
Giga-Scale Multiresolution Volume Rendering
on Distributed Display Clusters

Sebastian Thelen1, Joerg Meyer2, Achim Ebert1, and Hans Hagen1

1 University of Kaiserslautern, Kaiserslautern, Germany
{s thelen, ebert, hagen}@cs.uni-kl.de
2 University of California, Irvine, U.S.A.

jmeyer@uci.edu

Abstract. Visualizing the enormous level of detail comprised in many
of today’s data sets is a challenging task and demands special process-
ing techniques as well as a presentation on appropriate display devices.
Desktop computers and laptops are often not suited for this task because
data sets are simply too large and the limited screen size of these devices
prevents users from perceiving the entire data set and severely restricts
collaboration. Large high-resolution displays that combine the images of
multiple smaller devices to form one large display area have proven to
be an adequate solution to the ever-growing quantity of available data.
The displays offer enough screen real estate to visualize such data sets
entirely and facilitate collaboration, since multiple users are able to per-
ceive the information at the same time. For an interactive visualization,
the CPUs on the cluster driving the GPUs can be used to split up the
computation of a scene into different areas, where each area is computed
by a different rendering node.
In this paper we focus on volumetric data sets and introduce a dynamic
subdivision scheme incorporating multi-resolution wavelet representation
to visualize data sets with several gigabytes of voxel data interactively
on distributed rendering clusters. The approach makes efficient use of
the resources available on modern graphics cards which mainly limit the
amount of data that can be visualized. The implementation was success-
fully tested on a tiled display comprised of 25 compute nodes driving 50
LCD panels.

Keywords: High-Resolution Displays, Large-Scale Data Sets, Volume
Rendering

1 Introduction

Many data sets that are acquired in today’s applications exceed the computa-
tional capabilities of desktop PCs or workstations. The Visible Human Project [34],
for instance, provides 40GB of data for the female cadaver, thus asking for tech-
niques to process an enormous amount of information. A lot of research has fo-
cused on developing methods for handling such large data sets. Solutions include
the parallelization of the render process or the invention of level-of-detail or data



II

compression techniques. The benefits of these methods are undeniable, however,
one limitation remained for a long time: the visualization of large amounts of
information and the advantage of having high-resolution data sets also require
a large amount of screen real estate.
The pixel count of regular computer monitors is usually too low to display com-
plex data sets at their full level of resolution. For three-dimensional data sets,
the gap between the amount of information contained in a partially transparent
volume and the available screen space becomes even more obvious.
Zooming+panning (e.g., Google Earth navigation) or focus+context (i.e., a high-
resolution focus view and a low-resolution context view) approaches offer ways
to deal with this problem but for some data sets these methods are not appro-
priate. For instance, such data sets can only be fully perceived when they are
displayed entirely. In the last couple of years tiled high-resolution displays have
become more and more popular due to advances in display and hardware tech-
nology. Tiled high-resolution displays combine the resolution of multiple devices
to form one large display area. Two basic approaches have emerged: projector-
based and monitor-based tiled displays. Multiple projectors can be combined to
form a projector-based tiled display. The challenge is to calibrate the system, as
projector images are usually distorted and non-uniform in terms of color and lu-
minance. LCDs represent the most affordable way to build a large high-resolution
display. LCD-based systems are easier to set up since they usually require less
space, and problems like lens distortions or mismatches of color temperature and
luminance are limited to a minimum. Further, the resolution of today’s average
LCDs is higher than the one of most projectors, so that it is relatively easy to
build systems with a resolution of several hundred megapixels.
In this paper we focus on the development of a volume rendering application
for large scalar data sets on tiled displays. The display system we work with is
a tiled wall consisting of fifty 30 inch LCDs arranged in a 10 × 5 grid. Instead
of the traditional isosurfaces, i.e., regions representing a constant scalar value
within the data set, we use a direct volume rendering approach based on 3D
texture mapping for visualization. The size of data sets that can be visualized
on a computer is mainly limited by the available amount of video RAM on the
graphics card. Therefore, the main contribution of this paper is the description
of a technique that fully exploits the resources of a render node in the display
cluster. We combine octree-based out-of-core frustum clipping with a wavelet-
based multi-resolution representation of the data to increase the visual quality
of the renderings.
The rest of the paper is structured as follows: Section 2 gives a brief overview of
current literature relevant to our work. Section 3 describes the data structure we
employ, while section 4 deals with software- and hardware related aspects. In sec-
tion 5, we introduce the actual method that allows us to visualize high-resolution
data sets on large displays, followed by a description of implementational aspects
in section 6. Section 7 discusses the results we achieve on our system that are
more deeply analyzed in section 8. Section 9 compares our system to other dis-



III

tributed rendering systems. The paper ends with a conclusion and an outlook
on future work.

