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Abstract—Self-Organizing Networks (SON) concept is a tech-
nology that aims to improve the management and operation of
mobile networks, through automatic configuration of network
parameters. Even though SON functions are able to change
network parameters automatically, the algorithms that run inside
these functions still rely on parameters and rules that are
manually defined by the operator, depending on its objectives.
Thus, in order to realize a network that is self-organized as
a whole, there is a clear need for a higher-level management
entity that automatically translates operator objectives into SON
configurations. In previous works, we have already studied and
proposed an intelligent integrated management solution empow-
ered with Reinforcement Learning (RL), namely the Cognitive
Policy Based SON Management (C-PBSM).The C-PBSM is able
to learn optimal SON configurations through direct interaction
with the network. In this paper, we address crucial aspects of
the mentioned approach, namely adaptability with different and
varying network environments, transferability of the knowledge
and the speed of convergence. We argue that the C-PBSM has
major limitations with respect to these aspects. We consequently
propose a context aware C-PBSM show that it is able to overcome
the limitations of the C-PBSM.

Index Terms—Radio Access Networks, Self-Organizing Net-
works, Reinforcement Learning, Policy Based Management.

I. INTRODUCTION

The management of mobile networks has always been a

challenging task for network operators, especially with the

need to reduce the operational expenses while maintaining

a good Quality of Service (QoS) and Quality of Experience

(QoE) for the users, at a competitive price. Improving the

network management efficiency has become even more crucial

in the recent year, as the networks became more complex and

the traffic demands increased at a high pace [1].

In this sense, autonomic solutions are already being de-

ployed in today’s networks, and will be the bedrock of 5G

[2]. A first step towards autonomic networks was achieved

with the 3GPP introduction of the Self-Organizing Networks

(SON) functions in its release 8 [3]. A SON function operates

as follows: it continuously receives measurements feedback

from the network, and changes certain network parameters

according to its algorithm [4]. Different SON functions can

be deployed in the network to replace specific operational

tasks such as coverage optimization or load balancing. Such

a network is SON enabled, but cannot be considered as a

self-organized network. A self organized-network takes as

inputs the target key performance indicators (KPIs), translates

them automatically into appropriate network parameters so

that these high level objectives are fulfilled. For a network that

is SON enabled, this can be done through managing properly

all the SON functions in the network, to make them fulfill

together the operator objectives, as shown in Figure 1.

Fig. 1: PBSM Scheme

Figure 1 represents an integrated SON management frame-

work, known as Policy Based SON Management (PBSM): the

operator objectives are given as input to the PBSM, which

automatically outputs the best identified policy. A policy is

the set of SON configuration values (SCV). We consider that

the operator objectives are expressed as target KPIs to be

optimized in the network.
An approach for PBSM was first studied in the frame-

work of the Semafour European project [5]. The approach is

mainly based on pre-simulated SON Function Models (SFM)

that map KPIs to SCV sets [6]. Even though in following

works the generation of SFM was enhanced with machine

learning [7], the proposed approach still relies strongly on

input models, which might often differ from the network field

reality.These models are static and do not reflect the dynamics

of the radio environment. In [8], [9], the authors propose a978-3-903176-32-4 © 2021 IFIP



Cognitive-PBSM (C-PBSM), where a Reinforcement Learning

(RL), specifically the stochastic Multi-Armed Bandit (MAB)

algorithm, was used to empower the system with cognitive

capabilities: learning through interaction with the real network.

The most straight forward formulation of the MAB is the

following: there are K possible actions, known as arms, each

having an unknown distribution of bounded rewards. At each

iteration, the learning agent chooses an action, then only the

reward of this action is revealed. The objective is to find as fast

as possible, and with enough confidence, the optimal arms. It

is hence a suitable and promising approach for online learning

problems, where the policy is learned through interaction with

the real environment

In the recent years, the MAB has seen considerable the-

oretical advances. It has also been used to enhance many

control processes with cognition and intelligence, including

specific SON functions. For instance in [11], [12], [13], [14],

the authors propose self-optimization and self-healing SON

functions with learning capabilities. On the other hand, in [15],

[16] MAB algorithms show to be very effective in dealing with

spectrum management and resource allocation problems.

In the previous works on C-PBSM, the convergence of

the proposed algorithms is still far from being acceptable in

real networks (several days to converge), knowing that the

performance can be degraded during the exploration phase.

Besides, Radio Access Networks (RAN) environments are

very diverse and heterogeneous. They can be rural, urban,

dense, have different types of required services or traffic

profiles etc. The best policy learned in a certain section of

the network is not guaranteed to still be the best one on other

sections. The policies must be adapted to the network context.

