A FRAMEWORK FOR BUILDING
CUSTOMIZED ADAPTATION PROXIES *

Hana K. S. Rubinsztejn, Markus Endler and Noemi Rodriguez
Departamento de Informatica, PUC-Rio

R. Marques de Sao Vicente 225

22453-900, Rio de Janeiro, Brazil

{hana,endler,noemi} @inf.puc-rio.br

Abstract This article presents a framework for the development of adaptive proxies for
context-aware mobile applications. The framework is in charge of collecting
clients’ current context (device and network), and trigger the appropriate adap-
tations. MOCA’s ProxyFramework offers mechanisms for cache management, as
well as for adaptation management. Developers need only create their applica-
tion-specific adaptations (developing adapters modules) and define trigger con-
ditions, priorities and selectors. This is done by specifying rules in XML format,
which define the actions to be applied at the moment of a context change. The
other extension point of the ProxyFramework is the caching policy to be used.

Keywords: Mobile Computing, Context-awareness, Proxy, Framework

1. Introduction

A common element in the architecture of distributed applications for mobile
networks is a proxy [3, 4], which intercepts the messages exchanged between
the mobile clients and servers, and which is in charge of executing a num-
ber of transformations, adaptations or management functions on behalf of one
or several clients, such as content adaptation, protocol translation, caching,
personalization, user authentication, handover management, etc. The main ad-
vantage of using such an intermediary is to bridge the wired-wireless gap, and
make all mobility, connectivity and context-dependent issues transparent to the
application developer.

Although each distributed application for such networks has specific adap-
tation and transformation requirements, there are a number of common and
recurrent components and interaction patterns used for implementing usual

*This project is partially funded by CNPq, Grants 55.2068/02-2 and 47.9824/04-5.

2 H. K. S. Rubinsztejn, M. Endler and N. Rodriguez

adaptation and management functions. As a means of supporting the devel-
opment of proxies for several applications for mobile networks, and enhance
reuse of code, we are developing an object-oriented framework that can be ex-
tended and customized to produce concrete proxy instances according to the
specific application requirements.

This work is part of a wider project, where we are implementing a middle-
ware called Mobile Collaboration Architecture MOCA[8], consisting of APIs
and services for context-provisioning and -processing, location inference, as
well as mechanisms for notifying context changes to applications. Within
MoCA, the framework will be used to generate instances of customized prox-
ies for different context- and location-aware applications. Since most of the
adaptations performed by a proxy are determined by the current execution con-
text of a mobile client, e.g. the current wireless network or Access Point being
used, the quality of the wireless link, or the availability of its local resources,
the ProxyFramework includes functions to subscribe to MOCA’s context ser-
vices and mechanisms to trigger adaptations according to received notifications
of context changes. The current focus is on content adaptation (e.g. distillation
and transcoding) and caching, which are two central issues when developing
adaptive applications for mobile devices and wireless networks.

2. The MoCA Middleware

MoCA [8] is a middleware architecture for the development of context-
aware collaborative applications for mobile computing. It was designed for
infra-structured wireless networks, and its current prototype works with an
802.11 wireless network.

MoCA offers client and server APIs which hide from the application de-
veloper most of the details concerning the use of the services provided by the
architecture (see below). The ProxyFramework proposed in this paper is an
element of MOCA. It is a white-box framework for developing and customiz-
ing proxies according to the specific needs of the application. It facilitates the
programming of distributed, self-adaptive applications for mobile networks,
where adaptations should be triggered by context-change events. The proxy
not only intermediates the communication between the application server and
its mobile clients, but also it serves as the interface with MOCA services, as
Context Information Service (CIS).

The following MOCA services are in charge of collecting and distributing
context information:

m Monitor: this is a daemon executing on each mobile device and is in
charge of collecting data concerning the device’s execution state/envi-
ronment, and sending this data to the CIS (Context Information Service)
executing on the wired network.

A Framework for Building Customized Adaptation Proxies 3

s Context Information Service (CIS): This is a distributed service where
each CIS server receives and processes devices’ state information sent
by the corresponding Monitors. It also receives requests for notifications
(aka subscriptions) from application Proxies, and generates and delivers
events to a proxy whenever a change in a device’s state is of interest
to this proxy. An example of proxy’s request is given by the following
Interest Expression, {FreeMem < 15% OR roaming=True}. The In-
terest Expression is defined as an SQL expression using some tags, as
for example, EnergyLevel, CPU, OnLine, etc.

w Location Inference Service (LIS): infers the approximate symbolic lo-
cation of a device, using a specific context information of this device
collected by CIS: the pattern of RF signal strengths received from all
nearby Access Points.

