FORMAL MODELLING OF AN ADAPTABLE
SERVICE SYSTEM

Mazen Malek Shiaa, Finn Arve Aagesen, and Cyril Carrez
NTNU, Department of Telematics, N-7491 Trondheim, Norway

{malek, finnarve, carrez}@item.ntnu.no

Abstract: Adaptable service systems are service systems that adapt dynamically to
changes in both time and position related to users, nodes, capabilities, status,
and changed service requirements. We present a formal model for the basic en-
tity used for the implementation of the service functionality in the Telematics
Architecture for Play-based Adaptable Service systems (TAPAS). This basic
entity is the role-figure, which executes in the nodes of the network. The for-
mal model is denoted as the role-figure model. It comprises behaviour specifi-
cation, interfaces, capabilities, queue of messages, and executing methods for
role-figures. Its semantics is based on an ODP (Open Distributed Processing)
semantic model and rewriting logic, and is used to prove properties such as:
plug ability, consumption ability, and play ability.

1. INTRODUCTION

Service systems consisting of services realized by service components
are considered. Service components are executed as software components in
network nodes and terminals. A terminal is a node operated by a human user.
Those generic components are denoted as actors. This name comes from the
analogy with the actor in the theatre, where an actor plays a role in a play
defined by a manuscript. We use role-figure as a generic concept for the
actor which is playing a role. So services and service components are consti-
tuted by role-figures. The attributes of services, service components and
nodes are formalised, stored and made available using the concepts of status
and capability. Status is a measure for the situation in a system concerning

124 M. M. Shiaa, F. A. Aagesen, and C. Carrez

the number of active entities, traffic, and Quality of Service (QoS). Capabil-
ity is the properties of a node or a user defining the ability to do something.

Telematics Architecture for Play-based Adaptable Service systems
(TAPAS) is a research project which aims at developing an architecture for
adaptable service systems. Adaptable means that the service systems will
adapt dynamically to changes in both time and position related to users,
nodes, capabilities, status, and changed service requirements. In TAPAS,
adaptability is modelled as a 3-classes property: /) Rearrangement flexibil-
ity, 2) Failure robustness and survivability, and 3) QoS awareness and re-
source control [1,2,3]. One objective is to gain experiences by implementing
those various features. Parts of the specified functionality have been imple-
mented based on java and web services platforms. The TAPAS architecture
has been specified using various UML diagrams.

However, it has been realized that the behaviour parts of the architecture
lacks a formal foundation. The implementation software only contains pro-
gram code, while the UML diagrams only specify parts of the functionality
informally. We need a model that can be used as a basis for the formal
verification of the various issues related to adaptability. Mainly, this means
that when a service is trying to adapt to a change in the service system, it
will change some of its composing parts (for example by moving or creating
new service components). We would like the formal model to ensure that the
actions taken by the service will achieve its goal, and without harming the
whole architecture. In this paper we present a formal model of the main
component of the TAPAS architecture. This component is the role-figure
and the formal model is denoted as the role-figure model. The model will be
used to verify the behaviour of the role-figures, and will be the basis for the
formal verification of certain properties of the system.

Related works and TAPAS are discussed in Sec. 2 and 3, respectively.
The semantics of the role-figure model is presented in Sec. 4, while its prop-
erties are discussed in Sec. 5. Section 6 concludes the paper.

2. RELATED WORK

The role-figure model must capture the features and properties of service
adaptability. Various formal frameworks have been considered as candi-
dates. Process Algebras such as n-calculus [4] have very powerful notations
which abstract system elements in terms of processes and communication
channels, focusing on the sequence of inputs/outputs. Specifying the TAPAS
architecture and role-figures using process algebras is possible, but the speci-
fication would be very detailed and lengthy. Moreover, we are more con-

Formal Modelling of an Adaptable Service System 125

cerned with the constructive states of the system than the input/output se-
quences.

The ODP framework and the ODP formal model presented by Najm and
Stefani in [5], and further elaborated with Dustzadeh [6] is also very interest-
ing. ODP computational objects have states and can interact with their envi-
ronment through operations on interfaces. The object interfaces and opera-
tions provide an abstract view of the state of the object. Access to the object
is only possible through invocations of its advertised operations on a desig-
nated interface. ODP computational objects and role-figures have several
similarities, e.g. the definition of interfaces and their dynamic creation, as
well as the distributed operation invocation.

