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Abstract—The last decade has seen increasing application of
machine learning to various tasks, including network anomaly
detection. But anomaly detection methods using a single machine
learning algorithm often fail to perform well, since network traffic
can have complex and changeable patterns. Therefore, many
solutions based on ensemble learning have been proposed to
address this problem. However, previous studies have a essential
drawback that they overlook the similarity between the weak
classifiers, which may degrade the detection ability of the model.
What’s more, prior work use offline and supervised algorithms,
which means a large amount of memory and reliable labels are
necessary during the training period.

In this paper, we propose ADSIM, an online, unsupervised, and
similarity-aware network anomaly detection algorithm based on
ensemble learning. In the training phase, ADSIM incrementally
maintains a distance matrix to record the similarity between
the classifiers and uses hierarchy clustering to group similar
classifiers. In the detecting phase, each cluster will be assigned a
weight based on the consistency of the classifier outputs within it.
We evaluate ADSIM on two datasets, MAWILab and CIC-IDS-
2017, and the results show that ADSIM can accurately detect
various anomalies and outperforms state-of-the-art ensemble
learning methods.

Index Terms—Network Traffic Anomaly Detection, Ensemble
Learning, Clustering

I. INTRODUCTION

The variety and scale of cyber attacks have been increasing
in recent years, causing serious loss and adverse impact.
Therefore, network intrusion detection has become rather
important. Network intrusion detection consists of two cat-
egories [1], [2]: signature-based and anomaly-based detection.
Signature-based detection uses specific rules to match attack
behaviors, which takes great effort to design the detection
mechanism case by case, and cannot cope with zero-day
attacks. As a result, the other type, namely anomaly-based de-
tection, has attracted more interest from researchers. Anomaly-
based detection aims to construct profiles of normal traffic,
and traffic whose pattern differs from the profiles would be
identified as anomalies. With the development of machine
learning, more and more machine learning algorithms are
being applied in this field [3], [4].

However, when a single machine learning algorithm is used
for network traffic anomaly detection, it often fails to obtain
ideal results [5]. The main reason is that network traffic can
have complex patterns, which are hard to be learned with
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only one classifier. To address this problem, many ensemble
learning based detection algorithms have been proposed so far,
i.e., combine multiple algorithms (weak classifiers) with some
strategies to enhance the detection ability of the model [5]-
[10]. However, most of them are not practical for the following
reasons:

Supervised Learning. Most existing methods require labels
to calculate metrics (e.g. accuracy) or identify the incorrectly
classified samples in the training period [7]-[9], but labeling
data is expensive and time-consuming. Furthermore, it’s hard
to include all kinds of malicious traffic in the training data, so
the trained models cannot detect all attacks.

Offline Training. Many prior work retrain the classifiers
with the entire dataset in each iteration [7]-[9], thus storing
it in memory and loading it repeatedly, which is space-
consuming. What’s more, these methods become unscalable
when the size of the training dataset becomes larger.

Not Similarity-aware. Most existing work neglect the
similarity between the weak classifiers [7]-[10], which may
degrade the detection capability of the model. For example,
Weighted Voting assigns weights to the weak classifiers ac-
cording to their detection performance (e.g., accuracy) and
calculates the weighted average as the final result [8]. If there
are many similar weak classifiers, it’s likely that they all
misclassify a sample while they possess a large weight in the
voting stage, which may lead to more false/missed alarms.

In this paper, we propose ADSIM, a network anomaly
detection algorithm based on ensemble learning: in the training
phase, a distance matrix of the weak classifiers is maintained
in an online way, and a low-complexity clustering algorithm is
used to group similar classifiers; in the detecting phase, each
cluster is assigned a weight according to the consistency of the
classifier outputs within it. ADSIM is online, unsupervised and
similarity-aware, and our evaluation shows that ADSIM can
accurately detect various network anomalies.