Finally, previous studies assume a stationary traffic, while it

varies during the day [17]. The C-PBSM has to adapt its

decisions to traffic variations.

We propose in this work a novel architecture and learning

framework for the C-PBSM, based on contextual MAB, that

we refer to as context aware C-PBSM. A single learning agent

learns simultaneously over several small network clusters,

geo-localized in different parts of the network, and finds the

optimal policy for each network context. The contribution of

this paper can be summarized as follows:

• The proposed algorithm finds optimal policies over dif-

ferent network contexts, including traffic variations.

• Learnt policies can be transferred to untrained sections

of the network.

• Collaborative learning improves the convergence speed.

The remainder of this paper is organized as follows. Section

II describes the proposed context aware C-PBSM. In section

III we present the RL and MAB framework. We focus on the

Bandit Forest contextual MAB algorithm that we consider for

this work and we motivate our choice. Section IV presents

a use case scenario and evaluates the performances of our

approach. The last section concludes the paper and presents

future works.

II. CONTEXT AWARE C-PBSM

We consider a SON enabled network, with distributed SON

functions i.e. each SON function is distributed through several

instances on different cells. Each SON instance has its own

control loop: it collects local KPI measurements and changes

certain parameters depending on its objective, algorithm, and

configuration (SCV set). On top of the SON layer, we consider

an RL learning agent that learns and enforces the optimal SON

configuration policy, according to the objectives specified by

the operator.

The proposed functional architecture is depicted in figure 2.

A learning cluster is typically a small group of neighboring

cells, having similar characteristics, where the operator allows

the testing of SON configurations and parameters. The cluster

characteristics include the geographical area (rural, urban,

railway, etc.), the technology (2G, 3G, 4G, etc.), the topology

(n layer heterogeneous network) or the type of network equip-

ment, and traffic characteristics. Note that several clusters,

with given traffic characteristics, may correspond to the same

network contexts, and their optimal policies are then learnt

collaboratively.

Fig. 2: Context Aware Distributed C-PBSM

The context aware C-PBSM consists of the AI Layer and

the SON Configuration Manager:

• AI Layer: This layer contains 2 blocks: the AI Agent and

the Knowledge Database. The AI agent is continuously

interacting with the learning clusters. That is, it receives

the reward and context information from each of the

clusters, and chooses an action to be applied in each



of them. Then based on the cluster characteristics and

additional context information, the AI agent deduces the

appropriate network context. The action is chosen based

on the knowledge acquired by the learning agent from

previous iterations for this network context.

• The knowledge database is updated at each iteration.

Note that the stored policies correspond to network

contexts and not to each specific learning cluster. The

more the clusters are diverse, the better they cover the

context-action space of the network, hence making the

Knowledge Database more complete and transferable

to other untrained sections of the network. Moreover,

increasing the number of learning clusters results in a

faster convergence as much more SCV sets combinations

are tested in parallel.

• The measured KPIs are kept in a registry called Net-

work Measurements Pool. Before being forwarded to the

AI Agent, the raw KPI measurements are statistically

processed (typically averaging, smoothing, scalarization,

etc.).

• SON Configuration Manager: This block receives the

actions from the AI Agent and is in charge of enforcing

the SCV set in the corresponding SON function instances

in each of the learning clusters. It can also directly change

certain network.

III. CONTEXT AWARE C-PBSM: IMPLEMENTATION

BASED ON CONTEXTUAL MULTI-ARMED BANDIT

MAB algorithms focus largely on optimizing the trade-off

between exploring the environment and exploiting the acquired

knowledge during the learning phase [18]. The contextual

MAB is in its turn an extension of the MAB framework, that

is able to observe context changes in the environment, and

chooses the actions according to both the perceived rewards

and the context information [19]. Contextual MAB algorithms

have shown to be very useful in many real life problems such

as recommender systems and web advertising [20].

In this paper we implement the random forest algorithm for

the contextual bandit problem [21], that we henceforth refer to

as Bandit Forest (BF). In most real life problems, the perceived

reward depends on the taken action but also on the given

context of the environment. A straightforward approach to

deal with changing contexts would be to consider a stochastic

MAB process per context, hence finding an optimal policy

per context. However, such an approach would require a lot of

time to converge because each MAB process would be updated

only when its corresponding context is observed. Also when

faced with a large number of contexts, then this approach

would simply be infeasible. Instead, contextual MAB deals

more efficiently with this problem by assuming that the context

observations are not completely independent from each other.