The ODP formal model was based on rewriting logic theory [7]. The se-
mantics of the Rewriting Logic is based on the models of rewrite systems: it
is applied to terms which are rewritten based on rewriting rules of the form
t—t’ (meaning the term ¢ is rewritten to ¢°). This theory has been used for the
formal specification and verification of many other systems, such as the Ac-
tor semantics [8], and the formalization of active network [9,10].

Our role-figure model is based on the ODP formal semantics, and Re-
writing Logic.

3. TAPAS ARCHITECTURE

In accordance with TINA architectural framework, TAPAS is separated
into two parts: the computing architecture and the system management archi-
tecture. The computing architecture is a generic architecture for the model-
ling of any service system. The system management architecture, not de-
tailed in this paper, is the structure of services and management components.

The computing architecture has three views: the service view, the play
view, and the network view (Figure 1). The service view concepts are ge-
neric and should be consistent with any service architecture. Basically, a
service system consists of several service components.

The play view concepts are the basis for implementing the service view
concepts. The concepts of actor, role, role figure, manuscript, capability and
status have already been defined. Additional concepts are director, role-
session and domains. The director acts according to a special role and man-
ages the performance of different role-figures involved in a certain play. It
also represents a play domain. Role-session is the projection of the behaviour
of a role-figure with respect to one of its interacting role-figures.

The network view concepts are the basis for implementing the play view
concepts. In the network view, capability is provided by a node or is owned
by a user. User, node, and capability have status information. A play domain

126 M. M. Shiaa, F. A. Aagesen, and C. Carrez

may be related to one or more network domain (a set of nodes), as a play
may be distributed over several network domains.

Pl 1_composad_of Manuscr
1 1
Director 1_.__.! o ____I
H 1
1€ i ! |
| realizpd_by defined_by .
manages manages . v
! : > Roe lo-Session
. o= " X 1 .
Play Domain Role-Figure plays] <

1
[can’ hove_to]

; project
uses requires

N implt?manls
relates_to one_or_ Actor has [ovan Capability
mgre
—» Slws [¢ -
Y Play View
implgments givps gives
4 M | | .
Network Domain Software Component e (> Capability
| has -]
3 i i .
4| has
1
''''''' Status [User
has has
1 1

is_che_wi(h_UsersT

Terminal has_access_point

Network View

Figure 1. Computing architecture — Play View and Network View

The play view intends to be a basis for designing functionality that can
meet the requirements related to rearrangement flexibility, failure robustness
and survivability, and QoS awareness and resource control. The play view
concepts allow service components to be instantiated according to the avail-
able capabilities and the status in the network. They also facilitate the han-
dling of dynamic changes in the installed service components, which occur
due to changing capabilities, changing functionality, changing locations, etc.

An important concept related to the role-session is the interface. Two
role-figures can only communicate if they are connected via interfaces. A
role-figure creates an interface locally and connects it to another interface in
another role-figure. Sending a message is performed by the local interfaces
of a role-figure. TAPAS core platform is a platform supporting the function-
ality of the play view by offering a set of methods. Role-figures will also
interact with each other via signals that are used to interact with the behav-
iour of the role-figure, and thus performing the service.

The role-figure model is a formal model of the role-figure implementa-
tion. The following aspects need to be included:

— Role-figures are realized by actors and can be dynamically created;
— Role-figures interact via role-sessions and are connected via interfaces.

Messages are asynchronous;

Formal Modelling of an Adaptable Service System 127

— Role-figures comprise behaviour (an extended finite state machine),
and methods used for management and control of actor objects;

— Messages are: signals (used to interact with the role-figure behaviour),
requests to invoke methods, and returns (results of the invoked methods);

— The main role-figure methods are:

— PluglnActor instantiates role-figures

— PlugOutActor terminates role-figures

— Createlnterface creates interfaces in role-figures

— BehaviourChange changes role-figure behaviour

— CapabilityChange adds or modifies capabilities

— RoleFigureMove moves role-figure to new locations.

The RoleFigureMove procedure is used to implement the role-figure mo-
bility. We believe this mobility is one of the keys to adaptability. To ensure
that the moving role-figure will continue its execution after the movement,
the following parts of the role-figure will be moved as well:

— behaviour described by a specification

— role-sessions and interfaces with other role-figures
— consumed capabilities in the node

— queue of incoming messages

— executing methods (or the role-figure active tasks)

In this paper we only handle the first three parts: behaviour, interfaces,
and capabilities. Role-figure mobility management is further detailed in [11].

