
ITrade: A Blockchain-based, Self-Sovereign,
and Scalable Marketplace for IoT Data Streams

Sina Rafati Niya, Danijel Dordevic, Burkhard Stiller
Communication Systems Group CSG, Department of Informatics IfI, University of Zürich UZH

Binzmühlestrasse 14, CH—8050 Zürich, Switzerland
Emails: [rafati|stiller@ifi.uzh.ch], danijel.dordevic@uzh.ch

Abstract—In recent years, the interest grew in the Internet-
of-Things (IoT) and Blockchain (BC) integration for additional
trust and decentralization. This opened potentials in various use
cases, such as supply chain tracing, smart cities, and recently
IoT data marketplaces. Therefore, this paper presents the de-
sign, implementation, and evaluation of the BC-based IoT data
trading platform “ITrade". ITrade proposes a highly scalable
microservice-based architecture based on clouds. ITrade enables
end-to-end data streaming from IoT devices toward data buyers.
The Smart Contract (SC)-oriented design of ITrade enables
decentralized management of autonomous and distributed IoT
data trading. ITrade evaluations attest its scalability as a reliable
peer-to-peer data transmission platform.

Index Terms—IoT, Data Streaming, Data Sovereignty,
Blockchain, Smart Contract.

I. INTRODUCTION

The world is reshaped by data connectivity resulting in the
creation of new virtual and digital economies with the potential
to generate almost 11.1 trillion USD per year by 2025 [13].
Now that the world’s most valuable resource is data [24], new
business opportunities arise from data monetization, i.e., the
process of generating economic benefits from data by trading
data. Up to now, high-value personal data is usually handled
by centralized databases and servers, belonging to large in-
stitutions, organizations, or companies. Such a centralization
increases maintenance costs and risk of cyberattacks.

To ensure the highest possible control over the handling of
personal data and digital assets, data traders need to be able
to rely on data sovereignty [8], which becomes particularly
relevant, where data is processed and/or stored [1], since cloud
storage services have become increasingly popular as data
persistence platforms for many businesses [12].

Blockchains (BC) form a transactional data storage system,
which are maintained in a decentralized and distributed fash-
ion. BC use cases have proven to be feasible not only in
the Fintech area [7], [22], [16], but also, in IoT-oriented use
cases, too [19], [20], including environmental monitoring [18],
supply chain tracking [17], industrial cases [21], health care,
smart cities, or smart agriculture.

In order to make IoT data more accessible, IoT data
marketplaces have been proposed such as IDMOb [14], Dat-
apace [11], Sash [25] and the proposed platform in [15].
These marketplaces provide technical solutions and business

incentives for treating data as a tradeable virtual asset. How-
ever, this paper’s current analysis based on [10] shows that
these valuable marketplaces are not meeting user and use
case demands with respect to privacy, scalability, and data
sovereignty aspects. Therefore, this paper develops ITrade as a
secure and scalable IoT data marketplace based on BCs. ITrade
implements the decentralized management of data trading
via Smart Contracts (SC). As a data streaming platform, it
brings together individuals, companies, and organizations from
private and public sectors, who are interested in IoT-collected
data, for instance (a) as within studies performed for health-
related use cases, which are most needed in the case of
COVID-19 pandemic, and (b) individuals, who are interested
in selling data collected by their devices in general. IoT owners
can initiate data streaming via ITrade and benefit from its
highly scalable architecture.

The remainder of this paper is organized as follows. Section
II discusses deficiencies of current proposals in the IoT data
trading field. Section III presents the design of ITrade, while
Section IV discusses implementation details and the architec-
ture of ITrade. Evaluation results of ITrade are presented in
Section V and, Section VI covers a brief summary.

II. REQUIREMENT ANALYSIS

The field study in this work revealed a gap between the
state of the art and user expectations or use case demands.
The main drawbacks of related work are as follows [10]:

User-friendliness: Most of the solutions proposed require
manual steps to start trading data, making the implementation
very labor-intensive. In addition, for the solutions developed
there is a lack of clear explanations on implementation details.

