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Abstract—Programmable data planes can support flexible and
feature-rich networks. However, the network operator must have
confidence that the network data plane correctly implements
the specified policies. To address this, data plane testing and
verification mechanisms have been proposed, which, in general,
trust the data plane devices to behave faithfully. A few current
solutions recognise that one or more of the network devices may
be under the control of a malicious adversary but do not address
either the enhanced capabilities or motivations of an attacker
in a modern P4-programmable data plane. Furthermore, the
ability of an attacker to utilise these enhanced capabilities in
an exploit has not been investigated. In this paper, we address
this knowledge gap by means of a case study in which we assume
the role of an attacker in an open-source implementation of a P4-
programmable software switch and attempt a range of methods
to exploit the program running on that switch. We find that
attacks that exploit both the programmability and statefulness
of the P4 switch are indeed possible, and discuss the impact of
our findings with proposals for future adversarial data plane
verification mechanisms to address this new threat model.

Index Terms—P4, Programmable Data Planes, Data Plane
Verification, Software-Defined Networks

I. INTRODUCTION

The centralised control of network forwarding devices made
possible by software-defined networking (SDN) has revolu-
tionised the development of network applications by enabling
a shift towards logically centralised applications (e.g. load
balancers [36] and firewalls [16]) with network-wide visibility.
The key enabler for these applications in early OpenFlow
(OF)-based [24] SDNs was the central collection and process-
ing of statistics from network devices at the control plane
(CP), as these statistics could inform network-wide policy
updates. However, despite the benefits, this architecture was
quickly recognised as excessively restrictive for many stateful
applications [5] due to the latency introduced by switch-
controller communication to update or read state variables.

Now, the surge in popularity of programmable network
data planes (DPs) has changed the landscape for application
developers. This is, in large part, due to the Reconfigurable
Match Table (RMT) architecture’s offer of programmability
without sacrificing performance [7] and the emergence of the
P4 programming language [6] as the de facto standard for
programming the DP. The support for stateful data structures
and hash functions in P4-programmable switch chips, such as
Barefoot’s Tofino [1], and native language support for mathe-
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matical operations, such as bitwise addition on packet header
fields, have allowed application developers the flexibility to
offload relatively simple tasks to DP devices. This not only
allows for significant reductions in latency for stateful network
functions (e.g. stateful firewalls, load balancers) by allowing
them to reside entirely in the DP, but can also reduce the
workload on more complex analysis applications (e.g. machine
learning applications) by pre-processing statistics [25].

A major consequence of making DPs both stateful and
programmable is an increased difficulty in verifying that DP
behaviour corresponds to high-level network policies. As com-
plex programming constructs make the deduction of intended
device behaviour more difficult, and stateful changes to DP
behaviour can occur without controller direction or visibility,
exemplar OF-based verification solutions such as Veriflow!
[19] become inapplicable. To address this, significant research
has been undertaken on P4 verification and testing, using
techniques such as static analysis (incl. symbolic execution) of
P4 programs and table entries [15], [22], [23], [32], runtime
testing of P4 switches [26], [31] and analysis of runtime
statistics or postcards2 provided by the DP [20], [38], [42].

Given that many of these verification solutions are intended
to catch bugs, they operate under the implicit assumption that
DP devices behave honestly. Given that attacks that exploit
weaknesses in SDN-ready DP switches have already been
demonstrated [28], [34], there is a clear possibility that an
attacker with control of a DP switch may use this trust to
falsify runtime statistics, evading these verification solutions.
As it stands today, there are only a few DP verification solu-
tions that acknowledge this potential presence of a malicious
actor. We refer to these as adversarial data plane verifica-
tion (ADPV) solutions; mechanisms that attempt to detect
anomalous behaviour from compromised DP switches. These
solutions differ from non-adversarial verification mechanisms
in that their designs implicitly assume that an attacker may
attempt to hide their activities from the CP, meaning that data
received from an individual switch is not automatically trusted.

State-of-the-art ADPV solutions can be largely divided into
three categories: those that use data plane cryptography to

Veriflow is a real-time network verification solution that monitors Open-
Flow messages between the DP and CP to detect attempted changes to the
network that violate high-level policies.

2A postcard is a packet header that includes information about which
switches a packet has traversed and which forwarding rules were applied.



validate packet paths [29], [40], those that use probe packets
to test forwarding behaviour [9]-[11] and those that distribute
statistics collection across multiple switches to account for
switches that may be misbehaving [13], [17], [30], [33], [41].