3. Overview of MoCA ’s ProxyFramework

MoCA’s ProxyFramework is being designed to accommodate a number of
basic management and adaptation functions that an application proxy might
be required to execute on behalf of each of its mobile clients. In fact, the
ProxyFramework defines only abstract interfaces of proxy components and
templates describing how these components interact. In order to implement
application-specific adaptation and management functions, these components
have to be extended or specialized by the application developer.

3.1 Main Components

The main envisioned components for ProxyFramework are described as fol-
lows:

» Handover Management: handles the tasks related to the migration of a
client to a new network domain, such as, pre-allocation of resources at
the new proxy, transfer of the client’s (communication) session state, or
of cached objects, to a new proxy, etc.

m Caching Management: is responsible for storing application-specific
data, messages and user preferences of each client. This component
incorporates the caching strategy, the concurrency and consistency strat-
egy and memory management strategy (LRU, FIFO). The application
developer can use a pre-defined set of management strategies, or cus-
tomize some of them according to the specific needs of her application.

s Adaptations: implements any kind of adaptation (data compression, trans-
coding, summarization) of the application-specific data being transferred

4 H. K. S. Rubinsztejn, M. Endler and N. Rodriguez

from the server to the client, and vice-versa, according to the client’s
context,

w Message Filtering: is responsible for filtering of messages/data to be
delivered to the clients according to their context and their profile.

» Protocol Translation: performs the transcoding from the specific wired
protocol used by the application server to any of the possible wireless
protocols used for interaction between the Proxy and the client.

w Context Management: performs the application-specific processing of
the context information, such as: subscription for notifications from
MoCA’s CIS, analysis of context change notifications, diffusion of con-
text information to other proxy components, etc.

m Service Discovery: is responsible for finding new services, users or data,
according to the user profile. The lookup function will typically access
some directory services, or receive some notifications from third-party
“match-making” services.

3.2 Basic Steps to Use the ProxyFramework

In order to instantiate a proxy from the ProxyFramework the application de-
veloper has to follow two main steps: first, he has to implement the adaptation
actions according to the specific needs of his application; and second, he needs
to create trigger rules which define when (e.g. at which context condition) these
actions are to be applied.

Defining Adaptive Actions. The ProxyFramework allows to condition the
execution of certain proxy actions to specific states of the application client
it represents. Since these actions are specific for each application, the proxy
developer must implement them.

The actions are defined by the base class Action, which provides some
common methods, as for retrieving action parameters. Essentially, there exist
two types of actions: adapters, which modify a message, and listeners, which
modify some state of the proxy related to a client.

Adapter actions are executed at the moment when a message is forwarded
to the client, and depending on its current context. In order to implement a
specific adaptation function, the developer has to extend method execute of
the abstract class Adapter. This method gets the addressee of the message to
be adapted and the message per se, and returns the modified message, or null.
In the second case, the original message has been discarded and consequently
the flow of adaptations is interrupted.

The actions of type listener react to changes in the state of clients. To imple-
ment a concrete listener, it suffices to extend the base class StateListener,

A Framework for Building Customized Adaptation Proxies 5

which has two abstract methods: matches e unmatches. The first is always
executed when the corresponding state changes from OFF to ON, while the sec-
ond is executed when it changes from ON to OFF.

Configuring Trigger Rules. = The ProxyFramework uses a rule-based ap-
proach for determining which actions (adaptations) are needed in order to pro-
vide a better service according to the different environment conditions (con-
text). The rule configuration should be done manually by the system adminis-
trator. With this configuration, the administrator can specify the proxy config-
uration for all environment conditions that the server wishes to support. The
administrator can define the sequence of adaptations to apply to data and thus
control the service composition, using any type of service.

The decision rules are composed by states (or contexts), that must be mon-
itored; as well as actions which may be applied for each state. The states (or
contexts) and the actions must be defined through a XML file.