Performance and Cost: Most of the related work studied
commits each transaction (TX) on a BC. Hence, there is a
hard cap on the number of TXs stored per second (tps) due
to scalability limitations of BCs. Therefore, traders incur high
storage and TX costs.

Deployment: Related work provides no or very little infor-
mation about steps necessary to deploy the respective platform.
These solutions do not follow a cloud-native approach [5].
One requirement of the solutions available is to be manually
deployed, which makes it challenging to reproduce steps for
testing, staging, quality analysis, and production.

Scalability: Storing large amounts of data via TXs on a
BC in systems available results in inhibiting scalability. In978-3-903176-32-4 © 2021 IFIP



addition, underlying data storage systems used by the solutions
analyzed tend to lose performance and do not scale well, when
the amount of data being handled exceeds 1 TB.

Data Sovereignty: There are three aspects that have to be
considered to provide data sovereignty. (a) Storing the data in
the same geographical location (geolocation) where the data
is being generated. In case of employing cloud services, the
cloud servers have to stay in the same location, and the Service
Level Agreement (SLA) of the cloud provider guarantees that
the data does not leave the data center. (b) Serving the traffic
based on the geolocation of the users. (c) Preventing the users
from accessing the data marketplaces from restricted locations.
In this regard, there is not enough information about how
related solutions are providing data sovereignty.

III. ITRADE DESIGN

To address the deficiencies of existing data marketplaces,
ITrade is designed with dynamic elements and scalable mod-
ules, which enable sophisticated processes for secure device
and user registrations, data streaming, and end to end trans-
action. The following introduces the entities and processes
designed in ITrade.

A. ITrade Entities

ITrade contains four main entities, while each entity repre-
sents a SC deployed on the Ethereum BC. Thus, these entities
are uniquely identified by their SC addresses.

The Data Stream Principal (DSP) represents a generic
entity within the system that can act both as a Data Stream
Seller (DSS) and a Data stream Buyer (DSB). Each DSP has
an Owner Address, i.e., its Ethereum’s account address, its
Name, a URL, and an RSA public key. The RSA key is used
for exchanging the symmetric key used for encryption/decryp-
tion of a sensor data.

A Data Stream Seller (DSS) registers 0 − n sensors to
the marketplace and sells their data. In addition to the DSP
attributes, a DSS has a list of sensors registered by him/her.

A Data Stream Buyer (DSB) subscribes to data streams
offered by DSSes. DSBs are individuals or organizations are
interested in a particular piece of data generated by DSSes.

1) Sensors: Sensors are owned by DSSes. A sensor collects
raw data, while being attached to a device with an active
Internet connection (i.e., IoT devices) to transmit the data into
ITrade. As a novel approach and in contrast to the available
data marketplaces, in ITrade the data being pushed to from
IoT devices has to be encrypted on the DSS side beforehand.
This prevents ITrade administrator and any middleman from
being able to read data or misuse such data. Each sensor has
the following attributes.

• The Type defines the data type being collected by sensors,
such as a temperature, humidity, air, or water pollution
index.

• A Status defines for every sensor upon its registration the
state it is in. The DSS has to activate it before being able
to send data from it. The sensor can also be deactivated
or blocked by its owner.

• The Geolocation is represented by longitude and latitude
of a sensor.

• The Price per Data Entry defines the price that a DSB
has to pay, when subscribing to the sensor’s data stream.
Buyers have to enter the number of entries they want to
buy.

• An AES Private Key is generated by DSS for each of
his/her sensors. These private keys have to be securely
stored by DSS locally.

2) Data Marketplace (MP): An MP is the central entity
of the ITrade design. It embeds multiple micro-services for
enabling ingestion, streaming, and persisting data. An MP
shows the following attributes:

• The MP Owner Address is the address of ITrade owner
and administrator.

• A DSP Registration Price defines that price each DSP
has to pay when registering to the marketplace.

• The Sensor Registration Price defines a flat fee for
registering sensors.

• The list of Registered DSPs names all DSPs registered.
• The DSP Commission Rate for each DSP defines a

certain percentage of its price, which is transferred to
the MP’s Ethereum account as a streaming fee.

3) Data Stream Subscription (DSSub): A DSSub represents
a subscription to a data stream. Each time a DSB subscribes to
a data stream, a new DSSub SC is created. A DSSub operates
on the following attributes.