2 Related Work

In its simplest form, 3D texture mapping is limited by the fact that the orig-
inal data has to fit entirely into the texture memory of the graphics card. To
overcome this limitation, LaMar et al. [20] describe a multi-resolution approach
that is based on octree subdivision. The leaves of the octree define the original
data and the internal nodes define lower-resolution versions. Artifacts are min-
imized by blending between different resolution levels. Weiler et al. [48] extend
this approach. Their hierarchical level-of-detail representation allows consistent
interpolation between resolution levels. The described methods are relevant to
our work since we also produce multi-resolution images of the data set. However,
in our case multi-resolution refers to the detail levels of tiles within the display
wall and not to regions of different resolution within the resulting picture. The
techniques above are able to handle data sets that do not fit into the texture
memory of the graphics hardware. Nonetheless, data still has to fit into the com-
puter’s main memory.
The data structure we exploit in this paper has been described by Meyer et al. [31].
The authors use a dynamic subdivision scheme that incorporates space-subdivision
based on octrees and wavelet compression. It has been used to implement a
network-based rendering application that is able to visualize data sets between
20MB and 76GB size by first transferring low-resolution versions of the data
via network and then gradually refine them [30]. Plate et al. [38] developed the
Octreemizer, a hierarchical paging scheme that uses octrees to deal with data
sets that exceed the size of RAM. The Octreemizer however only exploits the
octree subdivision characteristics without incorporating any data compression
scheme.
Various attempts have been made to parallelize rendering on a cluster of com-
puters by image-order [37, 2, 3], object-order [13, 16] or hybrid approaches [14].
The aim of these methods is to achieve a speed-up in the rendering process
by combining the computational power of a set of computers. Far less research
though has focused on utilizing clusters to generate high-resolution results of
volume rendered images on high-resolution displays.
Vol-a-Tile [46] was able to visualize seismic data sets on the 5× 3 GeoWall2 [15]
display grid at EVL. The authors present a master-slave prototype that uses an
MPI-based rendering library and an OptiStore data streaming server. Applica-
tion specific implementation details are not given. The TeraVoxel project [23]
founded at the California Institute for Technology was able to interactively ren-
der a 256× 256× 1024 data set on a 3840× 2400 display using four VolumePro
1000 cards by employing pipelined associative blending operators in a sort-last
configuration, contrary to our sort-first approach. Schwarz et al. [45] describe
an octree approach for frustum clipping to make better use of system resources
without exploiting the power of a multi-resolution wavelet representation and



IV

give a comparison of various parallel image- and object-order as well as hybrid
volume rendering techniques. QSplat [43] is a multi-resolution rendering system
for displaying isosurfaces out of point data sets. It also uses a progressive refine-
ment technique but generates images using a splatting approach (see section 5.1).
Despite the increasing popularity of high-resolution displays, until today the ul-
timate general purpose software solution for driving all different types and con-
figurations of displays is still missing. Various commercial and non-commercial
software solutions are available, differing mainly in the way they perform dis-
tributed rendering and the display configurations they can handle. Distributed
rendering strategies were first analyzed and classified by Molnar et al. [33].
The authors identified three classes of rendering algorithms, characterized by
the stage in which geometry is distributed among the nodes (sort-first, sort-
middle and sort-last). Alternatively, distributed rendering can be classified by
the execution mode of applications on the cluster [9]. In master-slave mode,
an instance of the application is executed on each node of the cluster, while
in client-server mode a client node issues rendering tasks to the render servers
via network. A good survey on distributed rendering software was given by Ni
et al. [36] and Raffin et al. [39]. Some of the best known software packages in-
clude CAVELib [8], VRjuggler [5], Syzygy [44], AnyScreen [10], OpenSG [40],
Chromium [17], NAVER [18], Jinx [47] , and CGLX [11].

3 Data Structures

Rendering of large data sets in real time requires data reduction techniques
and hierarchical subdivision of the data set. This chapter describes a space-
and time-efficient, combined space subdivision and multi-resolution technique
for volumetric data [30].

