
An IoT Transport Architecture for Passenger
Counting: A Real Implementation

Janine Kniess1, Julio Cezar Rutke1, William Alberto Cruz Castañeda1

Graduate Program in Applied Computing, Santa Catarina State University, Brazil1

janine.kniess@udesc.br1, rutke.julio@gmail.com1, williamalberto.cruz@gmail.com1

Abstract—A smart urban mobility considers the technological-
based development in transport systems, services and their use to
improve the movement of people and goods inter or intra-cities.
Cities increasingly face problems caused by traffic and need to
find solutions to improve mobility and to reduce congestion and
pollution. In this paper, we present a Passenger Counting Scheme
into buses. Embedded counting algorithms based on Computer
Vision are proposed to count passenger arrivals and departures in
real time. Experiments in a real scenario expose that the proposed
scheme achieved a high percentage of success in passenger count.

Index Terms—Smart Transportation, Passenger Counting Al-
gorithm, Urban Mobility, Smart Cities

I. INTRODUCTION

Sustainable urban developments depend on the successful
management of urban growth, including infrastructure, as well
as, basic services. The smart city concept integrates Internet
of Things (IoT) paradigm to improve city operations and ser-
vices into six dimensions: environment, governance, economy,
people, living and mobility [1]. Among the aforementioned
dimensions, mobility systems are interesting to study, due
to the lack of information, such as unavailability of routes,
passengers traveling on each route, estimated arrival time, and
poor distribution and overcrowding, and, they can be shaped
into a smart mobility system. According to [2], the main
objectives of smart mobility are the reduction of pollution,
traffic congestion, noise pollution and transfer costs, increase
mobility safety and transfer speed. Therefore, we propose
a Passenger Counting Scheme for urban public buses. This
scheme is composed of counting algorithms, that involve
identification, tracking and counting functions, as well as
an aggregation algorithm, that manages strategies for data
transmission.

The counting scheme is embedded in micro-controllers that
were installed on a real public bus. Passenger images were
obtained through cameras, subsequently, stored and processed
in micro-controllers. We developed one algorithm for detec-
tion and tracking based on Computer Vision. The passenger
counting algorithm identifies who enter/leave in the bus, and
follows their route while in the camera range. It developed a
counting module to be attached to the bus door. Afterward,
the Counting module transmits the processed information via
wireless network to an aggregator module fixed in the bus.
The Aggregator module is responsible for unifying information

from all ports and sending them to a network outside the
bus. Internet of Things (IoT) protocols, such as, COAP [3]
and MQTT [4] were used to reduce the use of resources as
memory and processing. Transmission tests with technologies
802.11n and GPRS were carried out, aiming to evaluate the
potential of these technologies in sending data on the bus
between micro-controllers and also to an external network.
The paper is organized as follows. Section 2 describes related
work. Section 3, describes the embedded in-route counting
scheme as well as the computer vision-based mechanisms for
counting passengers. Section 4, presents the results obtained
from the implementation in a real scenario. Finally, Section 5,
presents the conclusions and future works.

II. RELATED WORK

Counting people approaches can be classified according to
the following properties: Position and Depth, Person Size in
Picture, Detection and Tracking and Processing and Aggre-
gation. Yahiaoui et al. [5] proposed counting passengers in
buses through stereo vision position using two cameras. The
similarity in grayscales between two images sought to remove
the background, identify similar neighboring pixels and detect
edges to recognize passengers. The framework of Mukherjee
et al. [6] detects and tracks passengers in a train station.
Detection is performed through cameras located on the top
of station entryways. The system recognizes passengers by
the circular shapes of their heads.

Boreiko et al. [7], presented a system for passenger counting
and tracking on buses that counts through two cameras (ceiling
and above the doors). A Raspberry Pi put together recorded
images along with GPS location and transmits the data to
an external server via a 3G modem. In Escolano et al. [8]
cameras are installed at the bus doors. The system is based
on estimation of optical flow to detect and monitor the entry
and exit of passengers. In [9], an Automatic Bus passenger
Counting System (iABACUS) is presented. In iABACUS the
passenger count is based on the detection of Wi-Fi signatures
coming from mobile phones. Data are transferred to the cloud
through Wi-Fi at the bus station. Unlike the related works, the
Passenger Counting Scheme presented in Section III performs
the counting of passengers in an embedded system fully loaded
on the bus. We use cameras to capture passengers images.
Among the detection and tracking algorithms we chose those
with the best accuracy. So for detection we used HOG [10]978-3-903176-32-4 © 2021 IFIP

and Haar Likes [11] classifiers and for tracking we developed
one (III-A).