• A DSB ID represents the identifier (ID) of the DSB.
• A Sensor ID defines the ID of the sensor to which the

DSB has been subscribed to.
• The Start Timestamp defines the time from which the

DSB has been subscribed to a sensor’s data stream.
• The Number of Data Entries determines those data

stream entries that the DSB subscribed to.

B. User Interactions and Processes in ITrade

1) DSP Registration: In interacting with ITrade, the first
phase is DSP registration phase where a DSP registers to
the MP by providing basic information about him/her-self
together with a public RSA key. The RSA key-pair will be
automatically generated by ITrade’s Web client. The DSP
deploys a SC on the BC. The deployed SC represents a DSP
instance. The DSP also has to pay the registration fee that
is predefined by the ITrade’s admin. Once the DSP has been
successfully registered, he/she can act both as a DSS or a DSB.
Upon a successful registration, the DSP has to securely store
the newly generated RSA private key which will be used for
streaming data process in later steps.

2) Sensor Registration: For a sensor registration the DSS
client generates an AES key used for encrypting sensor data.
The key has to be securely stored by the DSS. The DSS
initiates the sensor registration process by registering the
sensor on the BC. This step incurs the sensor registration fee
that is automatically transferred to ITrade admin’s Ethereum
account. The registration TX ID is then returned to the DSS.



Fig. 1. Publishing Sensor Data in ITrade

The next step is to activate the sensor on ITrade. The DSS does
so by initiating a call that includes the TX ID obtained in the
previous step. ITrade validates the sensor by validating the TX
against the BC. Next, the result is returned to the Data MP and
ITrade generates a sensor token that will be used for the DSS
authentication when publishing that sensor’s data streams. In
case the TX is valid, ITrade will configure the sensor so that
the data can be ingested to and streamed from the platform.
Finally, the sensor token is returned to the DSS.

3) Publishing Sensor Data: Once a sensor is successfully
registered and activated by DSS, it can start publishing data
via Kafka Service API to the marketplace. DSS is the one who
decides on how frequent shall the data collection happen, and
which type of data shall be collected as he/she has the control
over his/her IoT sensors. A sensor publishes the data to ITrade,
where each iteration involves those steps as of Figure 1.

1. The sensor captures data from its physical environment.
2. Raw data is encrypted with the sensor’s AES key.
3. The device calls ITrade via an API for which the payload

corresponds to the encrypted sensor data and a sensor
token that indicates sensors validity.

3.1. ITrade receives the call and validates the sensor token
to detect possible malicious actors.

3.1.1. If the token is valid, ITrade will store the data and
make it available for streaming.

3.1.2. In turn, a success message will be returned to the
sensor device.

3.2. If the sensor token is invalid, an error message will be
returned.

4) Subscribing to a Sensor’s Data Stream: DSBs can
search for available data streams at ITrade. If DSBs want to
select a certain data stream, they have to subscribe to it, which
is possible only by paying for each data entry. Consequently, a
subscription amount will depend on the number of data entries

Fig. 2. Subscribing to a Data Stream Process Flow in ITrade

DSB wants to buy. Payments at purchase are managed and
enforced by Smart Contracts [10] (cf. Figure 2).

Once a DSB subscribes to a data stream, it can start
obtaining a key from ITrade that will be him/her to decrypt
the data stream messages. The key exchange process between
DSS and DSB is as follows (cf. Figure 3):

1. Once a DSB subscribes to a data stream, it informs ITrade
about that by sending the TX ID and the corresponding
sensor’s public key.

2. ITrade verifies that TX in the BC and requests the DSS
to encrypt the data stream decryption key with the DSB’s
public key, which is sent to the MP.

3. The DSB can now fetch the encrypted key, decrypts it
with its private key, and starts streaming the data. Thus,
the data streamed are decrypted on the DSB side.

While Figure 2 visualises this process, the additional com-
plexity introduced is highly beneficial, since it prevents ITrade
from manipulating data it stores.

5) Streaming Data: A DSB can start streaming the data
from the chosen sensor as shown in Figure 3:

1. A DSB makes a request against the Data MP API in order
to obtain the data stream’s decryption key. The request
contains the data stream subscription purchase TXID.