3.1 Adaptive Octree

Large volumetric data sets, which are typically arranged in a regular Cartesian
grid, are often too complex to be rendered in real time on today’s hardware for
cluster nodes and with current 3D texture-based rendering techniques. There-
fore, they must be reduced to a reasonable size, so that each node can quickly
access the appropriate section of the 3D volume and render this portion of the
data almost instantaneously. The slice format in which volume data often comes
is not suitable for this purpose, because too many files need to be opened in
order to display a 3D volume from cross-sections. Opening large numbers of files
has proven to be prohibitively slow.
Therefore, an octree space subdivision algorithm is employed. Instead of using a
database, the Unix file system and an efficient indexing scheme are used to ac-
cess the right block of data instantly. The octree method is illustrated in Fig. 1.
Three simple binary decisions (left or right, front or back, and top or bottom)
are necessary at each level to determine the position of a voxel in an octree. Each
decision corresponds to a two bit index, which can take on 23 = 8 states (0-7),



V

Fig. 1. Octant indexing scheme used to represent paths in the octree.

i.e., the eight child nodes of the octree. The number represents the file name,
and several numbers in a file name indicate an octree traversal path. With this
fast indexing scheme, it is possible to traverse the tree almost instantaneously
in order to get to the leave of the tree which carries the data.
The main advantage of the octree data structure is the early termination of the
traversal in branches that are empty. It works best for data sets where the object
is located near the center of the data cube and has an empty or nearly empty
background (e.g., for CT or MRI scans), but it also works for sparse data sets.
The information is determined in a preprocessing step when creating the octree
data structure. Empty areas are not stored, saving a significant amount of disk
space and RAM.
Several space subdivision algorithms have been implemented in order to com-
pare their performance and scalability [32] with the octree approach. Binary
Space Partition (BSP) trees, for example, are based on a binary subdivision of
three-dimensional space. A root node is recursively subdivided in alternating
directions, in a cycle of several subdivisions (one for each dimension). Empty
regions are marked, so that they can be skipped in order to speed up the ren-
dering procedure.
A statistical analysis based on typical data sets (CT and MRI scans) has been
conducted, and it was found that for the same data set size the octree technique
consistently outperformed other techniques like the BSP tree both in terms of
preprocessing time and, more importantly, traversal time during rendering [31].
At this point, depending on the depth of the octree, the data block to be read
from the octree may still be too large to fit into the texture buffer of a rendering
node’s graphics card. For this reason, the leaves are stored in a multi-resolution
wavelet format, which is described in the next section.

3.2 3D Non-standard Haar Wavelet Decomposition

We use a 3D non-standard Haar wavelet decomposition method to store the
leaves. The benefit of using this method is the fact that low-resolution infor-
mation can be stored at the beginning of the file, and if more detail is desired,
more data in the form of detail coefficients can be loaded in order to refine the



VI

ROI

Fig. 2. Octree space subdivision uses multi-resolution wavelet representation for the
leaves.

image. Depending on the number of wavelet levels, a tremendous reduction of
data can be accomplished with acceptable visual artifacts in the rendered image.
On the first level, only 1/8th of the data needs to be rendered, on the second
level 1/64th (less than 2% of the total data set), and so forth. This exponential
reduction leads to a significant acceleration and memory savings.
The volume pyramid can be compressed by removing small coefficients. A thresh-
old determines whether a coefficient can be set to zero or not. Real numbers with
fractions can be quantized, e.g., by removing the fraction part, and low-frequency
coefficients could be stored at higher precision than high-frequency coefficients.
However, one of the most important advantages of the wavelet approach is the
fact that we can use the same amount of memory to store the hierarchy as to
store the original volume. Typically, we would use float as the data type to store
detail coefficients. We can replace this data type by integers with no loss of pre-
cision, and therefore we can make use of the fact that integer arithmetic is much
faster than floating point arithmetic [7].
In our implementation, we use the following method: Volume data is represented
as a three-dimensional array of scalar values. The resolution is 8 bits, which
allows for 256 different gray levels. For the wavelet transformation, we use an
unsigned integer (32 bits) to store coefficients, which is the same size as a float (4
bytes). Initially, our data is stored in bits 23. . . 30. The leftmost bit 31 is usually
unused. Only when the algorithm computes the sum of two data items in order
to determine the reduced pixel, i.e., their representation in the lower resolution
image, the intermediate result can become temporarily larger than 255, which
causes an overflow into this unused bit. For the computation of reduced pixel
values and detail coefficients, a division by two is involved, which corresponds
to a bit shift to the right, i.e., an underflow. Since we have three dimensions per
cycle, we can have a 3 bit underflow. We have 22 bits available. This means that
we can apply the algorithm 7 times before we run out of bits. This is sufficient,



VII

since the data set is then already reduced to (1/8)7 = 4.77× 10−7. This means,
for instance, that a typical data set of 2563 = 16, 777, 216 voxels is then already
reduced to 8 voxels.

