Time-Aware Traffic Scheduling with Virtual Queues
in Time-Sensitive Networking

Junli Xue, Guochu Shou, Yaqiong Liu, Yihong Hu, and Zhigang Guo
Beijing Key Laboratory of Network System Architecture and Convergence, School of Information and
Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China
{junlixue, gcshou, liuyaqiong, yhhu, gzgang} @bupt.edu.cn

Abstract—Time-Sensitive Networking is a promising technol-
ogy that supports deterministic services with bounded delay,
low packet delay variation, and low packet loss. Time-Sensitive
Networking consists of several components, in which traffic
scheduling plays an important role to provide the delay guar-
antee. The traffic scheduling on the level of flow is challenging
for dense traffic demands. In this paper, we propose a time-
aware traffic scheduling scheme based on network virtualization
to schedule a large number of flows. In the scheme, the physical
queues of a network node are abstracted as virtual queues, which
isolate each flow with a time offset parameter. A scheduling
algorithm is designed into two stages of virtual queues mapping
and schedule computation. The simulation results in a use case
of industrial automation show the effectiveness of the proposed
scheme.

Index Terms—Time-Aware Scheduling, Time-Sensitive Net-
working, virtual queues

I. INTRODUCTION

Time-Aware Scheduling (TAS) is one of the key methods of
traffic scheduling in TSN [1]. With the TAS method, the TSN
node can transmit the traffic at a precise time, providing the
delay guarantee for the traffic of deterministic services, namely
Scheduled Traffic (ST) . The TAS consists of the gate control
mechanism and the scheduling procedure. The gate control
mechanism is the hardware mechanism and controls the traffic
transmission by setting the gate state of the physical queues.
The scheduling procedure runs the algorithm to compute a
schedule, which contains the gate state and time interval of
maintaining the state. The gate control mechanism is tightly
coupled with the TSN node. The scheduling procedure runs
in the node or centralized network configuration (CNC) entity,
which is dependent on the configuration mode.

TAS is required with flow level scheduling capabilities to
provide a bounded delay for each traffic flow. However, the
number of physical queues for gate control mechanism is
restricted. Multiple flows are inevitably transmitted in the same
physical queue, especially in the case of a large number of
flows. This introduces the flow isolation problem. Although
the gate control mechanism can operate on the granularity
of the flow to isolate multiple flows, the flow isolation only
depending on physical queues is challenging and complex.
On the one hand, the frequent conversion of the gate state can
make the node overload. On the other hand, it also increases
the number of schedule entries, which are limited in the node.

978-3-903176-32-4 © 2021 IFIP

The TAS algorithms attract the most attention of the re-
searchers, and are developed based on the mature solver
and heuristic. Craciunas et al. [2] model the TAS problem
as an optimization problem and solve it with Satisfiability
Modulo Theories (SMT) and Optimization Modulo Theories
(OMT) solver. Diirr and Nayak [3] model the TAS problem
as a no-wait packet scheduling problem and propose a tabu
search algorithm to compute the schedule of flows. Gavrilut
and Pop [4] consider the scheduling of ST flows, Audio
and Video Bridging(AVB) flows, and best-effort flows. They
propose a greedy randomized adaptive search algorithm, which
guarantees the requirements both of ST flows and AVB flows.

In this paper, we propose solving the flow isolation issue
with network virtualization, which can allocate resources
flexibly without restricted by the granularity of physical re-
sources. We present a TAS scheme with virtual queues (VQ-
TAS), in which the virtual queues isolate traffic flows with a
time offset parameter. We formulate the scheduling problem
and design a scheduling algorithm including virtual queues
mapping and schedule computation. The effectiveness of the
proposed scheme is evaluated in a use case of the industrial
automation applications from the number of schedulable flows,
the end-to-end delay, and the runtime of the algorithms.