1.1. The Data MP validates the TX with the Smart Contract.
1.2. All result is returned from the BC .
1.3. If the TX is valid, the Data MP will require the

decryption key from the DSS.
1.4. The DSS will encrypt the data stream decryption key

with the DSB’s public key.
1.5. The key is returned to Data MP.
1.6. The Data MP keeps the key in the cache for subsequent

requests.
1.7. The encrypted decryption key is returned to the DSB.
1.8. If the TX from step 1.1 is not valid, an error message

is returned to the DSB.
2. The DSB asks the Data MP for those data received.



Fig. 3. Data Streaming Process Flow in ITrade

2.1. The DSB receives the result.
3. The data is decrypted with the key obtained in step 1.7.
4. The data subscribed to is streamed to the DSB.
Even though the data streaming process is already person-

alized within the registration processes, the use of static keys
per stream follows the standard approach of using new ones
for each new session. Thus, data buyer cannot reuse that key
for future purchases.

IV. IMPLEMENTATION

ITrade is a cross-technology platform, established on the
cloud, and integrated with orchestration tools and load-
balancers. While the source code of ITrade ’s implementation
is made available at [9], the following overviews technologies
and tools used, the architecture, and its implementation details.

A. Blockchain (BC) and Smart Contracts (SC)

ITrade is using the Ethereum BC, since it is supported by a
large community and it obtains a large set of libraries as well
as a built-in cryptocurrency enabling a seamless implementa-
tion of the payment system. In order to join the Data MP, each
user has to have an Ethereum account. Each action (e.g., sign
in/up, sensor registration, and subscribing to data streams) is
captured by means of deploying the corresponding SCs.

1) Data Marketplace: It defines the method for registering
Data Stream Principals (DSP). A new DSP has to pay the
registration fee to the DP owner, hence the registerDataS-
treamPrincipal method is of type payable. Upon successful
call of this method, a new instance of the DSP SC will be
deployed (cf. Listing 1).

1 contract DataMarketplace {
2 function registerDataStreamPrincipal(
3 string _dataStreamPrincipalName,
4 string _dataStreamPrincipalURL,
5 string _dataStreamPrincipalEmail,
6 string _rsaPublicKey
7 ) public payable;}

Listing 1. Data Marketplace Smart Contract

2) Data Stream Principal (DSP): DSP SC has the method
registerSensor() that is called when a new sensor gets regis-
tered by a DSS (cf. Listing 2). The DSP has to provide info
on the sensor type, geolocation data, and the price that the
DSBs have to pay for each data entry. This method creates a
new instance of the Sensor SC.

1 contract DatastreamPrincipal {
2 function registerSensor(
3 IoTDataMPLibrary.SensoryType _sensorType,
4 string _latitude,
5 string _longitude,
6 uint _pricePerDataUnit
7 ) public payable;}

Listing 2. Datastream Principal Smart Contract

3) Sensor: Sensor SC (cf. Listing 3) represents a sensor
entity and it defines the method subscribe() that expects
the following parameters. (a) the DSB contract address, (b)
the start timestamp i.e., the time since when the DSB is
subscribed, and (b) the number of the data entries that the
DSB is subscribed for. This method deploys an instance of
the data stream subscription SC.

1 contract Sensor {
2 function subscribe(
3 address _dataStreamBayerContractAddress,
4 string _startTimestamp,
5 uint128 _dataEntries
6 ) public payable;}

Listing 3. Sensor Smart Contract

4) Data Stream Subscription: It represents a subscription
to a specific sensor and it has a method that returns true or
false if the subscription is active or not (cf. Listing 4).

1 contract DatastreamSubscription {
2 function isDatastreamSubscriptionValid()

public view returns (bool);}

Listing 4. Datastream Subscription Smart Contract

Complete SC codes are available at [9].

B. Streaming System

There are several aspects that should be considered before
choosing a streaming system such as (a) Message consump-
tion model: with two options: pull-based mechanisms allow
the consumers to manage their message flow i.e., users pull
only the messages they need. In contrast, Push-based mech-
anisms put too many responsibilities on a streaming system



since the system would need to manage the message consump-
tion for each consumer which is not a scalable approach. Thus,
a pull-based approach is preferable in a data marketplace. (b)
Number of components and, (c) Storage architecture.