4 System Details

The following section discusses hard- and software related aspects of the display
cluster used for the visualizations.

4.1 Cluster Display Wall

Our visualization cluster (see Fig. 3) consists of 25 PowerMac G5 computers,
equipped with nVidia GeForce 6800 and nVidia Quadro FX4500 graphics cards.
These 25 compute nodes drive fifty 30 inch Apple Cinema Displays that have
been arranged in a 10×5 grid. Together they form a 200 megapixel tiled display
wall which measures 23 × 9 ft. Each screen has a native resolution of 2560 ×
1600 pixels. The wall can display scenes at a maximum resolution of 25, 600 ×
8, 000 pixels. A designated front-end node processes user input and launches
applications. The current operating system on the cluster is Mac OS X Tiger.

4.2 CGLX

As mentioned in section 2, there exists a variety of different distributed rendering
libraries. Our implementation of the volume renderer is based on CGLX [11],
a Cross-Platform Cluster Graphic Library. CGLX was developed at the Cali-
fornia Institute for Telecommunications and Information Technology at UC San
Diego and is a flexible and transparent OpenGL-based graphics framework for
distributed visualization systems in a master-slave setup. Master-slave architec-
tures run an instance of the application on each compute node of the cluster.
Communication between nodes is realized through a light-weight, thread-based

Fig. 3. 200 megapixel tiled display cluster measuring 23× 9 ft.



VIII

network communication protocol. Attempting to be as transparent as possible
to the developer, CGLX offers a GLUT-like (OpenGL Utility Toolkit) interface,
which allows the library to intercept and interpret OpenGL calls, providing a
distributed large scale OpenGL context on tiled displays.
Theoretically, existing applications can be ported to CGLX by just changing
the includes from GL/glut.h to clgX.h and calling cglXOrtho, CGLX’s equiv-
alent to glOrtho. However, in practice things like synchronized access to global
variables or shared resources (e.g., files) require some more tweaking.

5 System Design

When doing volume rendering of large-scale data sets on desktop computers, the
limited resources of the system pose restrictions to the visualizations. Above all,
the available amount of video RAM determines the size of data sets that can be
visualized on a given system. The same restrictions apply when designing cluster
applications, where each node computes the entire scene. The waste of system
resources is enormous, since nodes allocate memory for the entire scene, but only
display a small part of it. Often however, this approach is favored by distributed
rendering libraries. Since libraries try to be transparent, programmers write code
almost as if they are developing applications for desktop PCs. The library lets
each node compute the entire scene and sets viewport and viewing frustum
according to the location of its screens within the grid. While this is a clear
advantage for the developer, it leads to a waste of system resources, which we
try to avoid with algorithm described in the following section.

5.1 Rendering Algorithm

Different methods have been developed to visualize volumetric data sets by ap-
proximating the volume rendering equation [29]. As opposed to isosurface algo-
rithms [24], these techniques simulate the propagation of light in a transparent
light emitting and absorbing medium.

Raycasting [21, 19, 42] is an image-order method that casts rays through each
pixel of the viewing plane into the volume and samples along the ray. The
method is able to yield high-quality results but is computationally expen-
sive. In order to be interactive, it requires sophisticated adaptive sampling
schemes, empty space skipping, and early ray termination. Their implemen-
tation is partly supported by today’s modern programmable GPUs. However,
even though raycasting is able to produce the best optical results, it generally
means having to trade speed for image quality. We decided that raycasting
is not going to pay off when the goal is to achieve interactive framerates on
a fifty tile display wall.

Splatting [50, 49, 43] is a rendering approach in which voxels of the volume
are projected in back-to-front order onto the 2D viewing plane. Splat ker-
nels, e.g., Gaussian kernels, are used to blend splats and generate smooth



IX

images. Splatting in general is faster than raycasting, but the implementa-
tion is tricky and results depend on the choice of the splat kernel. Therefore,
splatting was not our first choice rendering algorithm.

Texture mapping [51, 6, 41] treats volumetric data as 3D textures that are
mapped to sets of proxy geometry. The general approach is to map data
sets to a stack of view-aligned planes via trilinear interpolation. Afterwards,
blending of adjacent planes generates a continuous three-dimensional visu-
alization of the volume. Texture mapping is very efficient on modern GPUs,
since trilinear interpolation is hard-wired on today’s graphics cards. Further-
more, the technique is easy to implement and produces good-quality results.
Therefore, we decided to implement a rendering algorithm that is based on
this approach.