4. THE ROLE-FIGURE MODEL

This section presents the semantics of the role-figure model. These are
semantic rules defining the structure and the behaviour of role-figures. These
rules are inspired by the semantics of the ODP computational model [5],
based on the rewriting logic [7]. We will use the notations:

a,b,f g h role-figure names;
AA',... B,B',... role-figures a and b as they evolve, respectively;
iio,j o’ interface names i and j, with their types o and o’;

r=(w;=v;,w,=v,) record with fields w; and w;, having values v; and v;;
r.w; will be used to access the value of w; in r;
I asynchronous parallel operator;
< insert operator; “a<b” only executes if a is not in b.
> remove operator. “a>b” only executes if g is in b.
The operators ||, < and > are associative and commutative, with & as
neutral element.

128 M. M. Shiaa, F. A. Aagesen, and C. Carrez

4.1 Role-figure components

The semantics for the role-figure model is based on a Role-Figure Con-
figuration (RFC), which is a set of role-figures interacting asynchronously:

RFC 1= J | RFCE | RFC ||RFC

RFCE := RF | MSG

RF ::= (Name = string, Int =y, Beh = 8, Cap = n)
MSG ::= Req | Sig | Ret

A role-figure configuration RFC is composed of parallel RFC Elements
(RFCE), which is either a role-figure RF, or a message MSG. Three kinds of
message exist: a method invocation request Req, a communicating signal
Sig, and a method return result Ret. A role-figure RF has a name (Name) and
is defined by a set of interfaces (/nf), a behaviour (Beh), and a set of capa-
bilities (Cap). These parts (except Name) may evolve as the role-figure con-
sumes messages. Role-figure names are used to distinguish different role-
figures; however, as a simplification, we will omit this name in the rest of
the article and assume A,A’,... always stand for role-figure a. The defini-
tions of the role-figure are the following:

Interface ¥ =0 | y<alja] |y [Jial

Behaviour B

Capabilities n =0 | n<fcen] | n>[cien]

Invocationreq. Req ::=(far =j:a, src =a, met=m:mn, ret=r,arg =p)
Signal Sig =(tar =j:a, src =a, name = sig, arg =p)

Return Ret ::=(tar =j:a, src =a, arg=p)

Argument list p = (ppty, ..., Pnitn)
Where:

y list of interface definition [j:a] where j is an interface reference of

type a. Types of interfaces are discussed in the next paragraph;

B behaviour, based on an EFSM specification (see next paragraph);

4 list of capabilities [c:cn]. cn is a name denoting the type of capability.
¢ denotes the capability identifier which is an instance or value of cn.

Req method invocation request sent by the role-figure src to the target
interface tar, invoking method met with arguments arg and return ret.

Sig signal called name, sent by the role-figure src to the target interface
tar with argument list arg.

Ret return from a method invocation sent by the source role-figure src to
the target interface tar, with argument list arg.

)4 argument list of parameters py,..., p, with types ¢,,..., t,, respectively.

Interface types are defined as follow:
o 2= (my: methsig, ..., m,: methsig, sig, ..., Sigy)
methsig ::= Nil|p — return with p an argument list as defined earlier

Formal Modelling of an Adaptable Service System 129

Where:

my, .., m, Method names;

methsig ~ Method signature with arguments argument and a return return;
Sigy,..,sig; signals with a name and arguments (i.e. like Sig, without src, tar)

The behaviour definition, B, is based on the operational semantics of the
state machine model. We added to this EFSM the semantic the notion of
stable states, which are states where a behaviour change is allowed:

B ::= (B=b: behaviour, St=st: state, Sg:g, Sc:s, Ss:s)
s = (state, ..., statey) state names
g = (sig, ..., sigy) signal names
Where:
B EFSM behaviour specification containing the state transition rules:
triggering events, tasks performed, signals sent, and next states
St current state
Sg set of input signals (trigger events for state transition at current state)
Sc set of successor states (next states after the firing of input signals)
Ss Set of stable states (states where behaviour change is permitted)

As a role-figure behaviour evolves and transits from one state to another,

St, Sg, Sc, and Ss change and reflect the status of the role-figure behaviour.

