (vSC) handling users’ requests,
e.g., a web server or DNS resolver, and ii) a virtual Load
Balancer (VLB) responsible for redirecting requests to the
appropriate vSC. Setting-up a new VNFC instance v consumes
a certain amount of resources fr,, € Z*,r € R,s € S but
offers additional service capacity fc, € R™,v € V. The fc,
capacity indicates the upper bound of traffic carried by the
VNFC instance with satisfying the predefined SLA (Service
Level Agreement) level. Therefore, the capacity offered by a
given VNF can be scaled up and down by tuning the number of
running VNFC instances. Note that we intentionally follow a
conservative, linear approximation of service capacity to keep
our model as generic as possible. Otherwise, one must analyze
the details of the offered services to consider the impact of
multiplexing gain. Once the offered traffic exceeds the VNF
service capacity, the overloading traffic is lost, leading to the
degradation of the agreed SLA.

Service instances s € S, by design, handle the traffic
demands generated by users. We assume that users send
their requests (or their requests are redirected) to the nearest
data center dc;. Therefore, we describe the traffic demand
by a nonnegative service demand matrix SD with elements
sd;s € Rt corresponding to the estimates of some pairwise
user location [ : 1 = 1,...,k% and service instance s € S.

B. Orchestration process

The orchestration process continuously adjusts the number
and placement of deployed VNFC instances to the current
traffic demand. It satisfies the SLA offered by VNF services
and minimizes the costs of compute and network resources.
The orchestrator performs actions at a given moment on a
given instance of VNFC. Therefore, we assume a discrete-time
model where the system state is described in a given time slot
teT,T =12,...,w, of iteration i € ZT. The value w
of time slots in ‘" iteration can be arbitrary but should be
short enough to limit the computation effort. Depending on
the required changes in the VNF service’s state orchestrator
also performs different sequences of actions in each iteration.
For example, increasing traffic demands require scaling up
the performance of a given service. It requires instating new
VNFC components or enforcing a change in demand allocation
among existing VNFC instances.

In our model, we consider several orchestration actions
(OA) a € A that the orchestrator can perform on the VNF
service instances. The set A covers three basic actions: i)
Scale-Out (SO) to increase the performance of a given service,
ii) Scale-In (SI) to reduce performance by evicting some
VNEFC instances, iii) Traffic Distribution (TD) to rearrange the
allocation of users’ demand. Basically, they are initiated by the
orchestrator to adjust the performance of the VNF services.
The set A covers also additional orchestration actions (AOA),
denoted as ai,as, ..., that can be defined arbitrarily as a set
A" e A\ {SI,SO,TD}. They load the orchestrator system,
so they disturb the execution of basic actions performed
in parallel on VNFC. Therefore, we model AOA demand
as a nonnegative action demand matrix AD with elements
adg s € ZT expressing the number of AOA actions a € A’
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waiting to be perform on the VNFC component v, the service

s, placed at I. As one can imagine a large number of AOA,
instead of explicitly defining them, we focus on a specific set
of AOA’s properties: i) Evict VNFC feature causes that VNFC
instance cannot handle traffic in time of action’s execution, ii)
Lock VNF causes the inability of any other action execution
on all VNFC instances belonging to VNF, iii) Lock RES
feature makes compute and network resources unavailable
when VNFC is not created yet. Finally, iv) Duration feature
defines the number of time slots required to execute an action.

Note that the orchestrator schedules the execution of all
OA on the same infrastructure. Therefore, the main challenge
of orchestration scheduling is to avoid conflicts, service break-
outs, and unnecessary resource reservations among all running
services and their VNFC instances.

C. Joint Resource Allocation and Scheduling

JRAS is an orchestration algorithm designed to manage
changes in a carrier-grade infrastructure. In advance of the
currently used orchestration algorithms, it takes into account
the impact of the execution of other orchestration actions dur-
ing the optimization of the scheduling process. The proposed
JRAS algorithm uses three main decision variables.

The component placement (cp) cp; st € 7+ describes
the number of allocated VNFC instances. It is indexed by a
given service instance s and a given VNFC v, deployed in
a given location [ at the time slot ¢. This variable is used to
allocate VNFC instances in the infrastructure.