It is worth pointing out that our prototype could theoretically be adapted to
use any of the other rendering approaches. Most changes would concentrate on
the main render loop and not on the data structure employed in our algorithm.
We want to make full use of the resources of each rendering node and determine
which parts of a scene its monitors are going to display. The rendering node
allocates resources only for a portion of the data set and uses the available video
memory to display its subvolume at the highest possible quality. For doing so, we
make use of the data structure described in section 3. The volume subdivision
of the octree is well suited for being used in a frustum clipping step (see sec-
tion 6.1). It allows rendering nodes to disregard parts of a scene that do not have
to be displayed. These parts do not need to reside in RAM and do not need to
occupy precious texture memory. The wavelet representation of the octree data
allows rendering nodes to determine a compression level for the subvolumes, so
that they still fit in their graphics card’s texture memory and at the same time
provide the highest possible level of detail.
As a result we end up with a scene in which each LCD of the grid displays a
portion of the volume at an individual but maximal quality. For large-scale data
sets this quality can differ by a factor of 8 − 64 (which corresponds to 1 − 2
wavelet levels) from the results that can be achieved on a desktop PC.

5.2 Progressive Refinement

When transforming the volume (by translation, rotation or scaling operations)
frustum clipping has to be rerun because parts of the data set might fall into a
different region of the display wall. Frustum clipping can slow the system down
because it implicates time consuming file operations to load new data chunks
from hard disk into main memory. Therefore, it is impossible to clip at inter-
active rates. Our solution to this bottleneck is a fallback texture. The fallback
texture permanently resides in the graphics card’s texture memory and contains
the entire data set which is loaded only once at start-up time. Whenever the
volume is transformed, i.e., when the user uses the mouse to change the cur-
rent position or scaling factor of the volume, we switch from the individually



X

computed subvolumes of a node to the fallback texture. The size of the fallback
texture is chosen in a way that each rendering node maintains a predefined min-
imum frame rate. That way we keep the system responsive and guarantee that
the volume is displayed at any given time in its current position. Because the
fallback texture contains the entire data set and has to be stored once on each
node, its detail level is usually lower than the ones that result from the clipping
process.
When the mouse is released, i.e., when user interaction is paused, the system
gradually increments a counter, which determines the detail level. As a conse-
quence, the image is gradually refined up to the maximum level of detail each
graphics card can display.
Data sets can comprise several gigabytes and are stored in the octree-wavelet
format. The size of the octree bricks is determined by the octree depth - a pa-
rameter that is specified by the user. The deeper an octree is, the more brick files
there are and the smaller the brick files will be. However, loading the required
information from these files in just one step may take too long. The data organi-
zation of the brick files allows a rendering node to load the content incrementally.
The content of the files is organized in such a way that the data of the highest
wavelet compression appears at the beginning of a file and is followed by the
detail coefficients of lower wavelet levels (see section 3). Thus, it is possible to
first load the lowest detail level and then gradually refine by sequentially loading
detail coefficients for the reconstruction. In practice this means, that we start at
a level i, display the data set at that resolution and then, triggered by a timer,
switch to level i − 1, i − 2 and so forth. This way, after having interacted with
the volume, the user is provided with instantaneous visual feedback.
Progressive refinement including fallback textures keeps the system responsive
and enables users to explore data sets interactively. For small movements through
the volume, where only parts of a scene change, the user experience could in the
future be improved by loading additional high-resolution data around a hull of
the frustum.
Synchronization between nodes is achieved through the render library’s built-
in synchronization mechanism. Before OpenGL render buffers are swapped, a
barrier synchronization lets the system stall until all threads reach the barrier.
While this means having to wait for the slowest node in the cluster, it gives us
a way to switch synchronously between wavelet levels during progressive refine-
ment and to reduce artifacts. Note, that within a tile the wavelet level is always
constant, in contrast to the method that was presented by LaMar et al. [20].
Their algorithm generates regions of varying resolution within the final image.

6 Implementation

This section discusses implementation details of the frustum clipping and texture
mapping stage.