<ProxyConf>
<State>
<Expression> <![CDATA[OnLine = false AND DeltaT > 3000]]> </Expression>
<Action class="proxy.listeners. DefaultCacheListener" >
<Parameter name="cacheClassName"> proxy.cache. FIFOCacher </Parameter>
</Action>
</State>
<State>
<Expression>
<![CDATA[CPU > 60 AND FreeMemory < 10000]]>
</Expression>
<Rule priority="1">
<Filter>
<!- message data type —>
< StartWith>
<FieldValue> <Literal>datatype</Literal> </FieldValue>
<Literal >image/</Literal >
</StartWith>
</Filter>
<Action class="proxy.adapters.ScalelmageAdapter" >
< Parameter name="factor">0.5 </Parameter>
</Action>
</Rule>
</State>
</ProxyConf>

Figure 1: Trigger Rules Configuration - XML file

Figure 1 shows an example of a ProxyFramework configuration file. In
this example, element State represents a monitored state and has a single
element Expression, which corresponds to the context Interest Expression
that will be registered at CIS for periodic monitoring and delivery of corre-
sponding notifications, whenever the expression switches from true to false,
and vice-versa. When a change happens in either direction, the corresponding

6 H. K. S. Rubinsztejn, M. Endler and N. Rodriguez

customized listener action will be executed. Its configuration is done through
element Action, where it is possible to indicate the class which implements
the desired action, as for example, caching with FIFO policy. Each state may
have several elements of type Rule, which aggregate several adapters which
will be executed if the state for which they were registered is ON, and a certain
condition related to the message (type) or the addressee is satisfied. The condi-
tion is determined through element Filter, which can be configured through
the use of a number of logic and other operators, such as (AND, OR, NOT,
EQUAL, STARTWITH) and available selectors such as (datatype, protocol,
client, communicationmode, subject). Once the filter has accepted a message,
the series of adapters registered for this rule will be executed. Adapters must
also be registered with a rule, using the element Action.

It is possible to provide parameters both to the listeners and to the adapters,
and this is done using element Parameter (each of which has a name and a
value), as shown in the example.

4. Current Prototype of the ProxyFramework

The ProxyFramework consists of a set of basic functions and mechanisms
for customizing, activating and combining adaptations, for the development
of application proxies. Moreover, it provides the application developer with a
simple means of accessing the client’s context and defining context-dependent
adaptations. The ProxyFramework was implemented in Java and offers these
facilities through the structural reuse of components that are common to all
application proxies, for example those for processing context notifications.

The framework is composed of a set of concrete components (frozen-spots),
which implement utility functions for the proxies; and interfaces of abstract
components (hot-spots), which can be implemented according to the specific
need of each application. The frozen-spots include Communication, Caching
and Adaptation Management and Selectors, while hot-spots are the Cache-
Policies, Adapters and Listeners, and Context Configuration.

Essentially, the ProxyFramework is composed of two parts: the communica-
tion sub-system and the proxy core. While the first implements the protocols
for synchronous and asynchronous communication with clients and servers,
the second is responsible for collecting the context notifications regarding the
clients and managing the execution of the adaptations according to the rules
specified by the application developer (c.f. Section 3.2). Due to limitations of
space, in the following we will further detail only the core.

4.1 Proxy Core

In order to achieve loose coupling among the different components of a
proxy, and allow for their concurrent execution, the core architecture has been

A Framework for Building Customized Adaptation Proxies 7

structured as a set of independent elements called Managers, and a singular
manager called Dispatcher, which intermediates the interaction between any
pair of Managers, such as those described in Section 3.1. This way, a man-
ager does not need a reference to all other managers it interacts with. This
decoupling also facilitates the inclusion of new managers. Each manager has
a private queue of messages, which are processed in FIFO order. The compo-
nents of the proxy core are the following:

AdapterManager. It manages the message adapters, inspecting and modi-
fying messages according to the specific states of the corresponding destination
client. Once the states to be monitored have been defined, the proxy starts to
trace the status of each state, for each client. This way, it is possible to estab-
lish a set of adaptation strategies to be applied to each message, for each client.
The implementation of the specific adapters (c.f. section 3.2), the order of their
execution, and the criteria for their application on each message type, are all
customization points of the framework, which have to be defined/implemented
by the application developer.

ContextManager. This component subscribes to MOCA’s CIS according
to the expression defined in the XML file (c.f. sec. 3.2) and receives mes-
sages from this context service about the current state of every client registered
with the proxy. The ContextManager receives notifications from CIS (i.e. a
CISMessage), whenever the interest expression (which defines a client state)
flips between true and false. Essentially, a CISMessage contains three pieces
of information: the client whose context changed; an identifier of the changed
state; and the type of transition (i.e. ON, for a transition from off to on, and
OFF, for a switch from on to off). Using this information, the state of the cor-
responding client is updated in the proxy. In this case, i.e. at the moment of
this transition, it is possible to execute some specific actions of type listener,
which modify the behavior of the proxy for the following message addressed
to this client.