While the techniques employed vary, these solutions all
share an assumption of a DP in which all functionality is
stateless and an attacker’s capabilities are limited to logical
compositions of drop and inject operations on DP packets.
However, as network operators move to use the DP in novel
ways as enabled by P4, it is not yet clear to what extent an
attacker may do the same. The establishment of this is crucial
to the development of updated ADPV mechanisms, not only
because porting OF-based ADPV solutions to a P4 DP may
result in blind spots in attack coverage, but also because there
may be practical limits to an attacker’s capabilities that could
be leveraged by detection mechanisms.

We identify three main contributions of this work. Firstly,
we present a unique analysis of the P4-SDN architecture
from the perspective of an adversarial attacker identifying
the layers of abstraction and the potential for exploitation
(Section II). Secondly, by means of a case study, we showcase
two possible attacks that take advantage of the statefulness
and programmability of the P4-SDN architecture to alter the
switch’s forwarding behaviour (Sections III and IV) Finally,
we propose a new approach to ADPV for stateful P4 DPs to
address this new threat model (Section V).

II. P4-SDN ENVIRONMENT

The elements in the P4-SDN architecture (shown in Fig.
1) are introduced as a foundation for analysis of adversarial
exploitation of the DP.

A. P4

The P4 language was originally designed as a high-level
alternative to programming DP devices in specialised assembly
code. To achieve this, P4 programs consist of some combi-
nation of parsers to extract packet headers from incoming
packets, match-action tables to perform actions based on
the values of certain header fields, deparsers to serialise the
resultant packet that is to be sent to an output port and extern
objects, which are essentially black box functions. The most
pertinent extern to this work is the register, a stateful array that
allows the programmer to store data that persists beyond the
processing of a single packet. The exact number and format
of each construct in a P4 program depends on the architecture
for which it is designed. Fig. 1, for example, depicts the
Portable Switch Architecture (PSA), which is intended to be
the standard architecture to which a variety of network switch
chips will conform.

B. P4Runtime

The P4Runtime (P4RT) API [27] enables control and moni-
toring of the P4 language elements in a PSA-compliant switch
at runtime. This communication is performed by a gRPC
server on each switch and a gRPC client (usually running on
an SDN controller). It is considered best practice to protect this
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Fig. 1. P4-SDN Architecture

communication using Transport Layer Security (TLS). The
idealised workflow of PART can be summarised as follows:

1) An architecture-compliant P4 program is compiled to
produce a target-specific binary program to be run on the
switch, and a P4Info file. P4Info is a contract between the
DP and CP specifying information about the P4 program
entities (e.g. table entries) present in the code that the
controller can read or edit.

2) The P4RT client uses a SetForwardingPipelineConfig
remote procedure call (RPC) to push both the P4Info file
and binary program to the PART Server on the switch.

3) The target device installs the binary on the switch and
stores the P4Info file within the switch operating system
(OS) as a reference to the program so that the P4RT
Server can service the requests of the Client.

4) The P4RT client monitors P4 entities by issuing Read
RPCs and edits them using Write RPCs. The Client
can also read or change the forwarding configuration
at any time using the GetForwardingPipelineConfig and
SetForwardingPipelineConfig RPCs, respectively.

C. gRPC Server - Switch Chip Communication

While the P4RT protocol serves an important purpose in
that it defines a common interface by which any conforming
P4 DP device can be controlled by a CP, it does not define
the mechanisms by which the behaviours mandated by the
protocol are implemented on any given switch. The exact
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nature of this behaviour is device-specific (due to variances
in OSs and hardware), but must always translate Protobuf
messages received at the gRPC server to function calls to
the switch software development kit (SDK). This SDK is
specific to the individual switch chip and provides a set of API
functions that allow other programs running on the switch OS
to communicate with the switch chip’s drivers.

In P4RT terms, the code that performs this translation to
SDK calls is known as the PART Server. The PI (Program Inde-
pendent) framework is currently the major attempt to provide
a common P4RT Server implementation for programmable
switches that support the PSA switch architecture.

D. Stratum/BMv?2

BMv2 is a software switch designed by the maintainers of
the P4 language as a reference P4 switch implementation.
Despite BMv2 not being performant enough to be used in
production, it is used extensively as a testbed for P4 programs.