Among the possible streaming protocols such as Pulsar and
Kafka, ITrade implementation is based on Kafka. This deci-
sion is due to the fact that Pulsar uses an index-based storage
system that forms a tree structure. That enables fast access to
the messages but introduces the write latency. Both Kafka and
Pulsar retain the messages indefinitely meaning both can be
used as storage systems. Kafka uses fewer components than
Pulsar. That makes Pulsar more difficult to deploy and manage.
Kafka uses a commit log as a storage layer. New messages are
appended at the end of the log. Reads are sequential starting
from the offset and moving towards the end of the log [2].

In ITrade each sensor has its own Kafka topic where it
can publish the data and the subscribers can stream from.
The sensor’s SC address is used for the topic name since the
addresses are already globally unique.

C. ITrade Architecture

ITrade services are orchestrated and deployed on a Kuber-
netes cluster. It can be seen (cf. Figure 4) that each component
inside the cluster is deployed as a Kubernetes service. This
approach provides an internal load balancer in front of a group
of running containers and enables scaling of each group of
components without the users noticing it.

Figure 4 represents the components in ITrade and their
correlation. An internal Kafka cluster provides the streaming
and storage features. The whole cluster is deployed within a
private virtual network. The only public-facing component is
the load balancer that has the TLS certificates attached to it
for a secure connection. Both DSSes and DSBs access the
corresponding services via the load balancer.

Fig. 4. Component Overview of ITrade Architecture

1) API Gateway: API Gateway is the front door for ITrade.
It exposes the HTTP GraphQL endpoint that the clients
(ITrade users) can call. API Gateway is implemented in
Java programming language with help of the Spring Boot

framework. GraphQL is a query language that enables fetching
the data needed on the client-side. It also enables the fetching
of multiple resources with a single API call, while REST APIs
would require loading the results from multiple URLs.

2) Entity Manager: Since the goal in ITrade implementa-
tion is to have a high-performance system while still using a
BC, the Entity Manager is implemented as a caching service
to achieve this goal. Therefore, each call made to the BC is
cached for a certain amount of time in order to improve the
performance of the system. The caching is backed up by a
key-value in-memory database.

When a DSB subscribes to a data stream, he/she will provide
the transaction ID as a proof that he/she has been subscribed.
The API Gateway will first call the BC client to validate the
transaction. The BC client will then return the result to the
API gateway which will save the transaction information to
the Entity Manager in case the transaction is valid, otherwise,
it will reject the client call. When the DSB starts streaming
the data, he/she has to include the JSON Web Token (JWT) in
the authorization header, that token gets checked by the Entity
Manager service. A similar process applies when publishing
the data from the IoT devices. Each activated sensor has a
JWT token assigned to it which has to be included in each
call thus the clients can be authenticated.

The signature verifier component provides a passwordless
authentication for users. ITrade utilize a cryptographically
secure authentication flow with help of the Web3.js library
[4]. ITrade relies on the property that it is cryptographically
easy to prove the ownership of an account (i.e., Ethereum
account) by signing a piece of data with the user account’s
private key. ITrade’s specific implementation uses a message-
signing-based authentication mechanism where the users are
identified by their Ethereum account addresses.

V. EVALUATIONS

To evaluate and monitor the components involved in the
microservice-based architecture of ITrade, the Istio [6] plat-
form is employed. Istio embeds a proxy (i.e., Envoy) in
front of each service to capture each request, by which the
latency, request/response size, and success rate are measured.
The Envoy proxy uses 0.5 Virtual CPU (vCPU) and 50 MB
memory per 1000 requests-per-second going through it. Envoy
adds 3.12 ms to the 90th percentile latency. Additionally, this
test environment runs the control plane component of Istio
with 2 vCPU and 4 GB memory.

In order to measure the performance and user experience of
ITrade, the “Percentile Latency" is used as a main metric. The
Percentile Latency gives the maximum latency for the fastest
percentage of all requests. For instance, P50 Latency gives
the maximum latency for the fastest 50% of all requests.