In other words, the rewards generated by choosing an arm a,

under context c, can carry some information about the rewards

perceived by choosing the same arm a, under a different

context c′. We can find different form of context dependence

assumptions in the literature [22], [23], [24].

The BF algorithm we implement belongs in its turn to

the decision trees family. It considers that there is a subset

of context variables that are more relevant than the rest. It

hence reduces its exploration space by considering this subset

of variables, and discarding the others. The BF algorithm

was proposed and analyzed in detail in [21]. The authors

studied the optimality of the algorithm in terms of sample

complexity [25], where BF was shown to be optimal up to a

logarithmic factor [21]. Furthermore, the dependence of the

algorithm’s sample complexity with the number of context

variables is logarithmic, which means that the algorithm scales

well with the number of context variables. This is a very

important factor, because the complexity, heterogeneity and

high dynamics of the RAN environment may require a huge

number of context variables to describe a network section. The

computational cost is as well linear with the time horizon and

the number of context variables, allowing to process large sets

of variables. All these characteristics make the BF algorithm

well suited for real applications, notably for the context aware

C-PBSM.

A. Contextual MAB

The contextual MAB problem is formalized as follows. Let

A and K be respectively the set and the number of possible

arms. Let V be the set of context variables and M their

number. rt ∈ [0, 1]K is the vector of bounded rewards and

xt ∈ {0, 1}M the binary context vector at iteration t. Dx,r

is the joint distribution on (x, r). Let π : {0, 1}M → A be

a certain policy and Π be the set of policies. The objective

of contextual MAB algorithms is to find the optimal policy

π∗, that is the policy that maximizes the expected gain with

respect to the distribution Dx,r:

π∗ = argmax
π∈Π

EDx,r
[rπ(xt)] (1)

The learning agent learns the optimal policy in a sequential

manner as explained in the following:

Algorithm 1 Contextual MAB

for each iteration t
- Agent receives context information xt

- Agent plays arm ct according to policy π(xt)
- Reward rt,ct is perceived according to Dx,r

- Agent updates policy πt

The algorithm identifies the optimal policy based on the

knowledge it has about the context-reward distribution Dx,r.

To build this knowledge, the agent has to interact with the

environment by exploring different actions and policies. The

more the agent explores, the more the knowledge it has

about Dx,r is reliable, and so is its optimal policy. However,

exploration leads to sub-optimal decisions of the agent, and

hence sub-optimal rewards. Whence the necessity to balance

exploration and exploitation. The MAB algorithm should find



the optimal policy while minimizing the expected cumulative

perceived regret. defined as:

EDx,r
[Rn] =

n∑

t=0

EDx,r
[rt,c∗t

− rt,ct ] (2)

Rn is the cumulative regret after n plays and c∗t = π∗(xt) is

the action chosen by the optimal policy.

B. Random Forest for the Contextual MAB

The BF algorithm is based on decision trees. A decision

tree can be seen as a combination of rules, where only one

rule is selected for a given input vector, which is in this case

the context vector. Finding the optimal tree structure is NP-

hard [21]. Instead, a greedy approach can be used to grow the

decision tree, based on decision stumps (a decision stump is

a one node decision tree) [26], [27].

A decision stump takes decisions based on the observation

of one context variable. To maximize the perceived reward, the

decision stump should identify the best context variable. That

is the variable that maximizes, when observed, the expected

reward of the best action for each of its values. After identify-

ing the best context variable, the decision stump identifies the

best action while observing the best context variable. In the

BF algorithm, decision trees are grown by recursively stacking

decision stumps, which means that a decision tree takes its

decisions based on the observation of a subset of the best

context variables, which is indeed a stronger learning model

than the decision stump.

Moreover, the random forest improves the decision model

by growing more than one tree, and by adding randomness

in the process. That is, instead of searching for the most

important context variables while splitting a node, each of the

trees searches for the best context variable among a different

random subset of the variables. This results in a wide diversity

that generally results in a better model and improves the

optimality of the decisions [28]. The BF algorithm bases thus

its decisions on the output of the random forest.

We will not expose in this paper the details of the con-

struction of the decision trees as it is out of the scope of

this work. For additional information, please refer to [21]. In

the next section we describe the system model and evaluate

the performances of the proposed approach and compare them

with a C-PBSM approach based on stochastic MAB.

IV. SYSTEM MODEL AND SIMULATION SCENARIO

A. Model Description

Consider a set Λ of network clusters distributed in different

locations of the network. In each cluster λ ∈ Λ, we consider

a set of deployed SON functions Uλ. Nλ
u is the number

of instances of SON function u in sector λ (u ∈ Uλ).