II. RELATED WORK

Existing ensemble learning algorithms can be divided into
two classes, homogeneous ensemble learning and hetero-
geneous ensemble learning [11]. Homogeneous ensemble
learning comprises two common methods: Boosting and
Bagging. Boosting repeatedly assigns weights to the samples
and retrains the weak classifiers to make them focus more
on the misclassified samples [12]. Bagging randomly extracts



feature/sample subsets of the dataset to train different weak
classifiers to enhance model diversity [13], [14]. Heteroge-
neous ensemble learning mainly consists of two different
categories: Stacking and Voting. Stacking uses a series of weak
classifiers as first-level classifiers, and a second-level classifier
makes the final decision based on the detection results of the
first-level classifiers [15]. Voting uses the weighted average of
the results from the weak classifiers as the final result and the
weight can be assigned in different ways [11]. All of the above
methods have been widely used in network anomaly detection
[71, [8], [16]-[20], but they either need expensive labels for
supervised training or takes up a lot of memory for offline
processing, and more importantly, the similarity between the
classifiers is not considered.

In consideration of the issues in related studies, we propose
ADSI1M, which seeks to combine the results of the weak clas-
sifiers in an online and unsupervised manner, and recognize
the similarity of the weak classifiers and eliminate its negative
effects.

ITII. ADSIM DESIGN
A. Motivating Example

This section introduces a simple example to illustrate the
intuition behind ADSIM. As Fig. 1 shows, five weak clas-
sifiers, denoted by A-FE respectively, are used for network
anomaly detection, and the table shows their detection results
for the packets (malicious packets are in red color and 1 means
producing an alarm). It can be seen that classifier A,B,C are
very similar because they have the same detection results for
these packets. Prior studies have overlooked this similarity
and treat them as three different classifiers. Taking the most
common method majority voting for example [5], [8], 4,B,C
all fail to identify the last packet as an anomaly while they
possess larger weight, so the last packet will still be considered
benign in the voting stage, resulting in a missed alarm.

To eliminate this effect, one solution is to find similar
classifiers and treat them as a whole, which is exactly the
intuition of ADSIM. ADSIM recognizes similar classifiers
based on previous detection results, groups them into the same
clusters, and assigns a weight to each cluster based on the
consistency of the results. For this example, ADSIM gets three
clusters [A4, B, C], [D], and [E], and the last packet would be
successfully identified as an anomaly because [D] and [F] hold
heavier weight now. What’s more, we design ADSIM to be
online and unsupervised to make it more practical.

B. Overview

The workflow of ADSIM is shown in Fig. 2. Suppose at
timestamp ¢, the m-th packet arrives, and n weak classifiers
c1,Co, ..., Cp are used.

1) Feature Extraction: An online feature extractor is used
to get the feature vector f of the packet. Some existing feature
extraction algorithms can be used here (e.g. AfterImage [3],
CICFlowMeter [21]).

2) Anomaly Detection: The anomaly detector receives f,
and operates differently in the training and detecting phase.

o In the training phase:

a) Weak classifiers Detection: The classifiers detect the
new packet based on f, (gettmg the detection result vec-
tor Ty, = [mm ey 7,7{ ], where the i-th dimension

represents the detection result of the i-th classifier.

b) Updating the distance matrix: According to a,,,
a distance matrix D = [D; ;] will be maintained in
an online manner, where D; ; represents the distance
between the i-th and the j-th classifier.

¢) Clustering the classifiers: At the end of the training
phase, the classifiers will be divided into & clusters
[Ny, Na, ..., Ni] according to D.

o In the detecting phase:

a) Weight Decision: Each cluster will be assigned a
weight based on the consistency of its internal classifier
outputs, and the weighted average of the cluster results
is the final anomaly score.

More detailed description of distance counting, classifier
clustering, and weight decision will be discussed as follows.

C. Distance Between Classifiers

When two weak classifiers are used to detect the same set of
packets, their results can be viewed as two vectors u and v. By
calculating the correlation distance between these two vectors,
the similarity between the corresponding weak classifiers can
be known. The correlation distance is defined as:

 (u-m)-(v-7)
l(w = a)ll2[|(v = D)ll2

However, if this formula is directly used, all the detection
results (u and v) need to be stored in memory, which is space-
consuming. To this end, we propose the following algorithm
to incrementally maintain the distance matrix:

First, the Linear sum L can be maintained in an online
manner:

dcor =

m

L= (L3) =3 @) =

j=1

(Lol +212)

