
Secure many-to-one transmission of q-ary
symbols ?

Antoni Mart́ınez-Ballesté, Francesc Sebé and Josep Domingo-Ferrer

Universitat Rovira i Virgili - Tarragona, Catalonia, Spain
e-mail {anmartin,fsebe,jdomingo}@etse.urv.es

Abstract. There is a number of applications requiring a community of
many senders to transmit some real-time information to a single receiver.
Using unicast connections to send this traffic can result in data implosion
and swamp the receiver. In [Domi04], a mechanism was proposed for
secure bit transmission in large-scale many-to-one communications; we
propose here an extension for securely sending q-ary symbols.
Keywords: Multicasting, Active network application, Network security.

1 Introduction

Several applications require a large group of senders to transmit some
real-time information to a single receiver (many-to-one communication).
A network of sensors sending status information to a control center is one
example of such applications.

Many-to-one communication entails inherent scaling problems. Too
many simultaneous senders transmitting data to the receiver may over-
whelm or swamp the latter, a problem usually known as implosion. In
addition to requiring solutions to implosion, some many-to-one applica-
tions require secure and real-time transmission. Security usually means
that transmission from each sender to the receiver should be confidential
and authentic.

1.1 Previous work

The best way to avoid the implosion problem is that intermediate nodes
aggregate the information sent from the large set of senders to the unique
receiver. A few contributions about aggregation of data streams in many-
to-one communications can be found in the literature. In [Wolf03], a tech-
nique called aggregated hierarchical multicast is presented, whereby pack-
ets are aggregated in multicast nodes. This technique, similar to Concast
? This work has been partly supported by the Spanish Ministry of Science and

Technology and the European FEDER fund under project TIC2001-0633-C03-01
“STREAMOBILE”.

is introduced as an aggregation mechanism that basically suppresses du-
plicate packets. It must be noticed that large data packets can be output
from inner nodes, depending on the information sent and the number
of senders attached to a node. However, the network layer seems to be
the natural place to carry out the aggregation of information. According
to this, as stated in [Wolf03], the aggregation operation of data packets
inside the network requires the support of the network infrastructure in
terms of processing resources. The scheme described in our paper also
requires the support of an active network [Psou99].

1.2 Contribution and plan of this paper

In this paper, a scalable protocol for many-to-one communication is pre-
sented. The scheme proposed consists of a set-up protocol to be run before
any transmissions are started, and a transmission protocol to be run for
each symbol transmission. From now on, the senders are the leaves in the
routing tree, whereas the final receiver is the root of the tree. Our aim is
to dramatically reduce the number of connections to the receiver, sending
securely fixed-length aggregated packets.

The operation of the protocol can be summarized as follows: i) in or-
der to receive the symbols from the senders Ui, a challenge message is
multicast by the receiver to all senders, via the routing tree; ii) routers
in the tree aggregate encoded messages Mi received from their child
nodes/senders and send aggregated information up to their parent nodes;
iii) the active node closest to the receiver, produces a final message con-
taining all symbols σi transmitted by the senders. iv) the receiver is finally
able to decode the aggregated symbols from the final message. In prac-
tice, a mapping between the application-level language and the symbol-
level language is likely to be used, whereby sending a single word in the
application-level language may require sending two or more symbols. This
high-level mapping is out of the scope of this paper. The proposed proto-
cols are described in detail in Section 2. Section 3 deals with the security
of the proposed scheme, whereas performance issues are examined in Sec-
tion 4. Finally, Section 5 contains some conclusions.

2 Secure aggregated symbol transmission

Our proposal is based on super-increasing sequences [Merk78] and proba-
bilistic additive public-key privacy homomorphisms (PH, [Okam98]). The

knapsack problem over a superincreasing sequence is used for symbol ex-
traction from the aggregated message. On the other hand, privacy ho-
momorphisms (PHs) are encryption transformations mapping a set of
operations on cleartext to another set of operations on ciphertext. A
PH is called additive when its set of cleartext operations contains ad-
dition. A PH is called probabilistic if the encryption algorithm involves
some random mechanism that chooses the ciphertext corresponding to a
given cleartext from a set of possible ciphertexts. Privacy homomorphisms
that will be used in our proposal below must be additive, probabilistic
and public-key. The Okamoto-Uchiyama [Okam98] probabilistic public-
key cryptosystem (OUPH) has an additive homomorphic property.