Stratum is an open-source switch OS designed for use on
whitebox P4 switches in SDNs. Stratum currently supports 8
different forwarding devices (including ASICs and software
switches) [2] and incorporates management of all aspects of
SDN switch behaviour, exposing three APIs to the CP for this
purpose: PART for the management of a P4-programmable
switch chip, gNMI to manage device configuration and gNOI
for operations management. In this work, we are concerned
only with P4RT. The key abstraction used in Stratum to
implement this behaviour is the Hardware Abstraction Layer
(HAL), which serves as an interface that converts PART RPCs
to function calls to a device-specific implementation of a P4ART
Server. For Stratum and BMv2, the PI framework is used as
the PART Server implementation.

The BMv2-specific implementation of Stratum follows the
structure shown in Fig. 2. The PI function calls to the
forwarding device are implemented by the Libbmpi.so shared
library and the functionality of the BMv2 switch is packaged

into the Libsimpleswitch_runner.so shared library. The rest of
the Stratum code runs as a Linux executable named stra-
tum_bmv2, which calls the relevant shared library functions
when required. This structure is reflected in Fig. 2, which also
demonstrates the function call chain for common P4RT RPCs.

III. ATTACK METHODOLOGY
A. Threat Model

As previously noted, the objective of this work is to deter-
mine how an attacker with the ability to run their code on a
P4 switch within an SDN may materially affect the behaviour
of the network without being detected. We assume that the
attacker is able to intercept and edit data to/from the controller.
In particular, we assume that the attacker can inject their code
before calls to the switch SDK or drivers (highlighted blue
in Fig. 1), allowing them to edit the arguments passed to the
SDK or driver functions. This threat model is more specific
than many ADPV solutions, such as [30] which assumes
that an attacker can drop, inject or delay packets without
specifying how this may be achieved. It is also less strong than
other threat models, such as that of [33], which additionally
assumes that an attacker may exploit a side channel to exfiltrate
sensitive information from packets.

The method of achieving compromise is out of scope as
it is likely to depend on the vulnerabilities of an individual
switch or network, but previous work has shown how SDN
switches may be compromised by a malicious insider [28] or
by exploiting switch-specific vulnerabilities [34]. In addition,
it has been shown that supply chain attacks [21] or watering
hole attacks on device drivers [35] may be used to achieve a
compromise that fits with our threat model.

B. Attack Setup

To recreate the attack scenario, we set up a BMv2 (Be-
havioural Model version 2) software switch running the Stra-
tum switch OS, controlled by the ONOS (Open Network
Operating System) SDN controller. For each attack, we used
the LD_PRELOAD trick [12] to preload a malicious shared
library before the Libbmpi.so and Libsimpleswitch_runner.so
shared libaries. This method (used by rootkits such as Jynx2
[8]), allows us to edit the arguments passed to the simulated
ASIC’s SDK and driver functions to suit the goals of our
attack, as detailed in Section IV. Note that the use of BMv2
here relates only to the ability to intercept calls to its open-
source SDK and driver shared library functions and does not
depend on its inability to forward packets at line rate.

To test the ability of our attack code to alter network
operations, we run an implementation of the P4Knocking
application [37] on the BMv2 switch. P4Knocking is a P4
implementation of the port knocking stateful firewall method,
where access is allowed through a given switch, only if each
host requesting access firstly sends a series of packets with
the correct sequence of TCP destination port numbers. The
application is implemented using a P4 register, which stores
an integer from O to 3, indicating the number of consecutive
packets that have been received from a given IP address that
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Fig. 3. Attack Flow Diagram

satisfy the secret knock sequence of TCP port numbers. Once
the register value for an IP address is equal to 3, then traffic
from that IP address is allowed to pass through the firewall.
In addition to this, in order to reduce the memory occupied
by the register, the program uses an optimisation where a 16-
bit ID is used to index the register array rather than 32-bit IP
addresses. These IDs are assigned by the CP (via the insertion
of a table entry) upon receipt of a Packetln from the DP, as
depicted in Fig. 3.

The success of each attack was evaluated by two metrics: (1)
the ability of the attacker to bypass the P4Knocking firewall
and (2) the inability of the network operator to determine that
an attack is taking place. Changes in forwarding behaviour
were verified using two Mininet hosts attached to the P4
switch: one sending packets through the switch using scapy,
and the other running tcpdump to detect packets that had
bypassed the firewall (as shown in Fig. 3).