Nλ
u = 0 if u /∈ Uλ. Each SON function has a set of SCV

sets denoted as Cu, ∀u ∈ Uλ, ∀λ ∈ Λ. The set of possible

SCV sets combinations in a network cluster λ is then defined

as Aλ = (Cu1)
Nλ

u1 × (Cu2)
Nλ

u2 × ... × (Cu|U|)
Nλ

u|U| where

u1, u2, ..., u|U | ∈ Uλ. The reward perceived by the learning

agent for an action a at iteration t is assumed to be a linear

combination of perceived KPIs Zi and weights wi, reflecting

the operator’s priority to maximize the corresponding KPI

target:

ra(t) =
∑

i=1

Ziwi (3)

At each iteration t, each cluster λ reports to the AI Agent

a numerical reward value, depending on the reward definition

in equation (3), and a feature vector xλ
t carrying the context

information at iteration t of cluster λ as described in figure

2. Note that the feature vector depends on both the network

cluster λ and the iteration t. In fact, the feature vector carries

information about both the topological and technological as-

pects of the access network in each cluster (e.g. environment,

technology, information about the vendor’s hardware, multi-

layer or not, etc.) and time dependent network information

(traffic information, types of services, special event etc.).

At each reporting of the clusters, the AI agent updates the

knowledge database, and outputs new actions to be applied in

the clusters. In our case, as the AI agent runs the BF algorithm,

the knowledge database stores the binary decision trees.

B. Simulation Scenario

We consider four network clusters for the learning process.

Each cluster is composed of a macro cell and the first tier

neighboring cells as represented in figure 3. Small cells can

be deployed in a macro cell’s coverage region, to serve a traffic

hot-spot inside the coverage region of the macro cell. In this

case the macro cell and small cell are referred to as master

cell and slave cell respectively. We consider 3 SON functions

Fig. 3: Example of a Network Learning Cluster

in each cluster λ, each deployed in several instances according

to the following:

a) Mobility Load Balancing (MLB): Deployed on each

macro cell. Its objective is to balance the traffic load between

the macro cells by tuning the Cell Individual Offset (CIO) of

macro cells.

b) Cell Range Expansion (CRE): Deployed on each

small cell, it tunes the CIO of the small cells to balance the

load between small cells and the master macro cell.



c) Enhanced Inter Cell Interference Coordination
(eICIC): Deployed on macro cells with small cells in their

coverage area. eICIC manages Almost Blank Subframes

(ABSF) [4] transmissions of macro cells in order to protect

small cell edge users from macro downlink interference.

We further consider that the AI Agent can also directly act

on certain network parameters. For example in this scenario

we consider that it can turn on or off small cells through a

sleep mode process in order to optimize the energy efficiency

in the network. When a small cell enters sleep mode, the user

equipment served by the small cell are handed over to the

master macro cell.

For each iteration t and action a (SCV sets combination),

the following KPIs, considered to be the most relevant in our

scenario, are defined as:

• li,a(t) is the load of cell i in network section λ
• la(t) is the average load in the considered section

• σa(t) =
∑|λ|

i=0 li,a(t)−la(t))
2

|λ| the load variance in cluster

λ. |λ| is the number of cells in cluster λ.

• T a(t) is the average user throughput in the central macro

cell

• T ′
a(t) is the average small cell edge user throughput in

the central macro cell coverage area

• P a(t) is the average power consumption of the small cells

deployed in the central macro cell coverage area

• σ′
a(t) is the average load variance in the central macro

cell and its slave small cells.

The perceived reward for a certain action a at iteration t is

hence:

ra(t) = w1(1− σa(t)) + w2T a(t) + w3T ′
a(t)+

w4P a(t) + w5(1− σ′
a(t))

(4)

All the KPIs are normalized between 0 and 1.

For the action space, we consider the following SCV sets for

each of the considered SON functions. The SCV sets differ in

MLB CRE eICIC Sleep Mode

Off SCV1 Off Off

SCV1 SCV2 SCV1 On

SCV2 SCV3

SCV3

TABLE I

terms of activation threshold as well as the parameter ranges.

We consider that all the instances of the same SON function

are configured with the same SCV set in a given network

cluster. We further consider that when Sleep Mode is activated

(i.e. small cells are turned off), CRE and eICIC functions are

turned off. This leaves us with 28 possible actions or arms.

The vector of features describing the context reports to the

AI agent information about: Macro inter-site distance, traffic

and each of the neighboring cells, traffic in the small cells of

the central cell, how many cell layers are there in the cluster

(0 if homogeneous macro deployment, 1 if heterogeneous 2

layer network). We consider that the traffic in the cells can be

Low, Medium, High or Very High.