III. PASSENGER COUNTING SCHEME

The scheme for detecting and counting passengers has
been specified with embedded devices to provide support
for counting flow on each route of the bus, as well as, to
provide these information to stakeholder. The overall passen-
ger counting scheme with four layers is illustrated in Figure
1. The Perception Layer recognizes and collect data from
the environment through sensors and cameras. The Collected
Data Treatment Layer algorithms identify individuals in the
images and count them as they pass through the door. The
Communication Layer manages communication interfaces as
well as transmission with external networks. The Application
and Data Storage Layer brings together information handling
and presentation of the processed data. Their implementation
can be in the cloud or in an external server.

Fig. 1: Counting Scheme Layers.

A. Counting and Aggregation: Algorithm

The algorithm for detection and counting was organized
as represented in Figure 2: Door activation and Detection,
Passenger counting, Aggregation, Communication and Ap-
plication. The system begins with the door activation signal
(open) coming from the Perception layer. Afterwards, when
the output signal (close) is detected, the counting module
acquires and transfer images to the Collected Data Treatment
layer. If the count is equal to zero, the image is deleted. If
the count is greater than zero, the Communication Interface
layer transmits to the Aggregation module the number of
passengers. Lastly, the aggregation module receives from the
Communication Interface layer an update message, and replies
an acknowledgment message notifying the process completion.

Open the

Door of Bus
Camera

Record Images

Door

Closed?

No

Yes

Counting

People

Send Count

and Stop Data
Erase

Images
Nº People > 0

I - Perception Layer

Aggregation

Algorithm

Send Ack

Confirmation

Sends Data

to External

Network

No Yes

No

Receive Ack?
Yes

II - Treatment Layer

III - Comunication Interface Layer

III - Treatment Layer

Storage

and Display

System

IV - Data and

Application Layer
C

Raspberry pi 3B+

NodeMCU ESP32

Increment

Stop Number

Fig. 2: Flowchart Counting Algorithm.

The counting approach (Algorithm 1) establishes three main
functions: identification, tracking and counting. Identification
includes passenger detection using Haar Likes [11] or HOG
[10] classifiers. Tracking and Counting involves trajectories
from individuals that cross a boundary line. Initially, the
algorithm defines a vector that will store the positions of the
identified passenger, stores information about him and per-
forms the count. The algorithm set up limits of maximum and
minimum size to avoid possible false positives. A counting and
distance boundary line among objects for tracking purposes
is defined. Frame acquisition, analysis and video processing
(lines 5 to 14) are performed frame by frame to convert them
in grayscale. Afterward, a classifier, defined on an external
computer, is trained and retrieves a vector containing identified
passengers in frames.

Algorithm 1: Passenger Accounting
1 classifier = getCascadeClassifier(’classifier.xml’);
2 Begin
3 video = captureimage(’videocaptured.avi’);
4 nFrames = 0;
5 for all frames to be analyzed do
6 frame = readNextFrame(video);
7 nFrames + = 1;
8 if nFrames < 1 then
9 previous frame = cv2.cvtColor(frame, cv2.COLOR BGR2GRAY);

10 end
11 gray = cv2.cvtColor(frame, cv2.COLOR BGR2GRAY);
12 people = classifier.getPeople(gray, 1, 5, cv2.CASCADE SCALE IMAGE, (SZ LIMIT1,

SZ LIMIT1), (SZ LIMIT2, SZ LIMIT2));
13 findPeople(people);
14 end
15 Function findPeople(people)
16 for each people ∈ people[] do
17 rectangle center = [people.getX + people.getWidth/2, people.getY + people.getHeigth/2];;
18 for each p ∈ people list[] do
19 distance = sqrt((p.getX - rectangle center.getX) ** 2 + (p.getY - rectangle center.getY)

** 2);
20 if lowest distance > distance then
21 lowest distance = distance;
22 closest index = p.index;
23 end
24 end
25 if lowest distance > distance threshold then
26 closest index = None;
27 end
28 if closest index ! = None then
29 if lowest distance < distance threshold then
30 updatePosition(rectangle center);
31 count(limit line1);
32 end
33 else
34 new person = rectangle center;
35 people list.append(new person);
36 end
37 end
38 end
39 end