XI

6.1 Out-of-Core Frustum Clipping

During the clipping stage each rendering node determines for each of its moni-
tors (i.e., two in our case) which parts of the data set they are going to display
depending on the current view. This yields a subvolume for each screen for which
the according files are loaded at the node. The subvolume is loaded at the max-
imum possible resolution, so that it still fits into a predefined portion of the
texture memory. As a result, frustum clipping yields a partial copy of the entire
data structure from hard disk in a node’s main memory, ready to be visualized
by 3D texture mapping.
To determine if an octree brick is going to be displayed by a monitor, we calculate
where on the tiled display the eight corners of an octree brick are going to appear,
i.e., we project them into 2D space and calculate their window coordinates. De-
termining the window coordinates (wx, wy) of a given point v = (ox, oy, oz, 1.0)
in object space under a modelview matrix M , a projection matrix P and view-
port V can be accomplished via OpenGL’s gluProject method. gluProject
first computes v′ = P · M · v. The actual window coordinates are obtained
through

wx = V [0] + V [2] · (v′[0] + 1)/2 (1)
wy = V [1] + V [3] · (v′[1] + 1)/2. (2)

wx and wy specify the window coordinates of point v. The viewport V of course
is defined by the size of the tiled display, i.e., 25, 600 × 8, 000 in our case. The
projection matrix P is the matrix that orthogonally projects the viewing frustum
to the viewport V . Since we transform the volume by manipulating OpenGL’s
texture matrix T , we use its inverse T−1 as an input to gluProject instead of
the modelview matrix M (inverse, because T manipulates texture coordinates
and not the texture image).
Once the window coordinates of the eight brick points are known, their bound-
ing box is tested for intersection with the area of each LCD in the grid. The
intersections with the screen of a node define a rectangular subvolume whose
content we load from hard disk. The wavelet representation of the octree bricks
allows us to load the subvolume at a detail level, that will not exceed a prede-
fined number of voxels n. The wavelet level for a subvolume of dimensions dx,
dy, dz is calculated as follows:

wavelet level = 0;
cMod = 1;
while (dx/cMod) · (dy/cMod) · (dz/cMod) > n do

wavelet level + +;
cMod = 2 · cMod;

end while
We limit textures to n = 16.7× 106 voxels. A three-dimensional RGBA texture
containing that many voxels has a size of 64MB. Notice, that we have to store
three textures at each node: One high-resolution texture for each of the two
monitors that are connected to a node and one common low-resolution fallback
texture containing the entire data set.



XII

Fig. 4. Mapping information.

6.2 Assembling the Volume

Now that we have buffers containing different regions of the data set at different
levels of resolution, the next step is to render them using the texture mapping
approach discussed in section 5.1. Therefore, data chunks have to be assembled
to form the entire volume. Since buffers represent 3D textures, one can think
of two approaches to assemble them: The first approach maps each subvolume
to its own stack of view-aligned proxy geometry, whose size and position within
object space depends on the particular subvolume. The second approach maps
each subvolume to the same (full screen) stack of view-aligned proxy geometry
but scales and translates each texture so that it appears at the right position
when being mapped. We chose the second approach, because it can easily be
realized with the meta information that comes with each buffer and is provided
by the data structure that implements the wavelet-octree (see Fig. 4).
The following facts are known about each subvolume: vx, vy and vz denote the
buffer’s axis dimensions. As explained above, vx · vy · vz ≤ 16.7 × 106 holds.
Further, the rectangle’s two diagonal points p = (px, py, pz) and q = (qx, qy, qz)
are known. Their coordinates are normalized with respect to the full size of the
data set, so (0, 0, 0) and (1, 1, 1) span the entire volume. p and q allow us to
compute the actual portion of the data set, that is represented by all vx · vy · vz
voxels through dx = qx − px, dy = qy − py and dz = qz − pz. Furthermore, p
provides us the normalized offset within the entire volume with respect to the
origin (0, 0, 0).
Now, the calculation of appropriate scaling factors and translation vectors to
place the texture at the right location in the volume is straight forward.

7 Results

Limiting the size of textures to 16.7×106 voxels, i.e., 64MB for an RGBA texture,
does not seem logical considering the fact that each graphics cards is equipped
with 256MB VRAM. However, each node maintains three textures, all with a
maximum size of 64MB, resulting in a total of 192MB. Another 31.25MB are



XIII

used for the framebuffer of each display supporting a resolution of 2560 × 1600
pixels. Thus, only 32.75MB remain for additional operations. The calculation
shows that a limit of 64MB per texture results in an optimal use of the available
video resources. In fact, even the main memory workload of a node is kept low.
Theoretically, the application only needs to allocate main memory for all three
texture buffers. In practice about twice the amount of memory is needed due
to the internal management of data. If more physical memory was added to the
graphics cards, these observations would scale accordingly, and the visual quality
of the displayed image would further improve. A variety of factors influence the
quality of visualizations:

– Data sets themselves influence quality in that their dimensions partly de-
termine the level-of-detail. Data sets consisting of many slices and therefore
having a large extension in z-direction will not be displayed at the same
detail level as data sets with fewer slices.