2.1 Construction

Protocol 1 (Set-up).

1. The receiver chooses parameters l, u, where l will be used below and
u is the number of senders. Let t be the bit length of each symbol to
be transmitted.

2. The receiver computes tu intervals as follows:

Ij = [Imin
j , Imax

j] = [(2j − 2)2l − 2j−1 + 2, (2j − 1)2l − 2j−1 + 1]

for j = 1 to tu. Each sender is assigned t intervals among the above;
specifically I(i−1)t+1 to Iit correspond to the i-th sender.

3. The receiver generates a secret value ki for each sender i, for i = 1 to
u.

4. The receiver generates a key pair for a probabilistic additive public-
key privacy homomorphism such that its cleartext space is CT =
{0, 1, 2, · · · , p − 1} where p should be larger than 2Imax

tu . After some
manipulation, it can be checked that the lower bound on p is

p > (2tu − 1)2l+1 − 2tu + 2 (1)

5. The receiver multicasts the public key PK of the PH and Imin
j for

j=1 to tu. In addition, the receiver secretly sends ki to each sender
Ui, who should keep it confidential (storing it in a tamper-resistant
device such as a smart card would seem appropriate).

Protocol 2 (Real-time symbol transmission).

1. Transmission request. A challenge message is multicast by the receiver
to all senders. This challenge contains a random value v.

2. Message generation.
(a) When a sender Ui receives the challenge message, she computes

her own t values:

Sti−t+j = Imin
ti−t+j +H(v + j − 1||ki) (2)

for j=1 to t where H is a one-way collision-free hash function
yielding an l-bit integer as output. This condition on the output
of H ensures that Sti−t+j ∈ Iti−t+j , which in turn guarantees that
the entire sequence S = {Sj} for j = 1, · · · , tu is super-increasing.
Note that, since v and the parameters in Protocol 1 were chosen
by the receiver, the latter can readily compute the subset of S
corresponding to any sender. On the other hand, Condition (1)
ensures that no overflow in CT will occur when adding encrypted
terms of the super-increasing sequence over the ciphertext space
CT ′. Now, Ui can transmit 2t−1 different symbols by sending the
encrypted sum of a subset chosen among the 2t−1 non-empty sub-
sets of {Sti−t+1, · · · , Sti}1.For instance, if the symbol σ is mapped
to the sum of values Sti−t+1 and Sti−t+3, sender Ui computes the
following message:

Mi = EPK(Sti−t+1 + Sti−t+3)

where EPK stands for the encryption function of the probabilistic
additive public-key privacy homomorphism used.

(b) Finally Ui sends Mi up to her parent node. The size of Mi is
discussed in Section 4.

3. Message aggregation. Intermediate nodes receive messages from their
child nodes/senders and do the following:
(a) Once all expected messages {Mi}i have been received, the node ag-

gregates them as M =
∑′

i Mi, where
∑′ stands for the ciphertext

operation of the privacy homomorphism corresponding to cleart-
ext addition.

(b) The node sends M up to its parent node. The size of M is discussed
in Section 4.

4. Symbol extraction. When the previous process completes, the receiver
finally receives an aggregated message M , from which the transmitted
symbols are extracted as follows:

1 Note that the encrypted sum of the empty subset cannot be used to encode a value
because anyone can send it or guess it.

(a) The receiver constructs the entire super-increasing sequence S =
{Sj} for j = 1 to tu using, for each sender Ui, Equation (2).

(b) The receiver decrypts M using its private key of the PH to recover
a value T which is used to solve the super-increasing knapsack
problem and obtain the sequence S ′ = {S1, S2, . . .} that yields
the values sent by the senders. From these values, the symbol σi

sent by every sender Ui is easily retrieved, solving the knapsack
problem [Merk78].

