
Preserving Referential Constraints in XML Document
Association Relationship Update

Eric Pardede1, J. Wenny Rahayu1, David Taniar2

1 Department of Computer Science and Computer Engineering,
La Trobe University, Bundoora VIC 3083, Australia
{ekpardede, wenny}@cs.latrobe.edu.au

2 School of Business System,
Monash University, Clayton VIC 3800, Australia
David.Taniar@infotech.monash.edu.au

Abstract. In this paper we propose the usage of W3C-standardized query lan-
guage, XQuery, to accommodate XML Update. Our main aim is to enable the
update without violating the semantic constraint of the documents. The focus of
the update is on the association relationship. Therefore, we distinguish the rela-
tionship type based on the number of participants, cardinality, and adhesion. We
also propose the mapping of the association relationship in the conceptual level
to the XML Schema. We use XML Schema for structure validation, even
though the algorithm can be used by any schema languages.

1 Introduction

In the last few years the interest in storing XML Documents in the native XML Data-
bases (NXD) has emerged rapidly. The main idea is to store the documents in their
natural tree form. However, it is well-known that many users still prefer to use DBMS
that are based on established data models such as Relational Model for their document
storage. One reason is the incompleteness of NXD query language. Many proprietary
XML query languages and even W3C-standardized languages still have limitations
compared to the Relational Model SQL. One of the most important limitations is the
lack of the update operations support [8].

Different NXD applies different strategies for XML updates. Very frequently after
update operations, the XML document contains many dangling references, loses the
key attribute, has unnecessary duplications, and many other problems that indicate
very low database integrity. In our best knowledge, there is no XML query language
that has considered the integrity issues that emerge from the update operations. We
suggest this as an important issue to raise and to investigate further.

This paper proposes the XQuery [11] for update operations. It is based on the basic
operations firstly mentioned in [9]. Our main contribution is that we have included
semantic constraints in the operations. It focuses on the update for association rela-
tionship, which can be defined as a “reference” relationship between one to another

node/document in an XML tree. We will distinguish different association type based
on the number of participants and on the cardinality. The XQuery update considers
different target contents whether it is a key node or a key reference node. By doing
this, we remove the possibilities of low integrity data after each update operation.

For XML update we need structure validation and we propose the use of XML
Schema [10]. Thus, a part of the paper is allocated to developing a transformation on
the association relationship into XML Schema, in a way that suits our proposed
XQuery.

2 XML Document Update: An Overview

There are several strategies for updating XML documents in NXDs [1][8]. At the time
of writing, there are three main strategies: (i) use proprietary update language that
will allow updating within the server [3][7], (ii) use XUpdate, the standard proposed
by XML DB initiative for updating a distinct part of a document [2][5], and (iii) use
XML API after retrieve the document out of the database [4]. It is important to men-
tion that none of these are concerned with the semantic constraint of the updated XML
document.

Different strategies have limited the database interchangeability. To unite these dif-
ferent strategies, [9] has tried to propose the update processes for XML Documents
into an XML language. These processes are embedded into XQuery and thus, can be
used for any NXD that has supported this language.

In [9] the update is embedded in the XQuery FLOWR expression. Note the differ-
ence between the original XQuery (Fig.1) and its extension [(Fig. 2). The UPDATE
clause specifies the node targets that will be updated. Inside the UPDATE clause, we
determine the operation types.

FOR $binding1 IN path
expression…

LET $binding := path
expression…
WHERE predicate, …
ORDER BY predicate, …

RETURN results

FOR. . .LET. . .WHERE. . .
UPDATE $target{

 DELETE $child|
 INSERT content

[BEFORE|AFTER $child]|
 REPLACE $child WITH $content|

{,subOp}*
}

Fig. 1. XQuery FLOWR Expressions Fig. 2. XQuery UPDATE Extensions

Nonetheless, even with this proposal there is a basic question to answer. We do not
know how the update operations can affect the semantic correctness of the updated
XML Documents. Specifically for the association relationship, this proposal does not
maintain the referential constraint between the associated nodes/documents. This fact
has motivated us to take the topic a step further.