B_ased on the Lir}_e)ar Sum, the Residual Linear Sum R:n =
(R(Z) 2D _ Ly =m) , the Residual Squared Sum RS,, =
i () . . .
(RS | + (2 Lﬂf )?) and the Partlal Correlation Matrix
i Q) )
PCu = [PCpoi(iy ) + (wi) — B () — L2
maintained in the same way.
So at any moment, if the training phase is finished, the
distance matrix can be obtained from the above variables:
PC(i, j)
D=[Di;]=[1-——7—=]
! VRSO VRSG)
D. Clustering Weak Classifiers

Based on the distance matrix D, a hierarchical clustering
algorithm can be used to cluster the classifiers. The process
consists of two steps, namely Linkage and Division, which
are briefly described below.

Linkage takes the weak classifiers set ¢ = [cq, ..., ¢;,] and
the distance matrix D as input. Initially, each classifier is

)] can be
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Fig. 1. A motivating example.

treated as a cluster; in each iteration, the nearest cluster pair
(N;, N;) are chosen and merged into a new cluster, and its
distances to other clusters are computed by Average Linkage

method, which is defined as:
> D dlein)
ci€N; c;EN;

1
st NG N5) = 1T
The iteration stops when there is only one cluster left, and
the remaining cluster can be represented as a dendrogram.
Division divides the dendrogram into final clusters: First,
the root node of the dendrogram is broken and the tree is di-
vided into two subtrees. Then Division is executed recursively
over the subtrees until the termination condition is satisfied
(e.g., cluster size, distance threshold, etc.). In ADSIM, the
recursion stops when all classifier distances in the subtree are
less than ¢ = 0.1. After Division, each subtree is a classifier
cluster.

E. Weight Decision

In the detecting phase, a weight will be assigned to each
cluster according to the consistency of the classifier outputs
within it: First, a confidence p is assigned to each weak
classifier. If the labels are available, the confidence can be
determined by the performance of the classifier (e.g. accuracy,
etc.), otherwise it can be set to some common values like 0.5.
Then if a cluster N; contains n; classifiers and m; of them
classify a packet as an anomaly, then the confidence of this
cluster can be calculated as:

pi=1- ()@= pymip™

Finally, the anomaly score can be calculated by the weighted
average of the detection results of the clusters:

k
1
Score = T ;pi - Score;

IV. EVALUATION
A. Datasets

CIC-IDS-2017 Dataset. CIC-IDS-2017 dataset is built by
injecting attack traffic into normal background traffic [22]. The
benign background traffic is generated by B-Profiling system
to characterize the behavior of 25 users, and the attacks were
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Fig. 2. The workflow of ADSIM.
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implemented consecutively from Tuesday to Friday, which
contain various anomalies (e.g., Brute Force, DDoS/DoS, Web
Attack, Botnet, etc.).

MAWILab Dataset. MAWILab dataset is built by capturing
real network traffic traces on a backbone link between Japan
and the United States [23]. Based on the collected traffic,
MAWILab project uses a combination of four anomaly detec-
tors (Hough, Gamma, KL, PCA) to label the data. The traffic
identified as anomalies are further classified into different
taxonomies (e.g., DoS, port scan, etc.).

In CIC-IDS-2017 dataset, we choose four attacks, DDoS,
HeartBleed, Botnet and Port Scan for experiments. As for
MAWILab dataset, we select the traffic on 6/1/2019 as a
test point. As traffic in CIC-IDS-2017 dataset have relatively
simple patterns compared to MAIWLab, making it easier to
analyze the detection results, in the experiments on CIC-IDS-
2017 dataset, we analyze the performance improvement of
ADSIM over the weak classifiers, and MAWILab dataset is
used to compare our algorithm with the baseline methods.

B. Experiment Setup

Feature Extractor. The feature extractor in our experiments
is Afterimage [3]. Afterlmage retrieves over 100 statistics
from the meta-data of packets in an online manner, which
perfectly portray the volume information (e.g., bandwidth,
packet rate, jitter, etc.) of different streams. For more details
about Afterimage, we refer the readers to [3].

Weak Classifiers. The weak classifiers include OCSVM
[24], Isolation Forest [25], RBM (Restricted Boltzmann Ma-
chine) [26], SAE (Sparse Autoencoder) [27], KitNet [3]. We
also use Suricata [28] for signature-based detection.