The function findPeople() (lines 16 to 26) sets up a vec-
tor and performs the tracking, establishing central points in
rectangles to mark passengers. It analyses records detected in
frames, and accomplishes a comparison with a list of previous
recordings of movements to find out if the frame is already
added. Thus, the vector stores a recognized passenger and a
whole list of identified individuals in the counting process.
The Euclidean distance (line 28) is calculated for each vector
regarding each passenger to identify the closest. If the distance
among the list and the vector is greater than one threshold, it
means that there is no equal passenger record. Also, an update
function compares if the record has an equivalent position.
With this position, one function compares the central points
for a possible identified passenger and seeks to recognize the
boundary limit. If in a previous frame the point is below the
boundary line and in the current frame the point is in the same

(a) (b)

Fig. 3: Message Payload (a), Message Header (b).

line or above, an entry is accounted. Otherwise, a leaving is
accounted.

There is communication between the Counting module
coupled in the bus doors to the Aggregator module. The
aggregation algorithm operates in the Treatment layer and it
encompasses strategies to manage counting data and transmit
them. Moreover, manipulates a list of bus stops in a route.
When the route starts, the list is empty and is incremented
at each bus stop. The primary objective of the aggregation
algorithm is to transmit the count data in string format. The
images are analyzed and processed directly in the counting
module of the door micro-controllers. Figure 3a illustrates the
message structure including 3 digits variables. As depicted in
Figure 3b, the header includes: message identifier (MSG001),
sequential message number (SEQ001), latitude, longitude and
date-time of the stop. In Figure 3a, the body includes: port
identification, stop identification, number of passenger entries,
and number of passenger exits. The stop identifier receives the
value 0 (zero) when the bus finishes the route. The system uses
location data obtained from a GPS in the micro-controller to
identify the end of the route.

The Aggregation algorithm is required to add entries and
exits of several ports, as well as, to take the total number
of passengers at each stop. In addition, identifies whether the
received stop already exists or not. If no stop identifier is found
on the list, the received identifier is inserted in the list. Thus,
the algorithm sends a confirmation message to the counting
module, which notifies that the data has been received. When
the Counting module completes processing and sends the data
to the Aggregator module, it awaits confirmation (ACK count).
At that moment, the counting module can delete the videos.
If this confirmation does not return within a period of time,
the system assumes that communication has been lost and
data is forwarded. In order to ensure counting reliability and
transmission integrity, the data stored along the route are send
as messages to an external server to find possible divergences
or message loss.

IV. EXPERIMENTS AND RESULTS

Most of the public transport companies in Brazil implement
an integrated ticketing system that works as follow: Passengers
access a bus terminal through a ticket reader. Thus, they can
take any bus entering by the back or central doors. When a
bus arrives at a new terminal, they can change buses without
a new payment. We installed a counting scheme composed by
cameras and micro-controller on a bus to capture passengers

flow and perform the count [12]. The following hardware were
used in a real scenario: Raspberry Pi 3b+, NodeMCU ESP32
with a GPRS module, and a monocular webcam Logitech HD
C270 with a resolution of 1280x720 pixels. The packages were
captured using the Wireshark [13]. The confidence interval for
the results is 95%. The camera was positioned in the zenith
position above the door with the camera facing the ground.
Videos were recorded, with a rate of 30 frames per second.
Table I presents a description of the collected videos.

TABLE I: Classification: Collected Videos

Videos Passengers Diurnal Nocturnal Position Direction
Video 1 27 X zenith Embarking
Video 2 21 X zenith Embarking
Video 3 18 X zenith Embarking
Video 4 25 X zenith Embarking
Video 5 20 X zenith Embarking
Video 6 28 X zenith Disembarking
Video 7 25 X zenith Disembarking
Video 8 30 X zenith Disembarking
Video 9 27 X zenith Disembarking
Video 10 22 X zenith Disembarking

A total of 1400 positive and negative images were used.
Each positive image was compared to all negatives ones,
which generated a mapping of 1400 vectors used for training.
Negative images were obtained from same videos, but with
clippings of areas where people are not, such as handrails,
stairs, floors, and also backpacks and hats. In the training
which was carried out in 10 stages, 5000 combinations were
applied among positive images and 2500 combinations among
negative images. Table II presents the processing time into the
micro-controller applying Haar Likes [11] with an Adaboost
classifier [14] and HOG [10]. The potential of the algorithm
was evaluated with the Deep Learning technique, YOLOV3
[15]. In the HOG technique, the standard OpenCV training
was used with a SVM classifier. The processing time with
HOG was higher when compared with Haar. HOG performs
a pixel by pixel calculation to find the histogram of the image
and detects the edges of the heads, while Haar optimizes this
search by calculating the integral of an image. Meanwhile, at
the YOLOV3, the video processing time is higher than Haar
and HOG because it uses 53 convolutional layers that require
a large processing power.