CacheManager. It is responsible for checking if according to the current
state of a client, the messages addressed to it should be cached. This may be
necessary when either the client gets (temporarily) disconnected, or the band-
width of its wireless link falls below a given threshold. When a message for a
client arrives, it verifies the state of the addressee, and then either records it in
the cache, or forwards it to the AdapterManager.

The framework provides a special listener action for caching. This action is
implemented through class DefaultCacheListener, which just activates or
de-activates a given cache policy, which is passed as a parameter to this class
and hence can be customized by the application developer.

8 H. K. S. Rubinsztejn, M. Endler and N. Rodriguez

The framework makes available a simple default caching policy, FIFO-
Casher, which stores messages in FIFO order.

Sender. The Sender is responsible for delivering the intercepted messages
to the corresponding addressee. This component implements a mechanism
which ensures the ordered delivery of messages to each client.

Figure 2 depicts the logic relationship between the managers, and the mes-
sage flow within the proxy core, from the moment it is received from the server
until it is forwarded to the corresponding client.

y
,/_\
M. T
k Input /Cache . , 4
R — S m— — Y Cacher
Messages ~JManager .~
\ s

A SN

Ne
’
-

~ ‘ P Y A—
-~ e . P
CIS events /6;19::(\ ’ /Aﬂap(af\\ I \\
= = Manager Sy Manager >—‘_"w’s““.(Adapters
\\\v\ g/ o \\\ U../ - N /V
No
/"i\\
<& sendar e | Ouput | >
\') //‘ Messages
—”

Figure 2: Message Logic Flow

Every incoming message is first inserted in the Input Message queue, and
is then retrieved by the CacheManager, which checks if the message should
be cached, or if it can be directly sent to the client. At the next stage, the
message is sent to the AdapterManager which verifies which adaptations are to
be applied to the message. After all adaptations, if any, have been applied the
messages are enqueued in Output Messages, and are sent to the corresponding
client in FCFS.

When caching is required, the messages are cached according to the caching
policy defined by the developer. When the client’s context changes, all of its
cached messages return to the input queue, as if they were arriving at this
moment. This is necessary due to the possibility that while some of these
messages are being processed, the client’s state changes, and some messages
need to be cached again.

Our decision to implement the check for caching before the check for adap-
tation in the proxy’s message flow was based on the understanding that the
processing-intensive adaptations should be done according to the current client
state, and only immediately before the message is sent to the client. Otherwise,
the adaptations would not be effective, and hence useless.

A Framework for Building Customized Adaptation Proxies 9

S. A First Instantiation for Image Adaptation

The first instantiation of ProxyFramework was for an application that trans-
fers and adapts images sent from a server to clients. The development of this
context-aware proxy was simple and required only the implementation of some
image adapters and the definition of trigger rules in the configuration XML file
(c.f Section 3.2). The implemented adapters were for transforming color im-
ages into grayscale, for converting any image into JPEG with a compression
quality, for scaling and for cropping.

Using our first proxy instance, we made some initial tests (using Aspect])
to evaluate the overhead introduced by the proxy. This overhead takes into ac-
count only the message management and queueing, the matching of the client
state and the selection of the adaptation to be performed. It does not include
the time spent on the adaptation per se.

In our experiments the scenario was composed by one server (source of
images), one proxy and a set of clients, in which we varied the number of
clients from 10 to 100. The proxy was configured with five states of interest
and received images for adaptation at a rate of 2 messages per second. Each
message for clients was of size 100 KB. For each set of parameters, we made
20 executions and calculated the mean value of proxy overhead. For these
tests we did not cache the messages, but all the messages passed through the
CacheManager, which did not act upon the messages. We executed the proxy
on a 2.4 GHz Pentium 4 with 512 MB RAM.

1 'adapillsiaie T
4 adapis / state e~

Mean Overhead (ms)

10 20 30 40 50 60 70 80 90 100
Number of Clients

Figure 3: Number of clients x Overhead (msec)
Figure 3 shows the results of our measurements. As expected, the number

of applied adaptations affects the mean latency within the proxy, since the
messages stay more time in the queues waiting to be adapted.

10 H. K. S. Rubinsztejn, M. Endler and N. Rodriguez

In all curves the values for small number of clients are quite high, but this is
caused by the fact that the initial Java class loading overhead is proportionally
greater for fewer messages (due to fewer clients) than it is for a greater number
of messages.

6. Related Work

Several other efforts have been made to develop generic proxy architectures,
or proxy frameworks, that can be customized or extended to solve a particu-
lar problem, for example, Mobiware [1], RAPIDware [7], Web Intermediaries
(WBI) [3, 6], MARCH [2] and TACC [4].