3 Association Relationships in XML Document

Association relationship is a “reference” relationship between one object with another
object in a system. For an XML document, the object is a node or a document. Seman-
tically, this relationship type can be distinguished by some constraints such as number
of participant type, cardinality, and adhesion. These constraints can be easily identi-
fied in XML Data Model such as in Semantic Network Diagram [2]. We will show a
running example describing different association relationship constraints (see Fig. 3).

s[0..1] weak
adhesion

a [1..N]

a [1..N]
a [1..N]

a [1..N]

s[0..N] weak
adhesion

a

TeachBy
(reference

Staff)

SubjPrereq
(reference
Subject)

SubjDesc

p

a

a

SubjCode

SubjName

FacultyName

p a FacultyID FACULTY

a

a[1..N]
a

p

ResearchCode

ResearhMember
(reference Staff)

ResearchDesc

RESEARCH

ResearchName

p

a a

OfficeNumber OfficePhone

OfficeLoc

OFFICE

p
a

StaffID StaffOffice
(reference

Office)

StaffResearch
(reference
Research)

StaffAddress

a

STAFF

StaffName

SUBJECT

s[0..N] weak
adhesion

s[0..N] weak
adhesion

a

Fig. 3. Association Types in XML Document Tree

The number of participants can be distinguished into unary and binary. In the former,
an object refers to another object of the same type. For example, there is one unary
relationship, where node SubjPrereq in a Subject document refers to another subject.
In the binary relationship, the participants come from different types. In our example
above, there are: Subject:Staff, Staff:Office, and Staff:Research.

Association cardinality identifies the number of objects of the same type to which a
single object can relate. For example, staff can teach no subject at all to many subjects
[0..N]. In the diagram the default cardinality is [1..1].

Finally, association adhesion identifies whether the associated objects must or must
not coexist and adhere to each other. In the diagram the default adhesion is a strong
adhesion. For example, Staff has weak adhesion association to Subject, which means
that the former does not require the latter to exist.

4 Mapping Association Relationship to XML Schema

XQuery update will require a schema to validate the document structure. We select
XML Schema because as well as its precision in defining the data type, XML Schema
has an effective ability to define the semantic constraints of a document. It includes
the cardinality, adhesion, and referential integrity constraint depicted in Fig. 3.

First, the cardinality constraint is very straightforward and well-known. We can de-
termine the “minoccurs” and “maxoccurs” after an element declaration. It is a general
practice that these constraints are not used for attribute. A particular attribute will
appear, at most, once in an object/instance.

Second, the adhesion constraint can easily be indicated by the “use” constraint. A
strong adhesion has use “required” and a weak adhesion has use “optional”. However,
in practice the “use” constraint can only be attached in attribute. We will find a prob-
lem if, for example, the adhesion constraint is applied to an element. Fortunately, we
can utilize the cardinality constraint to define the adhesion constraint as well. Cardi-
nality [0..1] or [0..N] indicates a weak adhesion, while [1..1] or [1..N] indicates a
strong adhesion.

For a consensus we provide a table combining the two constraints that can be very
useful for the next section.

Table 1. Adhesion and Cardinality Constraints in XML Schema

Adhesion Cardinality What to Use
Strong 1:1 Attribute (use = “required”)
 1:N Element (minoccurs=“1” maxoccurs=“unbounded”)
 N:N Element (minoccurs=“<2.. >” maxoccurs=“unbounded”)
Weak 0:1 Attribute (use = “optional”)
 0:N Element (minoccurs=“0” maxoccurs=“unbounded”)

Thirdly, for the referential integrity constraint, XML Schema provides two options
ID/IDREF and key/keyref. We have chosen to use the latter for several reasons: (i)
key has no restriction on the lexical space [10], (ii) key cannot be duplicated and thus
facilitate the unique semantic of a key node, and (iii) key/keyref can be defined in a
specific element and, thereby, helping the implementer to maintain the reference.

For our design, we propose to create a specific element under the root element
called “GroupKey” to store all keys and keyrefs. It is required to track the path of the
associated elements once an update is performed. We cannot just declare the
key/keyref inside the element where they are appeared. We will experience problems
in tracking an associated element since keyref can only trace the key declared in the
same element or in its direct predecessor. For example, if we declare the keyref
TeachBy inside subject element and key StaffID inside staff element, the keyref cannot
trace the key and thus, if we update a staff, there is no checking done to ensure the
subject refers to the particular staff.

In a unary relationship, the key and keyref attribute/element is located under one
element. In a binary relationship we have to determine the location of the keyref at-

tribute/element. The adhesion constraint is used for this purpose. Locate the keyref
attribute/element under the associated element that has strong adhesion towards the
other. In the case where both associated elements are in strong adhesion, the keyref
attribute/element will be added in both elements. For example (see Fig.3), in the rela-
tionship between staff and research, we add reference ResearchMember inside re-
search element that refers to StaffID, and reference StaffResearch inside research
element that refers to ResearchCode.