Figure 4 presents the success percentage rate (number of
passengers entering/leaving the bus SC) related to diurnal
boarding and landing. HOG presented a SC of 72% on average
for videos 1, 2 and 3 with a false positive o (passengers
counted by the system wrongly) of 7% on average. With Haar
Likes the SC was around 85.0% with an average of 3% of false
positives. For YOLOV3 was on average 92% without false
positives. Figure 4b presents results concerning the diurnal
disembarkation. For Haar the SC was 86% and 3.33% are false
positives. High number of false positives occurred because the
passenger carries a backpack or enters quickly on the bus.
For HOG the low percentage, is due to the applied classifier
that uses a standard training provided by the OpenCV. The
processing time training is very high, making it unfeasible to
use it an embedded micro-controller in real time. For YOLOV3
the success percentage rate (diurnal landing) was 92%.

TABLE II: Counting Results: Processing Time (s)

Videos Passengers Frames Haar Hog Yolov3
Video 1 27 949 99 1780 2102
Video 2 21 444 43 737 893
Video 3 18 387 37 703 843
Video 4 25 867 85 1439 1715
Video 5 20 431 42 756 864
Video 6 28 634 61 1048 1298
Video 7 25 524 52 884 1012
Video 8 30 843 81 1355 1611
Video 9 27 732 70 1196 1479
Video 10 22 412 38 722 835

(a) (b)

Fig. 4: Diurnal Boarding (a), Diurnal Landing (b): Zenith
Position.

The Figures 5a and 5b depict success percentage rate
regarding nocturnal boarding and landing. With Haar the SC
was around 85%, both without false positives. In nocturnal
disembarkation for videos 9 and 10 the SC value was 86.81%
on average, with 4.0% of false positives. The SC with HOG for
nocturnal embarkation was on average 66%. With YOLOV3 it
was on average 89% (video 4 and 5) both of them without false
positives. For nocturnal disembarkation, YOLOV3 presented
on average 91% of success rate to videos 9 and 10, both of
them without false positives. It was observed that the short
distance among passengers and the camera negatively affected
the metric SC.

In the experiments the counting data was sent between
the aggregator implemented in NodeMCU ESP32 with an AI
Thinker card that supports GPRS technology and the counting
module at the Raspberry PI. The Aggregator was implemented
as an access point to allow the Counting Modules to connect
to it. A COAP server was implemented in the Aggregator
to receive messages regarding the count. The aggregator
module communicates with an external server via GPRS. Each
experiment was repeated 30 times. Data transmission among
counting was deployed between aggregator and external server
with MQTT protocol using QoS level 1. Different number of
packets (1, 5, 10 and 15) were transmitted. Figure 6a depicts
the delay between the Count and the Aggregator modules

(a) (b)

Fig. 5: Nocturnal Boarding (a), Nocturnal Landing (b): Zenith
Position.

(a) (b)

Fig. 6: Delay (a), Packet Loss (b): Counting to Aggregator
Module (802.11).

(a) (b)

Fig. 7: Delay (a), Packet Loss (b): Aggregator Module to
Server (GPRS).

(inside the bus) over IEEE 802.11. Regarding delay, the aver-
age was 664ms to transmit one packet, 674ms (five packets),
682ms (ten packets) and 692ms (fifteen packets). It is because
the Aggregator module needs to send acknowledgment mes-
sages to the counting module, generating a message queue.
Regarding packet loss, when ten packages were transmitted
the packet loss was 0.17% and with fifteen packages, 0.18%.
The losses occurred due to interference such as, high number
of people standing, other WiFi signals in the area.