In the evaluation of ITrade “Distributed Tracing" is em-
ployed for monitoring and profiling. Distributed Tracing pro-
motes the idea of distributed context propagation, which means
that each request has associated metadata to be followed across
multiple microservices [3]. Considered parameters of this
approach include (a) Trace: It is the sequence of calls through



the system that are needed to resolve a request. Although only
one call against an entry point in the distributed system may
be able to resolve the request right away, oftentimes multiple
subcalls are needed to work together in order to resolve the
request. (b) Span: When a trace includes multiple subcalls,
each subcall represents a span. Each subcall is timed and
accepts key-value tags as well as fine-grained, timestamped,
structured logs attached to a particular span instance. (c) Span
context: It is a metadata attached to each span used for linking
spans to their trace. Such a distributed tracing mechanism of-
fers deep insights into the HTTP requests. Distributed Tracing
helps to inspect requests against tail latency [23], the overall
latency, and to detect the particular services that are the biggest
contributors to those delays.

In an evaluation of ITrade, 100 IoT devices transmit the
sensor data at about 2000 messages per second. 100 clients
(representing DSBs) simultaneously stream (receive) the data
at about the same rate. They all make requests per second via
the public-facing load balancer. The total number of requests
steadily increases up to 5000 requests per second. The test
ran for a almost an hour. In this test ITrade was deployed in
Amazon Web Service (AWS) servers and it was connected to
an Ethereum test network.

The P99 latency was as high as 2.3 s for about 60% of the
testing time. The P90 latency was much lower, ranging from
50 ms to more than 1 s at the very end of the testing. The P50
latency maintained a very low value i.e., 23 ms. This means
with ITrade, the maximum delay experienced for the 50% of
streaming is at most only 23 ms.

P50 latency: maintained low values of 23.59 ms for the API
Gateway which is satisfactory. The biggest contributor to this
latency was the downstream Kafka REST service with 12.63
ms delays.

P90 latency: sees a considerable amounts for latency. Here
is where the ITrade architecture started reaching the limits
of the Kafka REST component since the latency for the
API Gateway was as high as 480.21 ms and about 87%
of that latency can be attributed to Kafka REST component
(420.51 ms). The most significant latency experienced was
for the Stream API service which was expected since it is an
upstream service of the Kafka REST.

P99 latency: showed a latency for the API Gateway equal
to ∼1.7 s. 97% of that latency can be attributed to the Kafka
REST downstream service. Kafka REST components had a
few packets dropped so the overall success rate was 99.99%.
Other services did not experience the same issue, meaning
their success rate was 100%.

After running the several scenarios, it is concluded that
scalability of ITrade reached certain limitations due to the
external Kafka REST component due to its stateful consumer
model, hence applying the K8s HPA is not applicable in
this case. Changing this approach would require significant
engineering effort meaning that the only way to overcome
this issue at the time of writing is to make sure that Kafka
REST workload on network and computing is scheduled and
optimized upfront.

Moreover, it can be concluded that the employed compo-
nents in ITrade architecture are reliable and able to scale
horizontally. For instance, building a Stream API service that
abstracts enables to switch to another streaming system in the
future without changing the rest of the system. Should that be
addressed, higher performances might be achieved.

Since ITrade is deployed on a cloud environment, data
sovereignty is of particular importance. ITrade is compliant
with European data sovereignty regulations. It is deployed
in Europe and ensures data sovereignty for Europe only.
ITrade is hosted on AWS in Europe which guarantees the
data does not leave the data center. Traffic is being routed to
the right location by utilizing the geolocation routing policy.
This means that the Domain Name Service (DNS) server
will resolve the DNS queries to the IP addresses according
to the geographic location of the users. Restricted access to
ITrade from restricted locations is ensured by enabling the
Web Application Firewall (WAF) service provided by AWS.
ITrade utilizes the WAF service by filtering the traffic by
the source IP addresses. Meaning the traffic that originates
outside Europe will be blocked. Additionally, data sovereignty
is ensured in ITrade by encrypting/decrypting the data on the
user’s side. This means that even if a malicious actor gets
possession of the data, such encrypted data is useless without
the decryption keys.