For each experiment, after verification of correct
P4Knocking behaviour for legitimate packets, a series
of TCP SYN packets were sent with the IP address set to
that of the attacker, and with random TCP destination port
values that did not follow the knock sequence. If the attacker
successfully changed the program behaviour, these packets
would be visible in the tcpdump output. (metric 1).

To assess the network operator’s ability to detect the attacks,
the logs of the ONOS controller were examined as a proxy
for the CP’s view of network operations. Any errors present
in these logs would act as an indicator that an attack is taking
place, thus constituting a failure of our attack. In addition, for
the experiments involving changes to the switch program, the
P4RT shell program was used to send GetPipelineConfigRe-
quests (the baseline ONOS implementation did not do this) to
query both the P4 binary (a JSON config file in the case of
BMv2) and P4Info text file that constitute the P4 program. If
either of these showed the presence of our attack code, the
attack was considered a failure (metric 2).

IV. ATTACK EXPERIMENTS

As identified in Section III, the goal of the attacker is to
gain unauthorised access to the network by bypassing the

P4Knocking firewall. This can be achieved by manipulating
the P4 table entries or changing the P4 program?.

The experiment details and results are presented in the
following subsections with an overview of the tests and results
presented in Table 1. To enable reproducibility, we release our

code at https://github.com/conorblack/AdvExpP4DP.

A. Attack 1: Manipulating P4 Table Entries

1) Attack Explanation: The goal of this attack is to indi-
rectly edit the value stored in the register array for a target
IP address by changing the associated ID value to one that
has already been assigned to another IP address. In this way,
the attacker’s IP gets the same access rights as the legitimate
IP, as it is the ID value that is used as the index to read
the P4Knocking register. Unlike attacks that involve altering
the P4 program itself, this attack can be performed on the
legitimate running P4Knocking program, but it does have some
other disadvantages. The major disadvantage is the fact that
unless the attacker knows an IP address that has already passed
the knock sequence, there is a risk that the new ID assigned
to the attacker will not grant additional access.

2) Functions Involved: To perform this attack, an attacker
must intercept one of the functions implementing a TableEn-
try Write message within the switch and change the ID
value being added to the table. The function chosen was
MatchTable::add_entry from Libsimpleswitch_runner.so. As
this function is called when any table entry is inserted, it
was necessary to ensure that we would only overwrite entries
applicable to our attack. This was achieved by filtering by IP
address and action name before editing the data.

In addition, given that the CP can use TableEntry Read
messages to query the keys and action data associated with
a table, the attack must also intercept a function involved in
reporting the edited table entries back to the P4ART Server and
replace the attacker-inserted value with the value originally
assigned by the controller. For this purpose, the get_entries
function from Libsimpleswitch_runner.so was intercepted. This
function returns all table entries associated with a table and
so our attack code only replaced the entry data if the match
key and function matched those of the attack.

3) Results: According to the criteria set out in Section III,
this attack was successful, as the firewall bypass was achieved
with no error messages. However, if the function intercepting
get_entries is removed, the ONOS logs do report inconsistent
table entries, which the controller immediately deletes.

B. Attack 2: Changing the P4 Program

1) Attack Explanation: The goal of this attack is to change
the P4 program running on the switch to one that includes an
exception to the P4Knocking firewall rules. There are several
ways that the P4 program can be altered. However, we consider
only an attack that changes both the P4Info file and switch
program. The attack involves adding an additional table with

3The manipulation of P4 register values is another possible attack vector,
but was omitted in our experiments as there was no implementation of reading
and writing of register values in the PI framework at the time of writing.



TABLE I
COMPARISON OF ATTACK TECHNIQUES BY FUNCTIONS INVOLVED AND RESULTS

Functions Involved Results
Attacks Variants _pi_table_entry_add | MatchTable::add_entry Context::add_entry get_entries Attack Packets Forwarded? ONOS Logs
w/ Read intercept X Intercepted & Called X Intercepted & Called v No Errors
Manipulating Table Entries
w/o Read Intercept X Intercepted & Called X X v Inconsistent Table Entries
Controller-initiated | Intercepted & Called X Intercepted & Called X v No Errors
Changing P4 Program
Attacker-initiated Called X Intercepted & Called Intercepted X RPC Timeouts

a single action that automatically sets the knock state of any IP
addresses added as match keys to 3, thus allowing any packets
from these IP addresses to to pass through the firewall. The
advantage of this approach from an attacker’s perspective is
the additional configurability, given that it allows an attacker
to change the target IP address.