4.2 Behaviour evolution

This section describes the set of rewriting rules that handle the behaviour
of a role-figure. The general form of the rewriting rules for role-figure a is
the following":

LAITIOIM—A"|Z|T"|O"|M if C
Where:
/ is a label. A and A’stand for role-figure a that evolves from Ato A’ X'is
the role-figures created in this rewriting rule (e.g. 2 can be B meaning that
role-figure b was created). Tand T ’are return sets, @ and @’ are signal sets,
M and M’ are request sets. C is a condition.

This general rewriting rule, inspired from [5], is used to handle the transi-
tions of any role-figure configuration. As such, a number of role-figures and
messages (signals, requests and returns) can come together and participate in
a transition in which some new role-figures and new messages may be cre-
ated. Some restrictions apply:

— messages (returns, signals, and requests) are all consumed in a transition:
TNT'=0NO'=MNM =0
— created role-figures are unique: B € 2 implies b is unique

! Recall that 4 and B define the role-figure elements RF whose names are @ and .

130 M. M. Shiaa, F. A. Aagesen, and C. Carrez

— created messages have their src field set to the role-figure that sent them,
and tar is connected to an interface of an existing role-figure:
If msg € M’UT’U®’ with msg.tar =[ita], then:
msg.src=a A [i:o] € A.lnt
A 3 b € RoleFigures’, j:a. € B.Int such that connected(i, j))=TRUE
— Messages must be received by the proper interface indicated in tar:
If msg € MUTU® with msg.tar = [i:a], then:
d[j:a] € A.Int with connected(i, j))=TRUE
The predicate connected(i, j) checks that interfaces i, j are interconnected.
This issue is left opened so no restriction is made on future implementations
(for example, i can be made of the addresses of the local interface and the
distant one j).

The rewriting rules will handle behaviour evolution, communications and
adaptability functionality. From now on, the role-figure parts will remain
constant when applying the rules unless mentioned otherwise.

The following set of rules handle behaviour evolution (internal action)
and communication between role-figures:

internal_action: A — A’
with: A.CapCA'.Cap A A’.Beh.St € A.Beh.Sc U{A.Beh.St}

send request: A — A' || reg
Assume req = (tar =i:a,src = a,met =m:mn,ret =r,arg = p):
mn: args,, —> return, € a. and r=return, A p = argsy

recv_request: Al req — A’
Assume ret = (tar =i:a,src = a,ret =r,arg = p):

mn: argsy, —> return, € o.and r =return, A p =argsm

send return: A — A’ || ret
recv_return: Al ret — A’
send_signal: A — A'||sig
Assume sig = (tar =i:a,src = a,name = sig,arg = p >:
I sig, € a such that sig,.name = sig

recv_signal: A sig — A’
sig € A.Beh.Sg = A'.Beh.St € A.Beh.Sc

Explanation of the rules is the following.
internal_action: the role-figure can change its capabilities and perform a
state transition.
send_request: a role-figure may invoke a method in another role-figure by
sending a method invocation request via the appropriate interface. The

% RoleFigures denotes all the role figure names in the configuration,

Formal Modelling of an Adaptable Service System 131

method signature must be declared in the type o of the target interface, and
the arguments and return set in the request must match this signature.
recv_request: when receiving a request, the method signature must be de-
clared in the type a of the interface, and sent arguments and return type must
match this signature.
send_return, recv_return: when sending or receiving returns, there is no
additional restrictions: only basic type compatibility check is made*.
send_signal: a role-figure may send a signal to a role-figure due to service
functionality. The signal must be declared in the type of the target interface.
recv_signal: receiving a signal will trigger a state transition.

Note that a state transition is allowed only during an internal action or
when receiving a signal.

Adaptability functionality is dealt with six special requests: plug in pi,
plug out po, create interface ci, behaviour change bc, capability change cc,
and role-figure move mo. The corresponding rewriting rules are specialisa-
tions of send_request and recv_request, with specific constraints:

Role-figure Plug in: A ||pi—= A'|| b pi.arg == (name,loc,beh.p, cap:m)
A.IntCA'.Int A b=pi.arg.name A location(b) = pi.arg.loc
A B.Beh = pi.arg.beh A pi.arg.cap € B.Cap

Role-figure Plugout: A || po — & po.arg .= (name)
VB, A.IntNB.Int = &: B—B’ with B'.Int = B.Int-A.Int

Create Interface: Allci—= A’ ci.arg = (j;: Oy ey Jn ' Oy)
A'nt = Alnt <, ci.arg.j,

Behaviour Change: A || bc — A’ bc.arg .= (beh : B, cSt. State)