The demand allocation (da) da;, ;, s,: € RT describes
the amount of demands generated by users located in [y to the
service s that are served by the VNFC components v located
in l5. This variable determines how user demands described
in the demand matrix SD are allocated to VNFC instances
deployed in particular data centers.

The action plan (ap) ap; q,s,0,t € Z1 denotes the number
of orchestration actions of a type a performed on the VNFC
component v belonging to the service s and running at a given
place [ during the time slot ¢. This variable determines the
schedule of actions performed by the orchestrator.

The objective of the JRAS approach is to maximize the
overall SLA satisfaction and effectively use the available
resources during the entire CM process. Therefore, we define
JRAS as an optimization problem of finding the minimum
value of the objective function f(.) defined by (1).

k k
f() = Qv * ZZ Z <5dl1,s - Z Z dall,lg,s,'u,t)

teT s€S =1 veV lx=1

k
+ 6% Z Z Z Z (Cph,s,v,t * Z fTU77~ * CZ',(,,T.)

teT s€S €V ;=1 reR

k k
+ % Z Z Z Z Z dall,lg,s,v,t * tCl17l2

teT seSveEV I1=112=1

k
LYY Y ( . z) |

seESveEV =1 ac A’ teT

)

It covers: i) the cost of the unsatisfied volume of demand
expressed by the difference between offered and allocated
demands, ii) the cost of resources consumed by running
VNFC, that covers VNFC handling requests and currently



blocked, iii) the transmission costs between VNFC locations,
and iv) the cost of waiting AOA. Moreover, «,3,7,d are
normalizing (into 0 — 1 space) and weighting factors enabling
tuning the algorithm behavior, ci,.,, denotes the cost of r-type
resource used by the VNFC instance, while ac, s, 1S an
auxiliary variable determining how many of planned actions
api,a,s,0,+ are finalized in the slot ¢. In our model, several
constraints limit the feasible solutions. Below, we present only
the most important ones because of limited paper space.

The VNFC can be allocated in a given data center only if
there are enough available compute and network resources.

Therefore, in each time slot ¢, the sum of resources allocated
for all services s and their VNFC components v located in a
given data center [ must be less or equal to the number of
available resources. We call (2) a resource conservation rule.

Z Z CPlLsvt* [ror < de Vi, ¥r € RiI=1,...,k. (2)

seESvEV

The user requests arrive at the nearest data center and
are served there, or they are redirected to other data centers
according to the availability of VNFC instances. The demand
allocation must not exceed the service demands as well as the
VNF service capacity offered by VNFC instances dedicated to
this service in a given data center. The (3) defines the traffic
conservation rule, where bl, ;. ; is an auxiliary variable de-
scribing the number of temporary unavailable VNFC instances
(Evict VNFC property) of service s and type v.

k
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k 3)
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The VNFCs are out of the service due to currently executed
CM actions. Let us recall that some AOA can require exclusive
access to the entire VNF to keep configuration’s consistency
until AOA are finished, e.g. during the software upgrade. The
number of allocated VNFC instances may change only as a
results of performed CM actions. Therefore, the system state
at the beginning of the time slot ¢ + 1 depends only on the
system state at the beginning of the previous time slot ¢ and
the number and type of executed actions on VNF service s at
location [ (4).

Vt, Vse S, YweV,l=1,... )k,

1, if a = S0, @
CPLsw,t+1 = CPLsw,t T —1, if a = 517
0, otherwise.

The orchestrator can not execute conflicting actions (Lock
VNF property) in the same slot ¢ on a given VNF service
instance s at location [ as defined by (5).

Vt, Vse S, l=1,...,k,

E : 1, if conflicting OA, (5)
apil.a,s,v,t S K
acA Cplswt, Otherwise.

Therefore, the number of executed actions equals 1 for any
scheduled conflicting action or can not exceed cp; s ,, + for any
other ones. Moreover, the number of AOA finished during a
given interaction ¢ can not exceed ad,, s, as defined by (6).