As an additional variant to this attack, we attempt to change
the switch program both when the CP initiates a change and at
a time when the CP is not expecting it. A successful pipeline
change in the latter case would give an attacker total flexibility
over when the attack took place. Otherwise, they would have
to wait for the controller to change the switch program to
launch their attack, something which may never happen for
some switches whose operation remains fixed over time.

2) Functions Involved: The function that needs to be called
to install a new switch program is _pi_update_device_start
from Libbmpi.so, which takes both the P4 program JSON and
the P4Info file (as a C++ struct) as arguments. For our attack,
the arguments are changed to our attacker’s version of these.
In addition, a function needs to be intercepted that allows us
to write table entries to our extra switch table. As our table
does not exist in the legitimate P4Info file, we cannot use
any functions from Libbmpi.so, as these use the legitimate
P4Info file as a frame of reference and so do not recognise our
additional table ID. As all of the arguments need to be forged,
we intercept the add_entry function from the Context class, as
this takes string arguments, unlike the MatchTable::add_entry
function intercepted in Attack 1.

To carry out the attack variant where the P4 program is
changed without CP initiation, the get_entries function was
again intercepted, and the _pi_update_device_start function
called from within it. This function was chosen as it is called
frequently, ensuring our program will be loaded.

3) Results: According to the criteria set out in Section III,
the main attack variant was successful, as the firewall bypass
was achieved with no error messages. However, once the P4
program is changed from the get_entries function, the ONOS
logs show that the switch has stopped responding to Read and
Write RPCs, indicating that the switch has gone offline. The
switch never recovers to forward any packets, thus this attack
variant fails against both success criteria.

V. DISCUSSION
A. Findings
Our first key finding from the experiments is the ability
to modify table entries to alter stateful behaviour without

detection. This capability must be considered in future ADPV
solutions, as current solutions do not address it. However,
one of the interesting findings when implementing this attack
was the aggressiveness of the ONOS controller in deleting the
attacker-inserted table entries when they were not spoofed by
intercepting calls to the get_entries function. While spoofing
these table entry reads in the software switch was easily
achieved, the extra burden of this on a hardware switch could
be significant. Given that Barefoot’s Tofino switch boasts of
being able to add 100,000 new flow rules per second [4], the
need to intercept each of these writes and any associated reads
to find and edit relevant table entries may add such significant
processing overhead to cause delays or even crashes.

A second key finding is the ability to intercept Set-
PipelineConfigRequests such that a different program can run
on the switch than was intended by the network operator.
Furthermore, the only restriction on the structure of this
program is that it includes at least all of the P4 entities present
in the legitimate program, allowing an attacker to use ‘ghost’
tables in the DP in their attack. Despite the fact that this
attack only succeeds if the CP triggers a program change at
the switch, once the attacker’s program has been installed, it
requires no additional maintenance to keep it hidden from the
controller. This is because the PART Server that communicates
with the controller stores a copy of both the switch program
and the associated P4Info file locally and uses both to respond
to GetPipelineConfigRequests from the controller and as the
point of reference when querying the values of P4 entities
from the switch chip. From a defence perspective, this greatly
diminishes the usefulness of using GetPipelineConfigRequests
and Table Reads in detecting attacks, as there is no requirement
for an attacker to spoof the values returned by these requests.

The generalisability of the program change attack to hard-
ware targets will vary by device as with the other attacks.
However, the responsibility for the implementation of the
P4RT Requests lies with the PI library, which can not only be
used directly by switch vendors, but also serves as a reference
for proprietary PART Server implementations.

B. Potential new approaches to ADPV

The implications of these findings on the development of
future ADPV solutions are twofold. Firstly, the success of
the attacks in manipulating stateful data structures in P4
programs confirms that this must be taken into account in
the development of future ADPV mechanisms applicable to
P4 DPs. Secondly, the lack of natural defence mechanisms in



PART sets a high bar for future ADPV solutions, as the full
range of programmability may be leveraged by an attacker
to create more subtle attacks than changing OF table entries.
A logical solution to these new attacks is to extend current
ADPYV mechanisms to take account of DP state. However, the
explosion in state space that would have to be covered by
stateful extensions to probe-based defences greatly increases
their complexity, while potentially reducing their benefit. For
redundancy-based defences, the logical extension would be
to replicate the calculation of state variables across many
switches. The limitation in this case is that the replication
of state requires additional operations in the switch, such as
writing to registers, which may place additional processing
time onto each packet. Furthermore, the potential use of
additional memory to store state variables may be limited by
the amount of memory available, which is often scarce on
high-performance ASICs. The concept of replicating state is
also in direct contrast to other state-of-the-art work, such as
SNAP [3] and Poseidon [39], where stateful applications have
been distributed across several switches to ensure memory and
latency limits aren’t exceeded.