A.Beh.StEA.Beh.Ss = A'.Beh.B=bc.arg.beh n A'.Beh.St=bc.arg.cSt

Capability Change: A | cc — A’ cc.arg = (Dy: Cly oo Pr’ Cn)
A'.Cap = A.Cap <, cc.arg.j,

Role Figure move: A || mo — A’ mo.arg = (loc)

A'.IntCA.Int A A'.CapCA.Cap A location(a’) = mo.arg.loc

Role-figure Plug in: this method plugs in a new role-figure named name at
location /oc. The created role-figure b will also receive its behaviour bek and
capabilities 7. Its interfaces will be added to 4, the role-figure that received
the request. We hide the complex process of director play management, ca-
pability allocation, etc. and describe it by a single rewriting rule.

* Concerning the sending, the arguments are not checked because they have already been
matched by the method invocation request semantics.

132 M. M. Shiaa, F. A. Aagesen, and C. Carrez

Role-figure Plug out: a role-figure which receives this request disappears.
All references to its interfaces are removed with additional rewriting rules.
Create Interface: all the interfaces passed as arguments of this ci request
will be added to the role-figure’s interface definition, /nt. Interface creation
between two role-figures means that they will agree on the terms and condi-
tions of their future interactions.

Behaviour Change: a behaviour change assigns a new behaviour to the
role-figure, with a current state. It is allowed only in stable states A.Beh.Ss.
Capability Change: this request changes the capability definition of the
role-figure. Capabilities specified in the cc request are added to the role-
figure’s capability set, Cap.

Role-figure Move: this request moves a role-figure from one location to
another. It is equivalent to a sequence of pi, bc ci, cc, and po requests: a role-
figure is plugged in at the new location /oc, with the behaviour, interfaces
and capabilities of the original role-figure. The role-figure instance at the
original location is terminated by a po method.

S. ROLE-FIGURE PROPERTIES

In this section we introduce requirements on role-figure configuration,
and define properties to verify their correctness. This verification process
takes place at the service system design phase to improve the service system
at early design phases by identifying design errors.

The role-figure configuration, rfc= {ay, ..., ay, g:....8n}, evolves through
rfe—rfe'—... rfc?—... . In every transition a role-figure a; evolves through
A; by either consuming a message g;, generating a new message, or perform-
ing an internal action. Also, every interface in any of the role-figures is con-
nected to another interface in another role-figure. The role-figure configura-
tion is considered well-formed if and only if it obeys the rules and conditions
constructed in the role-figure semantics. This role-figure configuration has
three properties: Plug ability, Consumption ability, and Play ability.

Plug ability. This property proves that a role-figure has been plugged in at

certain location. We do so by ensuring that the consumption of a plug in

request has achieved the plug in of a role-figure at the appropriate location.

The required capabilities and behaviour of the created role-figure must also

satisfy the requirements of the plug in request. This property is defined by:

P g abitiy= Virfe={a,,....ay,8, " 8N 8 plugin Y 8piugin = pia,,,,loc; beh,capset,),
rfe—42s s rfc'lla,,,

rfc'={a;,...,a\,8, . 8x}
A, =<Beh=<B=pibeh, >, Cap = picapset, > location(a,,) = piloc,

Apew

where {

Formal Modelling of an Adaptable Service System 133

Consumption ability. This property proves that all messages generated by
the role-figures during their execution will eventually be consumed:

80

1__ By
})consumplionabiliry= V rfc={a|""’aM’g}’ rfC £ rfC — '“rfCQ rfclcrminal

Vrfe': rfe'={a....ay.8....8) 1<i<Q
rfclerminal ={a|r- . 'vao}

The configuration consumes messages and evolves based on the actions
that will occur after the consumption: messages may be generated that will
eventually be consumed. This process terminates when there will be no mes-
sages in the configuration (note the number of role-figures O in #fCrepmina 18
different from M in rfc). This property examines all terminal states of a con-
figuration and checks if they contain any unconsumed message (terminal
states are states of the where no rewriting rule could be applied any further).

such that{

Play ability. This property proves that a role-figure, after its plug in phase,
is playing or performing according to its predefined role. We have to verify
that the role-figure behaviour is progressing, e.g. by marking certain states
where something desirable happens as progress states, and examine if an
execution of the system reaches such states. In play ability we only consider
messages that are signals. There can be two types of this property: weak and
strong Play ability. Weak Play ability proves that a role-figure has begun
performing once it has been plugged in: at least one of the input signal g, of
the role-figure has been consumed. Weak Playability is defined by:

Pup/ayabih'ly= Vrfe={a,....a;....a4,8....8x } rfe——s- rfe'—Bis pfet
rfc'={a (RS - DU - A LSRR s EA'r.Behi.S)
such that { 7) {a, i 08 8« g} & i 8;

rfet'={a,,. 85 ., 80,815 - s Bi v Brarre - 8p }

Strong play ability requires that a role-figure is proved to be free of non-
progress cycles (a progression is achieved):

B -1 By
Py avitiny= Vife={a,,...a,. ...y, .8} 71fc > rfed o rfc? rfc®

rfc’={a,,...a,...,20,8;,.. . 8p}» 1sgsQ
such that {A,——Al——...A? > ...A?,
3st, € (A} .Beh, St; -, A° Beh, St;}, st; €8, Iy pr ogress

The strong play ability requires knowledge of the role-figure state, which
cannot be obtained by an external observation, as well as it requires knowl-
edge of whether a state in the behaviour specification is a progress state or
not. This property shows that a role-figure, which is assumed existing
throughout a given execution of a configuration, evolves. Furthermore, the
behaviour of the role-figure is said to have progressed at least once — one of
its current states has been a progress state. The only difference to the weak
play ability is the denotation, @; | ges.progress, Which stand for the progress states
in the role-figure behaviour.

134 M. M. Shiaa, F. A. Aagesen, and C. Carrez

6. CONCLUSION

A formal model for the role-figures in the TAPAS architecture has been
presented. Rewriting rules were used to describe role-figure behaviour as
well as the three properties: plug ability, consumption ability, and play abil-

ity.

The plug ability property proves that a role-figure has been plugged in at
certain location. The consumption ability property proves that all messages
generated by the role-figures during their execution will eventually be con-
sumed. The play ability property proves that a role-figure, after its plug in
phase, is playing (i.e. its behaviour is progressing).

Although our experiences with modelling the role-figure and its proper-
ties are quite encouraging, the model we presented is just a first and prelimi-
nary step. The semantics and the dynamics of the role-figure model would
benefit a more elaborated interface type theory: the behavioural types of
Carrez et al.[12] can be used to describe the messages that are exchanged at
the role-figure interfaces. Finally, the properties of the role-figure model
may be extended to elaborate on the role-figure mobility management pre-
sented in [11], and used to verify the validity of mobility strategies (i.e.
when and how to move).

References

1. F. A. Aagesen, B. E. Helvik, V. Wuvongse, H. Meling, R. Brek, and U. Johansen, To-
wards a plug and play architecture for telecommunications, in SmartNet’99 (1999)

2. F. A. Aagesen, B. E. Helvik, U. Johansen, and H. Meling, Plug&play for telecommuni-
cation Functionality: architecture and demonstration issues, in /ConIT'01 (May 2001)

3. F. A. Aagesen, B. E. Helvik, C. Anutariya, and M. M. Shiaa, On adaptable networking,
in ICT 2003 (April 2003)

4. R. Milner, J. Parrow, and D Walker, A calculus of mobile processes (parts I and II), in
Information and Computation, 100:1-77 (1992)

5. E. Najm and J.B. Sstefani, A formal semantics for the ODP formal model, in Computer

Networks and ISDN systems 27, pp.1305-1329 (1995)

J. Dustzadeh and E. Najm, Consistent semantics for ODP information and computational

models, in Proceedings of FORTE/PSTV'97 (Osaka, Japan, November 97)

N. Marti-Oliet and J. Meseguer, Rewriting logic as a logical and semantic framework,

SRI International, Computer Science Laboratory Technical Report, August 1993

C. L. Talcott, An actor rewriting theory”, in ETCS, 4 (1996)

G. Denker, J. Meseguer, and C. Talcote, Formal specification and analysis of active

networks and communication protocols, in DISCEX 2000 (January 2000)

10. B. Wang, J. Meseguer, and C. Gunter, Specification and formal analysis of PLAN algo-
rithm in Maude, in Workshop on Distributed system validation and verification, (2000)

11. M. M. Shiaa, Mobility support framework in adaptable service architecture, in Net-
Con'2003 (Muscat Oman, October 2003) .

12. C. Carrez, A. Fantechi, and E. Najm, Behavioural contracts for a sound assembly of
components, in Proc. of FORTE 2003, LNCS 2767 (Berlin, Germany, September 2003)

ve N o