II. VQ-TAS SCHEME

The VQ-TAS scheme is shown in Fig. 1. The output port
has multiple physical queues with transmission gates, and the
gates are open/closed at a precise time according to a schedule,
namely Gate Control List (GCL). Only when the transmission
gate of the queue is open and there is no traffic in the high-
priority queue, the traffic can be transmitted. The physical
queue follows the first-in first-out (FIFO) rule to transmit
traffic. The ST flows store in the virtual queue, and then
enter the allocated physical queues through the virtual queue
mapping. The mapping table of the virtual queue mapping
represents the relationship between virtual queues and physical
queues, including the sequence of flows in the same physical
queue. In the context of FIFO, the order in which the flows
enter into the physical queue is the order in which flows
are transmitted. This determines the time offset of each flow
relative to the flow at the head of the queue. Time offset
makes it possible to avoid overlapping between flows within
a physical queue.

IRt Traffic Scheduling Queues
Computation Bulfer
Mapping Table GCL .
Tc')pology Computation Computation . o
Discovery T T Virtual Resource Pool

,,,

TSN node

virtual queues

Eqd TSN node
station

Fig. 1. Illustration of the VQ-TAS scheme.

TSN node Et?d
station

CH
C B
CIH
(>
C1H

With the centralized configuration mode, the configuration
entity such as CNC is responsible for network control and
configuration. As showed in Fig. 1, the core modules include
topology discovery, path computation, a virtual resource pool,
and traffic scheduling. The topology discovery module gives a
global view of the network and the path computation module
computes the path with the global view. The virtual resource
pool includes the bandwidth, buffer, and queues abstracted
from the physical network. The traffic scheduling module con-
sisting of mapping table computation and GCL computation
submodules schedule the traffic flows with the virtual resource.

In detail, the scheduling procedure sets up by a report
of the TSN node. The report includes the source node,
destination node, period, and length of the ST flows. The
deadline requirement is from the service request. The Mapping
Table Computation submodule generates mapping tables with
the flow set, paths and queues resource from those reports,
the path computation module and the virtual resource pool,
respectively. After that, the GCL computation submodule runs
the algorithm and generates GCLs of physical queues. Finally,
the mapping tables and GCLs are delivered to each node of
the path.

III. MODELS AND PROBLEM FORMULATION
A. Models

The network is modeled as a graph G = (V, E), where
V is the set of network nodes, and E is the set of network
links. A link [v;, vj] of E connects the source node v; and
the destination node v;. The set of physical queues in node v;
is denoted as Q°, Q" = {¢’, | v; € V'}. The virtual queues set
is denoted as VQ', VQ' = {vg’, | v; € V}.

F' is defined as the set of ST flows. The flow f; € F
is characterized by a five-tuple (srcy, dsty, dly, pk, li), where
srcy, 1s the source node, dstj, is the destination node, dl; is
the deadline, py is the period of the flow, and [j, is the flow
length. In this paper, we define the bytes of the flow per period
as flow length. The flow should reach the destination node
before its deadline. Without loss of generality, all parameters
are positive integers. The path of the flow fj is defined as
pathy, = [sreg, v1], [v1,v2], ..., [vic1,vi], [vs, dstg).

Traffic flows experience an end-to-end delay transmitting
along the path. The end-to-end delay of a flow can be divided

into four parts of the propagation delay, serialization delay,
forwarding delay, and queuing delay [5]. The end-to-end delay
edy, of flow fj transmitting along pathy is given as

edp = Z pd%"’_l’v"’] + sdy" " + stSt’“
[vi—1,vi]€Epathy,
i i i 1)
v; er{
where pdgf"’l’vi] denotes the propagation delay, sdi denotes

the serialization delay, fdi denotes the forwarding delay,
qdi queuing delay, and V/ denotes all switching nodes of
the pathy. Serialization is the process of transmitting a flow
from the network node buffer to the link and deserialization
is inverse [5]. The serialization delay is multiplied by 2
because of the serialization and deserialization processes in
the switching node.