– The octree depth has a big influence on the final result. An octree of depth
one partitions the entire volume into eight bricks, resulting in a rather coarse
subdivision for the clipping process. An octree of depth two, however, pro-
duces 64 bricks and increases the quality since frustum clipping is able to
extract smaller subvolumes that better represent the actual portion of data
to be displayed.

– Last but not least, the current view has a strong effect on the detail level.
Zooming-in maps fewer octree bricks to a tile and can therefore increase the
level-of-detail. Rotations and translations have a similar influence.

Fig. 5(a) depicts a typical multi-resolution scene, where each monitor displays at
its own tile-specific wavelet level. Note, that multi-resolution in this case refers
to potentially different wavelet levels between tiles and that the level of detail
within a tile is constant. The data that is visualized is a histology data set of a
human cadaver brain. In order to illustrate the wavelet distribution within the
wall, screens have been color coded in Fig. 5(b). Tiles marked red correspond
to regions of wavelet level 2, meaning that these LCDs display the data set at

(a) (b)

Fig. 5. (a) Multi-resolution rendering of the Toga data set. (b) Wavelet level distribu-
tion. Red corresponds to tiles of level 2 (1/64 = 1.5% of original quality), green to level
1 (1/8 = 12.5% of original quality).



XIV

(a) before refinement (b) after refinement

Fig. 6. Close-up before and after the refinement. The picture shown in the lower image
reveals a lot more structural details after the refinement.

1/64 = 1.5% of the original resolution. Green tiles correspond to areas of wavelet
level 1, i.e., they display 1/8 = 12.5% of the original structure. The close-up in
Fig. 6 illustrates the difference between these two levels for a human mandible
data set. In the upper picture each LCD displays at a wavelet level of 2, which
corresponds to the detail level of the fallback texture. After refinement, the upper
two LCDs switch to wavelet level 1, thereby increasing the level of detail by a
factor of 8 and revealing more anatomical structures.

8 Analysis

The multi-resolution data structure is computed in a two-stage preprocessing
step. In the first stage, a tool called VolCon computes the octree structure de-
scribed in section 3.1, so that an input data set, consisting of a set of files
storing slice information, is stored as a set of files storing octree bricks. In the
second stage, another tool called Compress calculates the wavelet representa-
tion described in section 3.2 based on the results of stage one. Octree depth and
maximum level of wavelet compression are passed as user-defined parameters.
Generally, deeper octrees generate smaller brick files which lead to a crucially
more accurate approximation of the subvolume of a tile. However, increased
clipping accuracy comes cost of more file accesses. Table 1 illustrates the pre-
processing time for various data sets with an octree depth of two and two levels
of wavelet compression on a Core2Duo laptop machine with 2GB RAM.
We measured the time it takes each node to clip and render a scene (after
interaction) using different octree depths for multiple data sets. Furthermore,
we monitored the wavelet level at which each tile displays the scene. A fixed
perspective was used during measurements, i.e., the orientation and zoom level
remained unchanged. The results are depicted in Fig. 7. Fig. 7(a) shows that
the average time it takes to clip and render a scene decreases with increasing
octree depth and thereby increasing number of bricks, except one outlier for
the brain data set. The overhead of loading unnecessary parts of the data set



XV

decreases because clipped subvolumes better match the data set portion, that a
tile has to display. A possible explanation for the outlier is that there is a sweep
point where the overhead caused by additional I/O operations overweighs the
benefits of a better subvolume approximation. Fig. 7(b) shows that at the same
time, with increasing octree depth, the average detail level of the display wall
increases, i.e., the average wavelet level over all fifty tiles gets smaller, because
the available texture memory is used more efficiently to store structural details
of the volume. The detail level of the skull data set remains constant with in-
creasing octree depth because the volume is small enough to fit entirely into
the graphics card’s texture memory. Note, that the real-valued wavelet levels in
Fig. 7(b) result from averaging the discrete values for each tile. Though these
compression levels cannot be achieved in practice, they give a good theoretical
value describing the overall level of detail comprised in all fifty LCD panels. Fur-
ther note, that the partly asymmetric variances depicted in Fig. 7(b) are due to
the fact that the percentage of voxels scales non-linearly with the wavelet level,
i.e., the level of detail comprised at level i is 1/8th of level i − 1. In general,
both the average rendering time and the level of detail are positively affected by
a deeper octree. Our studies show that an octree depth of four in most cases is
sufficient to guarantee almost interactive behavior when working with data sets.
In earlier experiments we investigated the data structure’s capabilities when
accessing volume data for a non-distributed application [35]. Fig. 8 compares a
system using the octree-wavelet data structure to a system that uses neither spa-
tial subdivision nor a multi-resolution representation. The unoptimized system
loads the entire data by directly accessing a set of files storing slice information,
i.e., slices are loaded sequentially into main memory. Fig. 8(a) compares the time
it takes to load the entire mandible data set slice-wise into RAM to the time it
takes to load at different wavelet levels at a fixed octree depth of three. Though
the time difference observed for the system using the octree-wavelet structure
is marginal between wavelet levels, loading is less than 7% of the average time
measured to load the entire cross-sectional data.
Fig. 8(b) illustrates the influence of octree depth on the loading time for the
skull data set. It can be observed that loading takes longer with increasing oc-
tree depth, which is due to the increased number of I/O operations that have
to be performed and that are generally considered to be slow. This pattern also
holds for various wavelet levels.
The results of Fig. 8(b) and Fig. 7(a) seem contradictory. Whereas a higher oc-
tree depth leads to a better approximation of subvolumes during frustum clipping