As an alternative ADPV approach, in our further work,
we propose to exploit the programmability of the switches to
implement a moving target defence that frequently changes the
expected behaviour of DP switches. For instance, a CP could
dynamically change the switch from which counter statistics
are requested, making any attack code obsolete as its statistics
are no longer used by the CP application. The major advantage
of this approach is the ability to place the burden on the
attacker to constantly innovate their attack, which may not
always be feasible (particularly if the attacker does not have
continuous access to the switch) as it requires the attacker to
learn the nature of new switch programs and redesign their
attack accordingly. A key consideration in developing this
solution will be to address the burden of regularly changing
the switch program on every DP switch for the method to be
effective. This is crucial to enable the CP to maintain an up-
to-date view of expected network behaviour and to minimize
switch downtime while switching between programs*.

Finally, it remains an open question as to whether a hard-
ware root of trust (e.g. a Trusted Platform Module) could
be used on switches to verify the integrity of P4 programs.
Such a solution would likely be advantageous due to its
limited burden on the network operator and universal coverage
of P4 programs, regardless of statefulness. However, to our
knowledge, the feasibility of this has not been investigated and
other hardware-based switch integrity checking mechanisms
have nevertheless been shown to be exploitable [18].

C. Limitations

We acknowledge that our experiments have been performed
on a software switch not intended for production and that
we have assumed that an attacker is able to gain access to

4A switch downtime of up to 50ms is required for the Barefoot Tofino,
even when their Fast Refresh technology is used to minimise disruption [4].

a switch. We have provided justification for these conditions.
Nevertheless, the only fundamental obstacle in achieving the
aims of the presented attacks was the inability to change the
P4 program running on the switch without it having to come
offline (Attack 2, version 2). While this is an expected switch
behaviour during configuration update, in this particular attack
version, the switch never recovered from the errors to forward
packets again. If this were to be replicated in production-
grade switches, it would make this route of attack infeasible.
However, it is unclear to what extent a production switch
would replicate this behaviour.

VI. RELATED WORK

As alluded to in Section I, current ADPV solutions fall
into three major categories. REV [40] is a cryptographic solu-
tion that involves embedding Message Authentication Codes
(MACs) into data plane packets to prove that they have
traversed the switch. These cryptographic operations, however,
limit throughput, and only verify packet traversal, not editing.
Chiu et al. [11] propose sending crafted probe packets to an
OF switch to trigger multiple match rules at once, verifying
that they are applied correctly. The major limitation of this and
other probing solutions is that they cover only pre-installed,
legitimate flow rules and overlook additional attacker-installed
rules. Finally, Preacher [33] is an ADPV mechanism that
leverages redundancy, collecting the hashes of packets that
traverse each switch at the control plane and verifying that the
paths match predetermined expected traversals. This method
does not account for stateful packet processing.

Aside from verification, other work has looked at the vulner-
ability of P4 and other SDN-ready DP switches. Dumitru et al.
[14] investigate how bugs in P4 programs on different switches
may be exploited by an adjacent attacker to crash the switch
or exfiltrate data. Thimmaraju et al. [34] demonstrate how
vulnerabilities in OvS were able to lead to malicious remote
code execution on the switch. Finally, Pickett [28] shows how
an attacker may use vulnerabilities in popular whitebox switch
OSs to compromise and stay persistent in these switches.

VII. CONCLUSION

The fundamental motivation behind the development of
ADPV solutions is the idea that the control plane may not
always have the true picture of the state of the DP if malicious
actors have control of DP switches. While this threat model
has been assumed by current ADPV solutions for stateless
Openflow-based DPs, in this work, we have demonstrated
through several attack examples that this threat model can be
extended to include P4 DPs. Furthermore, we identify that
the required interventions of the attacker are fewer than what
may have been expected. These findings motivate a new ap-
proach to ADPV that can incorporate P4 programmability and
statefulness. We have highlighted the inadequacy of current
solutions to address this expanded threat model and propose a
potential new approach to secure P4 DPs against attacks. We
will explore this approach in our future work.
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