3 Security

A basic assumption when analyzing security is correctness in protocol
execution, i.e. that Protocol 2 is followed by all senders without devia-
tions. If one or more senders deviate, symbol extraction at the reception
might fail. Correctness in execution can be enforced if senders are forced
to using a computing device trusted by the receiver (e.g. a smart card).
The receiver can use Protocol 1 to force senders, by refusing to give the
secret keys ki to anyone except sender smart cards issued or trusted by
the receiver.

Property 1 (Confidentiality). If a secure probabilistic additive public-
key PH is used in which there is a negligible probability of obtaining the
same ciphertext as a result of two independent encryptions of the same
cleartext, then an intruder cannot determine the symbol transmitted by
a sender in Protocol 2.

Proof: Now, assume that the intruder captures a message M sent
by Ui during Protocol 2. Decryption of M is not possible because the
PH is secure and the intruder does not have access to the private key.
Exhaustive search of the cleartext carried out by M will not be succeed,
because of the assumption on PH. ¤

Property 2 (Authentication). If a secure public-key PH and a one-
way collision-free hash function with l-bit output are used, the follow-
ing holds: i) the probability of successfully impersonating another sender
when sending a bit value to the receiver is 2−l; ii) substituting a false mes-
sage M ′ for a legitimate message M 6= M ′ in the current transmission is
at least as difficult as impersonation; iii) substituting a message M ′ for
a legitimate message M 6= M ′ in future transmissions using information
from the current transmission is infeasible.

Proof: In the impersonation attack, an intruder who wants to imper-
sonate a sender, needs to guess at least one of the values from S assigned
to the sender so as to generate a valid message. These symbols are com-
puted using a one-way collision-free hash function (see Equation (2)), thus
the probability of the intruder randomly hitting the correct symbol is at
most 2−l.

A substitution attack can be mounted in the current transmission or
in future transmissions:

– In the current transmission, assume the intruder wants to substitute
a false message M ′ for an authentic message M sent by Ui, with
M ′ 6= M . Without loss of generality, let M = EPK(Sa); for example,
the intruder wants to transform M into the encrypted sum of any of
the other values from S assigned to Ui. This requires the following
steps: i) recover Sa from M , which is difficult; ii) compute any other
symbol with knowledge of Sa, which is as difficult as mounting a
successful impersonation attack (see above); iii) compute M ′.

– A second possibility is for an internal intruder to use information
derived from a current transmission of a message by Ui to alter future
messages sent by Ui. But this is infeasible, because in subsequent
executions of Protocol 2, a different super-increasing sequence will be
used to encode the messages which does not depend on the current
super-increasing sequence (see Equation (2)). ¤

4 Performance

Before presenting the performance comparison below, some preliminary
remarks are required:

– The performance criterion considered is the bandwidth required by
the aggregated traffic.

– We will consider an alternative system based on unicast transmissions
from each sender to the receiver. Like in our system, the unicast trans-
missions in the benchmark system will be symbol-wise. We assume
that the communication is real-time, so that symbols are transmitted
as they are generated.

– We will require that each symbol transmission has the same security
properties as transmissions in our system.

– For the sake of concreteness, we will use OUPH as a privacy homo-
morphism in this section.

In order to avoid the need for public-key encryption for a sender to
send a confidential and authenticated symbol, we must assume that each
sender Ui shares with the receiver a key ki corresponding to a block cipher
(e.g. AES). The message M containing the symbol σ will thus look like

M = Eki(σ||ts||ck), Ui

where Eki(·) stands for the encryption function of the block cipher, ts
is a time-stamp, ck is a checksum and Ui is the identity of sender Ui.
Integrity is ensured by ck and ts (the time-stamp prevents replacing future
transmissions with past transmissions).