Vse S,Yve VVI,i=1,...)k

Z Z ACq,l,s,v,t S ada,l,s,v- (6)

teT ac A’
D. Other orchestration strategies

1) The Common Resource Allocation (CRA): algorithm
focuses on traditional traffic and component placement prob-
lems, trying to distribute traffic demands optimally over avail-
able compute and network resources. CRA schedules AOA
on the available VNFC independently from the placement
algorithm that is not aware of AOA. As a consequence, the
execution of AOA may exclude some VNFC from traffic
scheduling. It severely impacts VNF service quality because
CRA does not compensate for a sudden VNFC shortage.

2) The Closed Loop Orchestration (CLO): receives ideal
feedback information about the impact of AOA on VNF
service quality, and it receives it with constant delay. CLO
uses this information for enhanced, in comparison to CRA,
placement. It compensates for the execution of AOA and
to reduce a sudden service quality drop. In reality, closed-
loop solutions do not have such precise information about the
root cause of the problems, especially for unpredictable ones.
Observed KPI may be affected by different inter-orchestration
problems, and such feedback information may lead only to
incomplete compensation of AOA.

IV. PERFORMANCE EVALUATION

The objective of our experiments is to evaluate the JRAS
orchestration approach and to compare its effectiveness to
the described before CRA and CLO algorithms. All these
approaches aim to adjust the performance of the running VNF
service instances to the changing traffic demands and execute
as many as possible of AOA. The latter may impact the
operability of the VNF instance and the quality of service
offered by this VNF. In consequence, we expect dependent
on the algorithm trade-off between consumed compute and
network resources, service quality, and efficiency of AOA
execution. The effectiveness of CRA, CLO, and JRAS is
analyzed in the exemplary NFV carrier-grade infrastructure
loaded by a daily pattern of traffic demands, independent
arrival of different orchestration tasks, like software upgrades,
that introduces background load into the orchestration system.

In further experiments, we compare the efficiency of three
algorithms by the juxtaposition of the VNF service quality. We
analyze their cost in terms of consumed resources, and we also
evaluate complexity base on the time of their execution. For
that, we performed simulations of each algorithm in different
traffic load conditions and with a variable number of AOA
submitted to the orchestrator. Therefore, we consider four
simulation scenarios that differ in assumed load conditions:

o fix-fix - fixed both action load and traffic load level

o rnd-fix - variable action load and fixed traffic load level
o fix-rnd - fixed action load and variable traffic load level
e rnd-rnd - variable both action load and traffic load level



A. Assumptions

We consider a service composed of independent VNF
instances of a generic stateless type. The service is defined by a
graph with two basic VNFC component types that are: i) vLB
and ii) an arbitrary server component handling users’ requests
- in our simulations VDNS VNFC type. VNFC instances are
deployed in the exemplary telco network consisting of five
data centers . We measure the resource allocation cost with
the consumed CPU, RAM, and throughput that a singular
VNFC can handle. Each VNFC type has its CPU, RAM, and
throughput requirements fr,, and each data center has its
CPU, RAM, and throughput limits. It results in corresponding
VNFC maximal capacity dependent on its type. In our exper-
iments, the vLB VNFC consumes twice more resources than
vDNS VNEFC and offers over twice higher throughput.

In the simulations, the distribution of service demands sd; s
across different data centers is not equal while they have the
same capacity in terms of compute and network resources. In
consequence, some data centers may host more VNFC than
required to compensate for temporal VNFC shortage in some
other location. The initial configuration of service demands
sd;, s and action load ad, ;s ., levels were selected empirically
to do VNFC placements in the fix-fix scenario with maximum
possible service quality offered. In scenarios when traffic or
action load increases, algorithms may use resources from other
data centers that cause a drop in the service quality. Moreover,
initial VNFC placement is not equal on each data center and
assures merely 50% of traffic demand satisfaction. It requires
immediate VNFC placement at the beginning of the simulation
to reach satisfaction with service demands.

The Service Level Agreement Satisfaction (SLAS) metric
(7) represents the effectiveness of orchestration algorithms.
Unsatisfied service demands, or the one that is satisfied in
a non-optimal data center, reduces its value. SLAS is defined
in (7), where M AX_TC is the maximum value of tc;, i,.

SLAS()=>_3"3"3"5 " day, 1000

teT I, eL seS veV loel (N
* (1 - tcll,lz /MAX_TC)/Sdth.