With the gate control mechanism, the queuing delay of the
flow is controlled by the transmission gate. The gate open
time of the queue ¢/, is denoted as ot’ , the open window is
denoted as ow?,, and the gating cycle of the GCL is denoted
as gc'. For ST flows, the cycle of each queue is the period
of the flow, and the cycle of the GCL is the least common
multiple of the cycle of each queue. Denote the time that the
flow fi arrives in the queue g}, as at!, ,, the queuing delay
is given as

>

i i
atm,7'<a’t7n.k

qdi, = (otin - atfmk.) + sdfn. 2)

The queuing delay consists of two parts, i.e., the delay waiting
for the gate to be open and the delay waiting for the flows
arrived before to finish their transmission.

In the VQ-TAS scheme, the queuing delay of each flow
in the node is determined by the weight mapping matrix W*
generated by the virtual queue mapping and the GCL. The
weight is the order in which the flows enter the physical queue.
The W¥(n,m) = x indicates that the vq’, is mapped to the
q¢. and the flow in vq’ is the wth flow that enters physical
queue ¢’,. The order determines the time offset of each flow
from the flow at the head of the queue, which is denoted as
of fi. The queueing delay is given as

qdj, = (oth, — at}, 1) + of fi, 3)
of fi = sdi x W' (n,m), fr = va},. e
r=1

B. Problem Formulation

Given the ST flows and their paths, the TAS problem is to
determine the schedule for each flow such that the deadline
requirement of each flow is satisfied.

1) Objective function: We formulate the TAS problem as
an optimization problem with a goal of minimizing the end-
to-end delay of all flows, i.e., minimizing the maximum end-
to-end delay of the flow set. The smaller the end-to-end delay,
the smaller the network resources are occupied by a flow, then

the more ST flows can be scheduled. The objective function
is as following:

min{max{edy|fi € F}}

2) Scheduling constraints: If the flow cannot finish trans-
mission in an open window, the flow cannot be selected for
transmission. The flow waits to transmit in the next open
window or even next gating cycle, resulting in the delay
variation. The open window constraint is given as,

) . .
Vo, e V,Vfp € F: B—’j < ow,, < gc, 5)

m

where B! is the allocated bandwidth for queue ¢’,.

In order to avoid flow interference among multiple physical
queues, the open windows of their gates are not allowed to
overlap. The flow isolation constraint of multiple queues is
given as

Yo, e VVfr e F f e Fk#7:

e = v, = Qs fi = VG = Gy - 6)
(otin > otin, + owfn,) U (otin, > otin + owin) .

Flow interference also should not occur in the same physical
queue. Since the flows of the identical physical queue are
transmitted with a time offset in the VQ-TAS scheme, the
flows are isolated.

Two flows cannot be transmitted on the same link at the
same time. In the VQ-TAS scheme, the flows in the same
queue are transmitted sequentially. Therefore, link constraint
releases and requires the flows in different queues should
not be transmitted at the same time. With the flow isolation
constraint, the link constraint is satisfied.

The deadline constraint is given as

Vi € F :mspang < dl. 7

where mspany = gty + edy is the time that flow f; finishes
transmission and gty is the time that the source node generate
flow fi.

C. VQ-TAS Algorithm

The VQ-TAS algorithm is to get the weight mapping matrix
and the GCLs such that the deadline of each flow is satisfied.
The algorithm is divided into two stages of virtual queues
mapping and GCL computation. The stage of virtual queues
mapping allocates the virtual queues for each flow and maps
the virtual queues to physical queues. If the number of physical
queues is smaller than that of virtual queues, the virtual queues
are clustered. Then each cluster is allocated with a physical
queue. The virtual queues in one cluster are sequenced with
the merge sort algorithm. This stage generates a mapping
matrix for GCL computation. The stage of GCL computation
computes the content of GCL for physical queues. The GCL
is got with an ILP solver.