5 Proposed XQuery Update

Now we have shown how to map the conceptual model into logical XML Schema, we
can begin to propose the XQuery for Update processes. The update can be differenti-
ated into three main parts: deletion, insertion, and replacement.

5.1 XQuery for Delete Operation

Deletion is the simplest update operation, especially if we want to delete an attrib-
ute/element that contains simple data. In this case we only require the binding to the
parent and the child. We do not need to perform predicate checking on instances.
However, if the attribute and element also have roles as key/keyref the checking on
instances is required to maintain the referential integrity constraint.

For our proposed XQuery, we differentiate the operation for key and keyref since
we put focus on the association relationship. For deletion however, there is no con-
straint checking required for keyref node since it is treated like simple data content.

The following XQuery shows functions used for predicates in key deletion. Func-
tion checkKeyRefNode checks whether the target key node has keyref node referred to
it. This function highlights one reason why we select key/keyref instead of ID/IDREF.
Now the implementer can check only the path where the keyref is defined. Since we
have grouped all key and keyref declarations in the “ GroupKey” element, we only
need to check the “ GroupKey” element.

Under a condition (see the function), the checkKeyRefNode function proceeds to
function checkKeyRefInstance. This function checks that there is no instance that has
keyref attribute/element referring to the target key content. This is the reason we also
need to pass the content of the target key node. If the function returns false, we cannot
perform the deletion.

FUNCTION checkKeyRefNode($gKBindingPath, $keyName, $keyContent) RETURN
BOOLEAN {

LET $gkRef := $gKBindingPath/keyref/[@refer]
RETURN
 IF $gkRef = $keyName
 THEN getKeyRefInstance($gKBindingPath, $keyName, $keyContent)
 ELSE TRUE}

FUNCTION checkKeyRefInstance($gKBindingPath, $keyName, $keyContent)
RETURN BOOLEAN
{
FOR $keyRefBinding IN $gKBindingPath/keyref[@refer=$keyname]
LET $keyRefName:=$gKBindingPath/keyref/@name
 $keyRefPath:=$keyRefBinding/selector/xpath
 $keyRefInstance:=$keyRefPath[@$keyRefName, "$keyContent"]
RETURN
 IF exists ($keyRefInstance)
 THEN FALSE
 ELSE TRUE}

Example:
FOR $g IN document("Faculty.xml")/Faculty/GroupKey
 $p IN document("Faculty.xml")/Faculty/Subject(@SubjCode = "ADB41")
 $c IN $p/SubjCode
LET $cContent := “ADB21”
UPDATE $p{
WHERE checkKeyRef($g, "SubjCode", $cContent)

UPDATE $p{
DELETE $p (:delete the key and the siblings:)

 }}}

The example following the functions shows the key deletion Subjcode in document
“ Faculty.xml” of instance with SubjCode equals to “ ADB41” . We know that there is a
node SubjPrereq that refers to SubjCode. Thus, if there is any instance where SubjPre-
req value refers to SubjCode “ ADB41” , the deletion should be restricted.

Note that if the checkKeyRef function returns TRUE, we will delete whole elements
and not only the key SubjCode. This is because we do not have trigger-based delete,
which will delete the whole element if the key is deleted.

5.2 XQuery for Insert Operation

Unlike deletion, insertion requires the constructor of a new attribute or new element.
Beside the XQuery for key insertion, we have to propose insertion for keyref as well,
to make sure that the new keyref actually refers to an existent key.

Function checkKeyDuplicate returns TRUE if the target is not duplicating an exist-
ing instance. The example following the function shows the checking if we want to
insert a SubjCode with content “ ADB41” .

FUNCTION checkKeyDuplicate($bindingPath) RETURN BOOLEAN
{
RETURN

IF EXISTS($bindingPath)
 THEN FALSE
 ELSE TRUE}

Example:
FOR $g IN document("Faculty.xml")/Faculty(@FacID = "FSTE")
 $p IN $g/Subject(@SubjCode="ADB41")
LET $c:= SubjCode
 $cContent:=”ADB41”
UPDATE $p{
WHERE checkKeyDuplicate($p)
 UPDATE $p{
 INSERT new_att($c, $cContent)

 }}

For keyref insertion, we propose three additional functions. The first is for the referen-
tial integrity constraint and the following two are for the cardinality constraint. The
cardinality is required since a keyref can actually refer to more than one key instance.

Function checkKeyInstance passes the keyref name and content, and then checks
the key being referred. Function getMaxOccurs and checkMaxOccurs are used to
calculate the maxoccurs constraint of a keyref node. If the particular instance has the
maximum number of keyref, we will disable the insertion of another keyref content.