The decision of which adapters to use and when to use them can be de-
fined in two ways: via programmable interfaces, as in Mobiware and TACC,
or via rule-based configuration, as MoCA’s ProxyFramework , MARCH and
WBI. Rule-based systems are easily configured and less error prone (defin-
ing a model) than the ones based on programmable interfaces; besides there
is no need to deal with intrinsic details of the framework. Furthermore, only
the content provider can decide which adaptation is acceptable under different
contexts, and thus, by using rules, may define the sequence of adaptations to
apply to data, better controlling their composition, which is a very complex
task to automate.

Comparing the two most common approaches for loading adapters, the dy-
namic loading of adapters, as in MARCH and RAPIDware, supports on-de-
mand loading of adapters from an adapter repository, and provides more flexi-
bility to the system. However, statically configurable proxies support verifica-
tion of a consistent combination/configuration of adapters. In these proxies, the
adapters are defined at proxy deployment time, like in WBI and ProxyFrame-
work. In addition, dynamic (down)loading of adapters can be time consuming.
Therefore, it is more suited for systems where context changes are not very
frequent.

Comparing the systems, all of them support content adaptation, while some
of them also implement caching management. Handover management is pro-
vided only by Mobiware. Concerning communication capabilities, only Mo-
CA’s ProxyFramework supports asynchronous (publish/subscribe) communi-
cation, which is very useful for mobile computing [5]. Context awareness is
also supported by most of the frameworks (i.e. except WBI), but only MARCH
and MoCA’s ProxyFramework consider also the state of the client’s devices.
Our framework is the only one that supports connectivity-aware caching, where
caching is automatically activated as soon as client’s connectivity state changes.

A Framework for Building Customized Adaptation Proxies 11

7. Conclusion

As the number of applications for mobile networks increases, and their ser-
vices become more complex and personalized, proxies will be used for an in-
creasing number of specialized functions. Although each (type of) application
will have specific demands for proxy based functions, we have identified a
common and recurrent set of functions in proxy implementations which shall
be used as the basis for developing proxies for specific needs. Based on our ex-
perience in developing some context-aware application prototypes, we felt that
there is an increasing demand for flexible and extensible tools and frameworks
for the rapid development and customization of proxy-based architectures.

In this paper we have presented a framework for the development of proxies
for mobile computing. Our first prototype includes caching, message filter-
ing and context-aware adaptations, since these form the core functionalities
of a proxy. Our future work includes the design and development of com-
ponents responsible for handover, authentication and translation for different
mobile protocols. Another feature is the interaction with Location Services (as
MoCA’s LIS) in order to be able to implement location-based adaptations.

References

[1] O. Angin, A.T. Campbell, M.E. Kounavis, and R.R.-F Liao. The Mobiware Toolkit: Pro-
grammable Support for Adaptive Mobile Netwoking. IEEE Personal Communications
Magazine, Special Issue on Adapting to Network and Client Variability, August 1998.

[2] S. Ardon, P. Gunningberg, B. LandFeldt, M. Portmann Y. Ismailov, and A. Seneviratne.
March: a distributed content adaptation architecture. [International Journal of Commu-
nication Systems, Special Issue: Wireless Access to the Global Internet: Mobile Radio
Networks and Satellite Systems., 16(1), 2003.

[3] R. Barrett and P. P. Maglio. Intermediaries: An approach to manipulating information
streams. IBM Systems Journal 38, IBM, 1999.

[4] E. Brewer and et al. A network architecture for heterogeneous mobile computing. /[EEE
Personal Communications Magazine, October 1998.

[5] Gianpaolo Cugola and H.-Arno Jacobsen. Using publish/subscribe middleware for mobile
systems. SIGMOBILE Mob. Comput. Commun. Rev., 6(4):25-33, 2002,

[6] Steven C. Ihde, Paul P. Maglio, Jorg Meyer, and Rob Barrett. Intermediary-based transcod-
ing framework. In Ninth International World Wide Web Conference, Amsterdam, The
Netherlands, 2000.

[7] Philip K. McKinley, Udiyan I. Padmanabhan, Nandagopal Ancha, and Seyed Masoud Sad-
jadi. Composable proxy services to support collaboration on the mobile internet. /EEE
TRANSACTIONS ON COMPUTERS, 52(6):713-726, June 2003.

[8] V. Sacramento, M. Endler, H.K. Rubinsztejn, L.S. Lima, K. Gongalves, and F.N.do Nasci-
mento. MoCA: A Middleware for Developing Collaborative Applications for Mobile
Users. IEEE Distributed Systems Online, 5(10), October 2004,