Algorithm VQ-TAS algorithm

Input: Flows set F', Path set Path, Physical queues set)
Output: Mapping matrix W, Time schedule S

LW« {},S«{}

2: Compute the queue delay bound of each flow in each node

3: fori=1—|V| do

4 Wi Opxm, St < {}

5: Allocate virtual queues for each flow

6: Split virtual queues into cluster according to queue
delay bound

7: Sort virtual queues in the same cluster with merge sort
algorithm

: Allocate physical queues for each cluster

9: Generate W*

10 form=1—|Q do

11 find the solution S; = (ot ,ow’) by a ILP solver

with the objective function and scheduling constraints

12: end for

132 W Wi S« 5

14: end for

IV. A CASE STUDY
A. Simulation Setup

We evaluate the performance of the VQ-TAS scheme in a
use case of industrial automation. A chain topology consisting
of IO stations, an industrial controller, and TSN nodes is
selected, which is common in industrial automation. The
isochronous traffic from the IO station to the controller is
selected as ST. The cycle of the ST flows is 100 ps-2 ms, and
the ST flow needs to finish transmission in one cycle [6]. The
propagation delay is set to 0.5 us, and the forwarding delay
is set to 1 ps. The bandwidth is set to 1 Gbps and 10 Gbps,
respectively. The flow length set is {64 bytes, 256 bytes, 1518
bytes}. The probability that the path of each flow is 3/4/5/6/7
hops is 0.1/0.1/0.1/0.3/0.4 [7]. All ST flows have the same
period. The scheduling algorithms are implemented in a 64
bit 8-core 3.4 GHz Intel Core-i7 PC with 16GB memory. The
ILP tool is PuLP in Python and the SMT solver is Z3 4.8.8.0.

B. Schedulable ST Flows

Fig. 2(a) shows the maximum number of ST flows that
can be scheduled with a different deadline. L represents the
flow length. The results show that the number of ST flows
increases approximately linearly with the deadline and the
growth of flow length decreases the number of schedulable
flows. The number of schedulable ST flows with 10 Gbps
bandwidth is about 10 times than that with 1 Gbps bandwidth,
which is the ratio of the two bandwidths. This indicates that
the queuing delay is mainly caused by the transmission of
other flows in the VQ-TAS scheme. When the flow length is
1518 bytes and the deadline requirement is less than 500 ps,
the number of schedulable ST flows is smaller than the 1/10
of that with 1 Gbps bandwidth. This is because the delays
of propagation, serialization, and forwarding are too large to

——&— L=64,B=1G = =©0---1=64 B=10G

[|—2—L=256B=IG - -4---L=256,B=10G
10°F| —=—L~=1518,B=1G L=1518.B=10G 08t

o -0 4
e L sl 8 -0

0-@

b=t

Q
&
&
i

A b A B

o’

Number of scheduled ST flows

Runtime(s)

N=100,B=1G
N=200,B=1G
N=100,B=10G
N=200,B=10G

0
100 500 1000 1500 2000 0 20 40
Deadline(yes)

(a)

End-to-end delay(j:s)

60 80 100 200 400 600 800 1000
The number of flows

(c)

Fig. 2. Simulation results:(a) the number of schedulable ST flows, (b) the cumulative distribution of end-to-end delay, and (c) runtime of the scheduling

algorithms w/o virtual queues.

satisfy the deadline. The results demonstrate that the physical
resources are the most critical limitation and the VQ-TAS
scheme is an optimization of resource usage.

C. End-to-End Delay

Fig. 2(b) shows the cumulative distribution of the end-to-
end delay of the flow with 64 bytes flow length. IV represents
the number of flows. From the results, we can see that the
delay of all flows is less than 100 pus. At N=100 and B=1
Gbps, the maximum end-to-end delay is about 48 us, the
average delay is about 33 us, and the end-to-end delay of
half of the flows is less than 35 us. The average delay is
approximate to the median of the delay, and the CDF curve
is approximately linear, indicating that the end-to-end delay
distribution is approximately uniform. This is because the
same flow length makes the same serialization delay among
flows. The CDF curve shows the same characteristics at B=10
Gbps. At N=100, the maximum end-to-end delay is about
12 ps, which is 1/4 of that at B=1 Gbps. At N=200, the
maximum end-to-end delay is about 15 us, which is about 1/6
of that at B=1 Gbps. The difference in the ratio is because
the proportion of queuing delay in end-to-end delay increases
with the number of flows.