VI. SUMMARY

This paper presented the ITrade platform, a modular and
secure IoT data marketplace following a microservice-based
architecture. The goal of ITrade was, on one hand, to make
it easier for individuals and companies to benefit from their
self-generated data in financial terms, and, on the other hand,
to help data seekers such as in healthcare, academic, or social
studies, to access a large number of data providers easily and
without privacy violations.

Evaluations on the scalability of ITrade have shown that a
viable Blockchain-integrated approach was reached. The relia-
bility of data streaming with ITrade is above 99%, even when
massive number of transactions being streamed. This is due
to the orchestration and streaming technologies implemented
by Kubernetes and Kafka, respectively, all being integrated
into the processes designed in ITrade . The decentralization
in ITrade is fulfilled via several Smart Contracts, while user
privacy and data sovereignty is fully guaranteed.

As part of future work, it is envisioned to develop and
deploy mechanisms for secure transmission of data and pre-
venting data buyers from reselling the data once acquired.

VII. ACKNOWLEDGEMENTS

This paper was partially supported by (a) the University
of Zürich UZH, Switzerland, and (b) the European Union
Horizon 2020 Research and Innovation Program under grant
agreement No. 830927, namely the Concordia project.



REFERENCES

[1] “Data Sovereignty and The Cloud,” https://www.itgovernance.co.uk/
data-sovereignty-and-the-cloud, last visit: October 1, 2020.

[2] “Kafka vs Pulsar - Performance, Features, and Architecture Compared,”
https://www.confluent.io/kafka-vs-pulsar/, last visit: October 1, 2020.

[3] “Opentracing overview,” https://opentracing.io/docs/overview/, last visit:
October 1, 2020.

[4] “web3.js - Ethereum JavaScript API,” https://web3js.readthedocs.io/en/
v1.3.0/, last visit: October 1, 2020.

[5] “CNCF Cloud Native Definition v1.0,” https://github.com/cncf/toc/blob/
master/DEFINITION.md, June 2018, last visit: October 18, 2020.

[6] I. Authors, “Istio / Performance and Scalability,” https:
//istio.io/latest/docs/ops/deployment/performance-and-scalability/
#performance-summary-for-istio-hahahugoshortcode-s0-hbhb,
September 2020, last visit: October 1, 2020.

[7] T. Bocek, S. Rafati, B. Rodrigues, and B. Stiller, “CoinBlesk -
A Real-time, Bitcoin-based Payment Approach and App,” ERCIM
News: Blockchain Engineering, Vol. 1, No. 110, pp. 14–15, July
2017. [Online]. Available: https://ercim-news.ercim.eu/en110/special/
coinblesk-a-real-time-bitcoin-based-payment-approach-and-app

[8] S. Couture and S. Toupin, “What Does The Notion of ’Sovereignty’
Mean When Referring to The Digital?” New Media and Society,
Vol. 21, No. 10, pp. 2305–2322, 2019. [Online]. Available: https:
//doi.org/10.1177/1461444819865984

[9] D. Dordevic, “BIoT Data Market Place,” https://github.com/IoT-Data-
Marketplace, last visit: October 1, 2020.

[10] ——, “Data Sovereignty Provision in Cloud-and-Blockchain-Integrated
IoT Data Trading,” Master’s thesis, Zürich, Switzerland, September
2020. [Online]. Available: https://owncloud.csg.uzh.ch/index.php/s/
AFyTkCf2Dfrd99A

[11] D. Draskovic and G. Saleh, “Datapace - Decentralized Data Marketplace
Based on Blockchain,” in Datapace, December 2017.

[12] Gartner, “Gartner Forecasts Worldwide Public Cloud Revenue to Grow
17% in 2020,” shorturl.at/ltE79, November 2019, last visit: October 1,
2020.

[13] J. Manyika, M. Chui, P. Bisson, J. Woetzel, R. Dobbs, J. Bughin, and
D. Aharon, “The Internet of Things Mapping the Value Beyond The
Hype,” https://owncloud.csg.uzh.ch/index.php/s/abaGWX2PzPLnc7W,
June 2015, last visit: October 1, 2020.