In our experiments, we evaluate fifty consecutive simulation
iterations that correspond to five days of network operation
with visible daily traffic pattern for variable traffic scenarios.
Each iteration is divided into six time slots where the last slot ¢
of iteration ¢ defines the initial state of the system for iteration
7+ 1 in the first slot. The simulation was split into iterations
to allow for a change of the traffic and action load conditions
over time and also to enable the acquisition of results due
to the exponential growth of execution time with the number
of time slots. The implemented algorithms and the simulation
conditions assure that ad, ;. demands are always satisfied.

Variable patterns of traffic and action load also have periodic
and sinusoidal characters. Their amplitude was fitted empir-
ically to reflect their daily changes. The goal was assuring
the feasible solution for each algorithm in each iteration of
the simulation. The period of demand and actions’ changes
differ. It is motivated by the need to obtain the accumula-
tion of resources required for VNFC instance placement in
different simulation intervals. A load of additional actions is
not distributed equally over all the time slots of the iteration.

TABLE I
TYPE OF ACTION AND ITS IMPACT ON VNF AND VNFC
Scale-Out | Scale-In | Traffic Dist | AOA
Evict VNFC . .
Lock VNF . .
Lock RES .
Duration [time slot] 2 2 1 |

When the AOA load is constant, it is distributed proportionally
to the number of available VNFC instances - which fluctuates.

CRA algorithm executes SO, SI, and TD orchestration
actions for the optimal placement of VNFC instances required
to satisfy service demand sd; . CLO and JRAS algorithms
embed CRA, but they also orchestrate AOA. Each OA used
in our experiments has properties defined in Section III that
summary is shown in Table I. Moreover, only one SO or SI
operation can be executed at once for VNF what slows down
the scaling of VNFC instances. The execution of evaluated
AOA removes VNFC from the pool of VNFCs able to handle
the traffic. Algorithms should build capacity reserve (CLO) or
scale VNFCs in advance (JRAS) to avoid the reduction of the
service’s capacity. Both are possible only when the data center
has sufficient resources. The execution of AOA also distorts
the optimal service demand distribution.

B. Comparison of JRAS to other approaches

In the first experiment, we focus on the performance evalu-
ation of the JRAS algorithm. We compare its effectiveness
to the reference CLO and CRA orchestration approaches.
The experiments were performed in different load conditions
related to the offered service demands and AOA load.

Fig. 1 shows the obtained results with statistics of SLAS
for all fifty iterations i of simulations for CRA, CLO, and
JRAS algorithms, and all four considered scenarios. Each
bar is the average SLAS (dot) with the standard deviation
(thick line) and the max/min values’ range of SLAS (thin
line). Both CLO and JRAS outperform the CRA algorithm.
CRA does not eliminate the negative influence of AOA. In
all scenarios, the JRAS solution also outperforms the CLO
algorithm, not only in terms of the higher average SLAS value
but mainly by much lower SLAS variance. JRAS also is much
less fragile to variable traffic or action load than CLO due to
the real-time scheduling of AOA, in contrast to the feedback-
related reservation of VNFCs capacity for AOA of CLO. As
a consequence, for CLO the slots for the execution of AOA
are predetermined. The orchestrator is not aware of AOA in
real-time and does not know the actual AOA execution needs.

In all scenarios, including fix-fix, the optimization of re-
source consumption is ongoing and all the algorithms try
to minimize used resources resulting in a AOA distribution
change. JRAS orchestrates AOA in each of the six timeslots
of the iteration along with SO, SI, and TD when CLO only
performs a flat reservation of capacity for AOA.

C. Analysis of JRAS orchestration actions

In the next experiment, we focus on the analysis of orches-
tration actions taken by JRAS vs. other approaches in response
to changing traffic load or changing load of AOA. Fig. 2 is
an exemplary time plot showing how averaged SLAS changes
over time (upper plot) for JRAS or CLO algorithms correlated
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Fig. 1. The average SLAS comparison of JRAS vs. CLO and CRA in four
scenarios: a) fixed action and traffic load, b) fixed actions and variable traffic,
¢) variable actions and fixed traffic, and d) variable traffic and actions.
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Fig. 2. The time plot of orchestration actions for JRAS, CLO approaches,
where: a) the SLAS gain vs. CRA approach, b) number of allocated vLB and
vDNS instances, ¢) number of performed additional orchestration actions.

with the CRA algorithm’s SLAS. In the Function Placement
(FP) plot, we can observe how the orchestrator allocates the
vLB and vDNS VNFC instances. On the bottom plot (ACT)
we can also observe how many AOA each algorithm executes
over time. Here we present only the most prominent var-fix
scenario from the four conducted.