Figure 7a shows results of delay between the Aggregator
module and an external server. The average transmission of
one packet was 1013ms, 1017ms (five packets), 1019ms (ten
packets) and 1022ms (fifteen packets). The average delay was
greater when compared to the results of the delay shown in
Figure 6a. This behavior is justified by the use of the TCP
protocol and the MQTT with QoS 1. For packet loss, the
transmission of fifteen packages was around 0.3%.

V. CONCLUSION

The Counting algorithm implements computational vision
techniques to support passenger detection and counting, for
later, with the aggregation algorithm, join and compute the
other doors of the same bus at each stop. Results show that
the Haar technique brought optimum results after training with
an Adaboost classifier reaching 86%. HOG technique proved
to be time-consuming for real-time processing environment.
Also, the percentage of success presented by YOLOV3 was the
highest, however, the time to process the counting information
was very long. It was concluded that further studies can be
done to improve the percentage success rate while preserving
good processing time results. For example, the count can be
more accurate if the cameras are equipped with a depth sensor,
such as kinects.

REFERENCES

[1] S. P. Mohanty, U. Choppali, and E. Kougianos, “Everything you wanted
to know about smart cities: The internet of things is the backbone,” IEEE
Consumer Electronics Magazine, vol. 5, no. 3, pp. 60–70, July 2016.

[2] C. Benevolo, R. P. Dameri, and B. D’Auria, “Smart mobility in smart
city: Action taxonomy,” ICT Intensity and Public Benefits: Switzerland:
Springer International Publishing [doi¿ 10.1007/978-3-319-23784-8 2],
2016.

[3] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” RFC 7252, Jun. 2014. [Online]. Available:
https://rfc-editor.org/rfc/rfc7252.txt

[4] G. Hillar, MQTT Essentials - A Lightweight IoT
Protocol. Packt Publishing, 2017. [Online]. Available:
https://books.google.com.br/books?id=40EwDwAAQBAJ

[5] T. Yahiaoui, L. Khoudour, and C. Meurie, “Real-time passenger counting
in buses using dense stereovision,” Journal of Electronic Imaging,
vol. 19, no. 3, p. 031202, 2010.

[6] S. Mukherjee, B. Saha, I. Jamal, R. Leclerc, and N. Ray, “Anovel
framework for automatic passenger counting,” in Image Processing
(ICIP), 2011 18th IEEE International Conference on. Brussels,
Belgium: IEEE, 2011, pp. 2969–2972.

[7] O. Boreiko and V. Teslyuk, “Structural model of passenger counting
and public transport tracking system of smart city,” in Perspective
Technologies and Methods in MEMS Design (MEMSTECH), 2016 XII
International Conference on. Lviv, Ukraine: IEEE, 2016, pp. 124–126.

[8] C. O. Escolano, R. K. C. Billones, E. Sybingco, A. D. Fillone, and
E. P. Dadios, “Passenger demand forecast using optical flow passenger
counting system for bus dispatch scheduling,” in Region 10 Conference
(TENCON), 2016 IEEE. Singapore, Singapore: IEEE, 2016, pp. 1875–
1878.

[9] M. Nitti, F. Pinna, L. Pintor, V. Pilloni, and B. Barabino, “iabacus:
A wi-fi-based automatic bus passenger counting system,” Energies,
vol. 13, no. 6, 2020. [Online]. Available: https://www.mdpi.com/1996-
1073/13/6/1446

[10] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 1. San Diego, CA,
USA, USA: IEEE, 2005, pp. 886–893.

[11] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Society Confer-
ence on, vol. 1. Kauai, HI, USA, USA: IEEE, 2001, pp. I–I.

[12] J. C. Rutke and J. Kniess, “Architecture with internet of
things for counting passengers in urban bus,” in XLIV Latin
American Computer Conference, CLEI 2018, São Paulo, Brazil,
October 1-5, 2018. IEEE, 2018, pp. 735–743. [Online]. Available:
https://doi.org/10.1109/CLEI.2018.00093

[13] C. Sanders, Practical Packet Analysis, 2nd Edition: Using
Wireshark to Solve Real-world Network Problems, ser. No
Starch Press Series. No Starch Press, 2011. [Online]. Available:
https://books.google.com.br/books?id=Zl6LBAAAQBAJ

[14] X. Li, L. Wang, and E. Sung, “Adaboost with svm-based component
classifiers,” Engineering Applications of Artificial Intelligence, vol. 21,
no. 5, pp. 785–795, 2008.

[15] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