D. Runtime

Fig. 2(c) shows the runtime of the scheduling algorithm with
and without virtual queues. The schedule is computed with
the ILP solver, SMT solver, and Tabu Search (TS) algorithm,
respectively. The number of physical queues allocated to the
ST flows is 1. The flows are all with 64 bytes length and
a deadline of 1 ms. All flows are schedulable. The results
show that the VQ-TAS scheme introduces few additional time
cost with the SMT solver and TS algorithm. With the ILP
solver, the runtime with virtual queues or not is approximately
the same. From the view of algorithm operation, the VQ-TAS
scheme only adds the sequence process and does not increase
the constraints for the scheduling problem. The time cost of
the sequence process is much smaller than that of the GCL
computation algorithm.

V. CONCLUSION

This paper proposes a VQ-TAS scheme to schedule a large
number of ST flows. In the scheme, the virtual queues are
introduced to isolates each flow with a time offset parameter.
The virtual queues are generated following the flows set with-
out the limitation of the number of physical queues. The TAS
problem is modeled as an optimization problem and a two-
stage scheduling algorithm is designed. The proposed scheme
is evaluated with a use case of the industrial automation. The
simulation results show that the VQ-TAS scheme can schedule
hundreds to thousands of flows while provide the end-to-
end delay guarantees. Compared with the typical scheduling
algorithms, the time cost of VQ-TAS scheme is almost the
same.

ACKNOWLEDGMENT

This work is supported in part by the National Natural
Science Foundation of China (Grant N0.92067102), and in part
by the project of Beijing Laboratory of Advanced Information
Networks.

REFERENCES

[1] W. Steiner, S. S. Craciunas, and R. S. Oliver, “Traffic planning for time-
sensitive communication,” IEEE Communications Standards Magazine,
vol. 2, no. 2, pp. 42-47, Jul. 2018.

[2] S. S. Craciunas, R. S. Oliver, M. Chmelik, and W. Steiner, “Scheduling
real-time communication in ieee 802.1 gbv time sensitive networks,” in
Proc. 24th ACM Int. Conf. Real-Time Netw. Syst.(RTNS), Brest, France,
Oct. 2016, pp. 183-192.

[3] F. Diirr and N. G. Nayak, “No-wait packet scheduling for IEEE time-
sensitive networks (TSN),” in Proc. 24th ACM Int. Conf. Real-Time Netw.
Syst.(RTNS), Brest, France, Oct. 2016, pp. 203-212.

[4] V. Gavrilut, L. Zhao, M. L. Raagaard, and P. Pop, “AVB-aware routing
and scheduling of time-triggered traffic for TSN,” IEEE Access, vol. 6,
pp. 75229-75243, Jun. 2018.

[5] B. Briscoe, A. Brunstrom, A. Petlund, D. Hayes, D. Ros, J. Tsang,
S. Gjessing, G. Fairhurst, C. Griwodz, and M. Welzl, “Reducing internet
latency: A survey of techniques and their merits,” JEEE Commun. Surveys
Tut., vol. 18, no. 3, pp. 2149-2196, 3rd Quart. 2014.

[6] “Industrial use cases iec/ieee 60802,” IEC/IEEE, Tech. Rep., 2018.

[71 A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. Elbakoury, “Performance comparison of IEEE 802.1
TSN time aware shaper (TAS) and asynchronous traffic shaper (ATS),”
IEEE Access, vol. 7, pp. 44 165-44 181, Jul. 2019.