Baseline Methods. We compare ADSIM with some state-
of-the-art anomaly detection algorithms based on ensemble
learning. We choose XGBoost [29] and Random Forest [14]
as the representative algorithms for homogeneous ensmeble
learning, and for heterogeneous ensemble learning algorithms,
we choose MVexp [8] and HELAD [10] as baseline methods.
MVexp uses weighted voting and assigns weight to each
cluster based on its accuracy, HELAD combines Autoencoder
and LSTM for anomaly detection. All these methods have
shown good performance in network anomaly detection.
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Fig. 3. ROC curves on CIC-IDS-2017 dataset.

TABLE I
RESULTS ON CIC-IDS-2017 DATASET.

Method DDoS HeartBleed Botnet Port Scan Overall
F-Score AUC F-Score AUC F-Score AUC F-Score AUC F-Score AUC
IF 0.841  0.860 0722 0.820 0.792 0813 0.669 0.596
OCSVM 0917 0954 0.882 0931 0.892 0943 0.697 0.683
SAE 0.854  0.896 0.862 0912 0859 0912 0.691 0.605
KitNet ~ 0.990 0.997 0.935 0.963 0.949 0967 0.668 0.632
RBM 0.786  0.905 - - 0.844 0.899 0.838 0.895 0.760 0.607
Suricata - - 0.994  0.999 - - - 0.668  0.632
ADSIM 0995 0.998 0986 0.995 0.964 0.992 0972 0986 0.988 0.997

Evaluation Metrics The evaluation metrics include Prec-
sion, Recall, F-Score and AUC. Based on the classification
result, Precision, Recall, F-Score can be calculated as follows:

_ TP _ TP _ 2PR .
P=+75:7p BR=7p17n  F' = 555> and AUC is the area
under the ROC curve (the curve of recall varying with FPR).

C. Results and Findings

ADSIM combines the advantages of the weak classifiers.
The results on CIC-IDS-2017 dataset are shown in Table I. It
can be seen in the overall results that ADSIM has significant
improvement over the weak classifiers, with F-Score and AUC
approaching 98%. The separated results can better illustrate the
reason of this improvement: the anomaly-based methods can
effectively detect DDoS/Botnet/Port Scan attacks, but cannot
deal with attacks like HeartBleed, and it’s the opposite for
signature-based methods like Suricata. Consequently, the weak
classifiers fail to identify all of these attacks, resulting in their
poor performance. ADSIM combines the advantages of the
weak classifier, which enable it to cope various attacks, thus
contributing to its performance improvement. The correspond-
ing ROC curves are plotted in Fig. 3, which shows in detail
the improvement of ADSIM over the weak classifiers on these
attacks respectively.

ADSIM outperforms the current state-of-the-art ensem-
ble learning methods. Table II shows the results of ADSIM
and the baseline methods on MAWILab dataset. It can be
seen that ADSIM has better detection ability than the state-
of-the-art ensemble learning methods, with F-Score improved
by at least 4% and AUC improved by at least 3%. Especially,
the performance improvement of ADSIM over MVexp is a

TABLE I
RESULTS ON MAWILAB DATASET.

Precision Recall F-Score AUC

XGBoost 0.766 0.774 0.770 0.865
Random Forest 0.816 0.779 0.797 0.863
MVexp 0.836 0.832 0.834 0.884
HELAD 0.842 0.846 0.844 0.907
ADSIM 0.865 0.867 0.866 0.931

strong indication that our similarity-aware ensemble learning
scheme effectively enhances the detection ability of the model.
The ROC curves are plotted in Fig. 4, which also shows
the performance improvement of ADSIM over the baseline
methods.

100
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Fig. 4. ROC curves on MAWILab dataset.

V. CONCLUSION

In this paper, we introduce ADSIM, an online, unsuper-
vised, and similarity-aware ensemble learning based network
anomaly detection algorithm. ADSIM incrementally maintains
a distance matrix of the weak classifiers, divides similar
weak classifiers into the same clusters, and assigns a weight
to each cluster based on the consistency of the classifier
outputs within it. Experiment results show that ADSIM can
accurately detect various attacks and outperforms state-of-the-
art ensemble learning methods.
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