FUNCTION checkKeyInstance($gKBindingPath, $keyRefName, $keyRefContent)
RETURN BOOLEAN
{
FOR $keyRefBinding IN $gKBindingPath/keyref[@name = $keyRefName],
LET $keyName:=$gkeyRefBinding/@refer,
 $keyPath:=$gKeyRefBinding/selector/xpath,
 $keyInstance:=$keyPath[@$keyName, "$keyRefContent")
RETURN
 IF EXISTS($KeyInstance)
 THEN TRUE}

FUNCTION getMaxOccurs($xsName, $parentName, $childName) RETURN INTEGER
{
FOR $pDef IN document($xsName)//xs:element[@name=$parentName],
 $cDef IN $pDef/xs:element[@name=$childName],
LET $cMaxOccurs:=$cDef/maxoccurs,
RETURN $cMaxOccurs}

FUNCTION checkMaxOccurs($bindingPath, $cMaxOccurs) RETURN BOOLEAN
{
LET $instanceOccurs:=count($bindingPath)
RETURN
 IF $cMaxOccurs >= $instanceOccurs + 1
 THEN FALSE
 ELSE TRUE}

5.3 XQuery for Replace Operation

Since replacement can be seen as a combination of deletion and insertion, we can
reuse the functions we have already described in the last two sub-sections. In fact, we
do not need the functions for cardinality constraints during keyref replacement as well.

For replacement of a key, we have to check whether the new key content does not
duplicate any existing instance. For replacement of a keyref, we just need to check
whether the new keyref content refers to a valid instance. No cardinality checking is
required since to accommodate a new keyref, we have deleted another keyref. XQuery
below shows the example of replacement for keyref TeachBy element.

FOR $g IN document("Faculty.xml")/Faculty/GroupKey
 $p IN document("Faculty.xml")/Faculty/Subject(@SubjCode = "ADB41")
 $c IN $p/TeachBy
LET $cName := TeachBy
 $cContent := “WR01”
UPDATE $p{
WHERE checkKeyInstance($g, $cName, $cContent)

UPDATE $p{

REPLACE $c WITH <TeachBy>WR01</TeachBy>
}}

6 Conclusion

In this paper, we propose extending XQuery to preserve semantic constraints during
an XML update. The update operations are divided into deletion, insertion, and re-
placement. The focus in the paper is on the association relationship type, thus each
operation considers the key and key reference target node. By doing this, we can avoid
database anomalies that might occur using conventional XQuery.

Since Update requires a document structure validation, we also propose the trans-
formation of the relationship into XML Schema. The constraints captured are cardi-
nality, adhesion, and referential integrity constraint.

With this extension, XML query languages (in the form of XQuery) are becoming
more powerful. Concurrently, it can increase the potential of using tree-form XML
repository such as Native XML Database.

References

1. Bourett, R.: XML and Databases. http://www.rpbourret.com/xml/XMLAndDatabases.htm,
(2003)

2. Feng, L., Chang, E., Dillon, T.S.: A Semantic Network-Based Design Methodology for XML
Documents. ACM Trans. Information System, Vol. 20, No. 4. (2002) 390-421

3. Ipedo.: Ipedo XML Database, http://www.ipedo.com/html/products.html, (2004)
4. Jagadish, H. V., Al-Khalifa, S., Chapman, A., Lakhsmanan, L. V. S., Nierman, A., Paprizos,

S., Patel, J. M., Srivastava, D., Wiwattana, N., Wu, Y., Yu, C.: TIMBER: A native XML da-
tabase. VLDB Journal, Vol. 11, No. 4. (2002) 279-291

5. Meier, W.M.: eXist Native XML Database. In Chauduri, A.B., Rawais, A., Zicari, R. (eds):
XML Data Management: Native XML and XML-Enabled Database System. Addison
Wesley (2003) 43-68

6. Robie, J.: XQuery: A Guided Tour. In Kattz, H. (ed.): XQuery from the Experts. Addison
Wesley (2004) 3-78

7. SODA Technology.: SODA. http://www.sodatech.com/products.html, (2004)
8. Staken, K.: Introduction to Native XML Databases.

http://www.xml.com/pub/a/2001/10/31/nativexmldb.html, (2001)
9. Tatarinov, I., Ives, Z.G., Halevy, A. Y., Weld, D. S.: Updating XML. ACM SIGMOD (2001)

413-424
10. Vlist, E. V-D.: XML Schema, O’Reilly, Sebastopol (2002)
11. W3C: XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery, (2001)
12. XML DB: XUpdate – XML Update Language, http://www.xmldb.org/xupdate/, (2004)