[14] K. R. Ozyilmaz, M. Dogan, and A. Yurdakul, “Idmob: Iot data mar-
ketplace on blockchain,” in Crypto Valley Conference on Blockchain
Technology (CVCBT), 2018, pp. 11–19.

[15] R. Radhakrishnan, G. S. Ramachandran, and B. Krishnamachari, “SDPP:
Streaming Data Payment Protocol for Data Economy,” in IEEE Inter-
national Conference on Blockchain and Cryptocurrency (ICBC), 2019,
pp. 17–18.

[16] S. Rafati Niya, S. Allemann, A. Gabay, and B. Stiller, “TradeMap: A
FINMA-compliant Anonymous Management of an End-2-end Trading
Market Place,” in 15th International Conference on Network and Service
Management (CNSM). Halifax, Canada: IEEE, October 2019, pp. 1–4.
[Online]. Available: https://ieeexplore.ieee.org/document/9012706

[17] S. Rafati Niya, D. Dordevic, A. G. Nabi, T. Mann, and B. Stiller, “A
Platform-independent, Generic-purpose, and Blockchain-based Supply
Chain Tracking,” in IEEE International Conference on Blockchain and
Cryptocurrency (ICBC 2019). Seoul, South Korea: IEEE, May 2019,
pp. 11–12. [Online]. Available: https://ieeexplore.ieee.org/document/
8751415

[18] S. Rafati Niya, S. S. Jha, T. Bocek, and B. Stiller, “Design
and Implementation of an Automated and Decentralized Pollution
Monitoring System with Blockchains, Smart Contracts, and LoRaWAN,”
in IEEE/IFIP Network Operations and Management Symposium (NOMS
2018), Taipei, Taiwan, April 2018, pp. 1–4. [Online]. Available:
https://ieeexplore.ieee.org/document/8406329

[19] S. Rafati Niya, F. Maddaloni, T. Bocek, and B. Stiller, “Toward
Scalable Blockchains with Transaction Aggregation,” in 5th Annual
ACM Symposium on Applied Computing (SAC 20), 2020, p. 308–315.
[Online]. Available: https://doi.org/10.1145/3341105.3373899

[20] S. Rafati Niya, E. Schiller, I. Cepilov, F. Maddaloni, T. Surbeck,
K. Aydinli, and T. Bocek, “Adaptation of Proof-of-Stake-based
Blockchains for IoT Data Streams,” in IEEE International Conference
on Blockchain and Cryptocurrency (ICBC). Seoul, South Korea: IEEE,
May 2019, pp. 15–16. [Online]. Available: https://ieeexplore.ieee.org/
document/8751260

[21] S. Rafati Niya, E. Schiller, I. Cepilov, and B. Stiller, “BIIT:
Standardization of Blockchain-based I2oT Systems in the I4 Era,” in
Management in the Age of Softwarization and Artificial Intelligence.
Budapest, Hungary: IEEE, April 2020, pp. 1–9. [Online]. Available:
https://ieeexplore.ieee.org/document/9110379

[22] S. Rafati Niya, F. Schüpfer, T. Bocek, and B. Stiller, “A Peer-to-peer
Purchase and Rental Smart Contract-based Application (PuRSCA),” it-
Information Technology, Vol. 60, No. 5, pp. 307–320, October 2018.
[Online]. Available: https://www.degruyter.com/view/journals/itit/60/5-
6/article-p307.xml

[23] section.io, “Preventing Long Tail Latency,” https://www.section.io/blog/
preventing-long-tail-latency/, November 2018, last visit: October 1,
2020.

[24] The Economist, “Regulating the Internet Giants - The world’s
most Valuable Resource Is No Longer Oil, But Data,”
https://www.economist.com/leaders/2017/05/06/the-worlds-most-
valuable-resource-is-no-longer-oil-but-data, June 2017, last visit:
October 1, 2020.

[25] H. T. T. Truong, M. Almeida, G. Karame, and C. Soriente, “Towards
Secure and Decentralized Sharing of IoT Data,” in IEEE International
Conference on Blockchain (Blockchain), 2019, pp. 176–183.