When u senders simultaneously send their encrypted symbols with
the benchmark unicast system, u(B + log2 u) bits are received by the
receiver, assuming that B is the block bitlength of the block cipher and
log2 u is the bitlength of the sender identifier Ui. We assume also that the
bitlength of σ||ts||ck is less than or equal to B. For a block cipher such as
AES, at least one has B = 128, so the previous assumption is reasonable.
When u senders send their encrypted symbols with our system, all symbol
transmissions are eventually aggregated into a single message

M =
∏

i

Mi (mod n)

which is the only one reaching the receiver. M can be at most n, so its
length is log2 n. Equivalently, the bitlength of M is

|M | = log2 n = log2(p
2p′) = 2 log2 p + log2 p′ = 3 log2 p

where we have used that, in OUPH, n = p2p′ with |p| = |p′|. Now, already
for a moderate number u of senders, p can be chosen close to its lower
bound (1) while remaining large enough for factoring of n = p2p′ to stay
hard, as required by OUPH. Therefore, if we use the generalized bound
(1) we have

|M | ≈ 3 log2[(2
tu − 1)2l+1 − 2tu + 2] (3)

It can be seen that Expression (3) is dominated by 3tu as the number
of senders grows. Therefore, if the number u of senders is moderate to
large and if the symbol bitlength is t < (B+log2 u)/3, the bandwidth 3tu
required by our scheme is less than the bandwidth u(B +log2 u) required
by the benchmark unicast system. Since typical block sizes are as large as
B = 64, 128, 192 or 256, the previous assumption on the symbol bitlength
is reasonable. Besides, our proposal only requires one incoming connection
to the receiver, whereas the unicast alternative requires u connections to

the receiver, which calls for allocation of additional overhead bandwidth
not included in the above comparison. Finally, it must be noticed that
bandwidth reduction is achieved without increasing the computational
burden at the receiver. Symbol extraction during Protocol 2 requires the
receiver to build tu terms of a super-increasing sequence and to solve a
super-increasing knapsack problem. The computational cost of doing this
is similar to the cost of the u block decryptions required by the unicast
benchmark.

5 Conclusions

The thrust behind the design of the scheme in this paper is the need for
large-scale secure real-time many-to-one communication, that is, trans-
mission of information whose symbols should not be buffered but be se-
curely sent as they are generated. Our scheme can be applied whenever
a large number of sending devices must communicate in real-time with
a single node and there is a risk that the incoming bandwidth available
at the receiving node may be a bottleneck. In the special case where the
Okamoto-Uchiyama PH is used, the required incoming bandwidth at the
receiver for u senders approximates 3tu bits when each sender securely
transmits one q-ary symbol at a time, with q = 2t − 1. This is not so far
from the u log2 q ≈ tu bits required for insecure transmission of u q-ary
symbols. Achieving the same security properties using unicast transmis-
sions would typically need Bu bits split in u sender-receiver connections,
where B is the block size of a block cipher.

References

[Domi04] J. Domingo-Ferrer, A. Mart́ınez-Ballesté, F. Sebé, “Secure reverse commu-
nication in a multicast tree”, 3rd IFIP-TC6 Networking, LNCS 3042, pp.807-816,
Springer-Verlag, 2004.

[Merk78] R. C. Merkle and M. Hellman, “Hiding information and signatures in trap-
door knapsacks”, IEEE Transactions on Information Theory, vol. 24, no. 5, pp.
525-530, 1978.

[Okam98] T. Okamoto and S. Uchiyama, “A new public-key cryptosystem as secure
as factoring”, in Advances in Cryptology - EUROCRYPT’98, ed. K. Nyberg, LNCS
1403, Berlin: Springer-Verlag, pp. 308-318, 1998.

[Psou99] K. Psounis, “Active networks: Applications, security, safety and architec-
tures”, IEEE Communication Surveys, vol. 2, no. 1, pp. 1-16, 1999.

[Wolf03] T. Wolf and S. Y. Choi, “Aggregated hierarchical multicast - A many-to-
many communication paradigm using programmable networks”, IEEE Transactions
on Systems, Man and Cybernetics - C, vol. 33, no. 3, pp. 358-369, Aug. 2003.