V. SIMULATION RESULTS

In this section we present the simulation results of the

previously described scenario. We compare the performances

of the contextual BF algorithm with a C-PBSM based on a

stochastic MAB algorithm, namely the Successive Elimination

(SE) algorithm [29]. Note that both BF and SE algorithms

are learning simultaneously over the four considered training

clusters.

For the simulation scenario, we consider that all the clusters

are in urban areas and are heterogeneous two layer networks.

We consider traffic changes in the different cells of the clusters,

with four traffic levels: low, medium, high and very high. We

also assume that the traffic is piece-wise stationary, that is the

traffic variations that may occur during a RL iteration (which

is 20 min in our case) are considered to be stationary and do

not impact the stationary state of the system during this time

interval. This is a reasonable assumption regarding the traffic

profiles that can be found in the network. We run the learning

process for different operator objectives.

The average perceived reward is plotted in figure 4. The

stochastic MAB is not able to observe the context changes. It

estimates the average perceived reward of each arm regardless

of the context changes. It identifies hence an action that

has the highest empirical average over all the contexts. The

contextual BF algorithm on the other hand constructs its

policy by observing the context. Eventually, the BF algorithm

identifies an optimal action for each of the observed contexts,

performing better than the single action policy of the stochastic

MAB as shown in figure 4 (wi is the operator objective

weight). Note that the different values of the rewards as well as

their variance vary with the operator objectives. These changes

are the consequences of the normalization of different KPIs

with different distributions, ranges and behaviors, and do not

reflect the optimality of the policy.

In figure 5 we plot the average perceived reward per context

for a set of observed contexts in this scenario, for the previ-

ously considered objectives. We can see that the contextual BF

algorithm performs always at least as good as the stochastic

MAB. In other words, this means that the AI agent adapts

the SCV sets of the SON functions, according to the observed

context. This makes the contextual MAB more suitable for

scenarios with context changes, with different optimal actions

for different contexts, which is the case in real networks.

In terms of speed of convergence, the stochastic MAB SE al-

gorithm seems to converge faster than the contextual BF. This

difference is explained by the fact that the stochastic MAB,

unlike the BF algorithm, does not distinguish contexts, leading

indeed to faster convergence, but to sub-optimal policies as

can be seen in figures 4 and 5. Moreover, the stochastic MAB

converges to a single action policy as stated previously. Such

policies cannot be transferable and applied in other regions

of the network, as the policy’s output is invariable and not

adaptable with the context. The convergence time difference
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Fig. 4: Perceived Rewards Comparison

can be better understood by referring to [21], where the authors

show that the BF’s sample complexity scales exponentially

with the depth of the decision trees. As a matter of fact, the

MAB SE algorithm can be seen as a BF algorithm with tree

depth equals to zero.

Finally, the slow convergence compared to the stochastic

algorithm should not be a concern in practical cases because

the AI agent can learn simultaneously from different learning

clusters in the network, and constructs a common knowledge

database for all of them. Having a large number of learning

clusters will reduce considerably the learning time, making

hence possible the deployment of such learning processes on

real network.

VI. CONCLUSION

In this paper, we propose a context aware C-PBSM based

on contextual MAB. The proposed approach consists of

a centralized learning agent and a centralized knowledge

database. The agent learns optimal policies simultaneously

on different network sections (learning clusters), in different

network locations and each having different contexts. The

proposed C-PBSM is able to adapt with traffic variations in

the network. The knowledge database is built collaboratively

(a) w1 = 1

(b) w1 = w2 = 0.5

(c) w1 = w2 = w3 = 0.333

Fig. 5: Average Perceived Rewards per Observed Context

between the different learning clusters and we argue that since

the learned policies are context aware, they can be transferred

and applied to other network sections directly in open loop,

without the need of new learning phases. We simulate a use

case with different SON functions, and we implement the BF

contextual MAB algorithm. Simulation results have shown that

the context aware policies are globally better than a stochastic

approach, when different contexts are observed in the network.

We conclude that the context aware C-PBSM outperforms the

C-PBSM based on stochastic MAB, by adapting its action

according to the observed contexts.

Future works will focus on enhancing the context aware

C-PBSM with advanced monitoring of traffic, automated de-

tection of traffic changes including slow trend changes and

sudden context shifts. Moreover, so far we consider that the C-

PBSM learns through RL from scratch. It builds its knowledge

only by interacting with the network. However, operators

possess historic databases about network configurations and

their impact. These can be of use so that the C-PBSM does

not learn from scratch, but instead exploits the operator’s

knowledge in order to accelerate its learning process.
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