The ACT plot in Fig. 2 shows the amount of AOA executed
for VNF in each iteration of the simulation. The AOA change
has a sinusoidal form, and the amount of executed AOA is
proportional to the number of VNFC instances of vDNS or
vLB network functions. The same change pattern is visible on
the FP plot where the number of executed AOA follows the
changes of the AOA load. The amount of VLB or vDNS VNFC
instances changes sinusoidal and follows the current action
load conditions - for CLO with visible feedback delay. The
FP plot also shows the before-mentioned relation of resource
requirements for both types of VNFC. Therefore, we can
notice a doubled amount of vDNS VNFC instances required -
compared to vLB. The SLAS plot shows that both CLO and
JRAS algorithms significantly (over 100%) improve the SLAS,
in comparison to the CRA approach, and the negative influence
of AOA on SLAS can be minimized. The SLAS and FP plots
show the CLO feedback delay observed in the first iterations
of the simulation when AOA are not mitigated yet. The JRAS

TABLE II
AVG./STD. EXEC. TIME [MIN] FOR EACH ALGORITHM AND SCENARIO

fix-fix fix-var var-fix var-var
CRA 48 / 19 23 /7 32/ 10 18/5
CLO 51716 2177 1272 1475
JRAS | 137740 | 70/17 | 56/12 | 46/9

gain is the highest when the AOA load is increasing and drops
when the AOA load is going down. The FP plot also shows that
JRAS does not consume more resources over time. Instead,
it allows optimally using them. The feedback delay of CLO
always delivers historical and inaccurate information about the
AOA load level when JRAS utilizes real-time information of
incoming AOA. It allows scheduling their execution at the best
moment from the viewpoint of current resource allocation.

D. Assessment of algorithms complexity

We analyzed the complexity of JRAS by measuring the
time each orchestration algorithm calculates the optimum solu-
tion. The algorithms’ implementation utilizes the open-source
MiniZinc framework [25]. The simulations were performed
on a single thread mode with Coin-OR CBC solver [26].
Our goal was to have fair and comparable conditions for
algorithms’ evaluation, so the simulations were executed on
the same server (40 x 2,3GHz CPU, 128GB RAM). We run
all 12 scenarios at the same time and each simulation could
utilize 100% power of a singular CPU. The simulations were
repeated 60 times and the 95" percentile of average values of
the obtained algorithms’ execution time are shown in Table II.

The results show that the complexity of JRAS model
calculation is up to three times worse than CLO or CRA
approaches, but it does not significantly differ in particular
scenarios. Nevertheless, further evaluation of the complexity of
JRAS is required, considering the influence of different initial
conditions and the heuristic, non-solver-based implementation
of the algorithms.

V. SUMMARY AND FURTHER WORKS

In this paper, we propose a new Joint Resource Allocation
and Scheduling orchestration approach. This method deals
with the allocation and scheduling of change and life cycle
management operations in NFV environments, jointly with
VNEFC placement. JRAS manages changes, addresses diverse
requirements and dependencies of all services together. It
enhances and stabilizes the quality of virtualized service, as
has been shown by the performed experiments. The proposed
solution eliminates short-term changes introduced by intra-
orchestration, CM, or LCM operations, that can produce
false feedback for closed-loop solutions. As a consequence,
JRAS enables their adoption in NFV environments for inter-
orchestration changes of slow nature that are easier to predict.
At the same time, the complexity of JRAS is of the same
order as other analyzed algorithms. In future work, we plan to
extend the JRAS model to ensure its generality, to implement
its heuristic algorithm, and to support Containerized Network
Functions (CNF). We will also analyze the performance of
JRAS by taking into account different topologies, relationships
between VNFC types, varying workloads, and action proper-
ties.
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