Data Set Dimensions (x× y × z) Size(MB) VolCon Compress

Skull 256× 256× 113 28.25 0m 2.5s 0m 2.7s
Mandible 1024× 1024× 374 1496 2m 17.2s 4m 2.5s
Toga Brain 1024× 1024× 753 3012 5m 9.9s 9m 45.8s

Table 1. Data set characteristics and preprocessing times for octree depth 2 (64 bricks)
and two levels of wavelet compression.



XVI

(a)

(b)

Fig. 7. (a) Average time it takes to perform frustum clipping and volume assembling.
(b) Average percentage of original voxels being displayed (including average wavelet
level).

and reduces the amount of data that has to be loaded, the increased number of
file operations works against this effect. However, the benefits of having a smaller
clipping volume overweigh the negative effect of additional I/O operations.

9 Discussion

According to Molnar’s [33] classification of distributed rendering algorithms the
system presented in this paper implements a static sort-first algorithm. A gen-
eral advantage of the sort-first strategy is the fact that communication overhead
and network traffic are kept low. This is an important characteristic for the vi-
sualization of large-sized data sets because it prevents the network from being a
performance bottleneck.
The data structure employed in this paper including the multi-resolution ap-
proach resembles a scenegraph-based system [1]. Scenegraphs also perform frus-
tum culling in order to reduce scene complexity and they implement LOD tech-
niques that often estimate an object’s level of detail based on its distance to



XVII

(a)

(b)

Fig. 8. (a) Loading time vs. wavelet level. (b) Loading time vs. octree height.

the viewing plane. However, scenegraphs are generally oriented towards geo-
metric data and not so much suited for managing volumetric data sets. To our
knowledge, no scenegraph-based system running on a distributed display cluster
exploits resources for direct volume rendering with the efficiency of the technique
we presented in this paper.
Note, that 3D texture mapping results in uniform sampling along the viewing
ray. If one wants to sample adaptively, for example based on the distance to the
eye point, this can be achieved by raycasting the volume (see section 5.1).
The algorithm we presented scales with the processing power and size of the
display system. The higher the number of tiles the more compute nodes are re-
quired. If the number of compute nodes increases the subvolumes get smaller,
because the relative area covered by a monitor decreases. As a consequence, the
quality of visualizations improves, since the same amount of resources is used to
render smaller subvolumes. Likewise, if the amount of video memory increases,
the buffer sizes can be adapted in order to store more detail information. Instead
of allocating 64MB for texture objects, larger memory blocks would improve the
average wavelet level of tiles and thus also increase the quality of renderings.



XVIII

So far, when talking about ”increased quality” we refer to a higher resolution.
However, visual quality also encompasses contrast, color, and shading. Thus far,
these topics have been mostly untouched in our work. In the future it might be
interesting to investigate how to incorporate them into our system. For instance,
the human visual system is strongest in the center field of view. Objects in the
periphery are perceived with less detail. In order to account for this, one could
apply a focus+context technique to create areas of high contrast with complex
shading in the center of the tiled display and fuzzy regions in the periphery,
similar to what Baudisch et al. [4] did with the resolution of the focus+context
screen.
Our display wall is a monitor-based display cluster that combines the images of
multiple LCD panels to form one large high-resolution display area. In contrast,
projector-based tiled displays combine the images of a set of computer projec-
tors [26, 22] and can easily exceed the dimensions of monitor-based systems. A
major advantage of projector systems is their ability to form truly seamless dis-
plays [27, 28] while monitor-based systems inherently suffer from monitor bezels
causing discontinuities in visualizations. At the moment our implementation does
not cope with sharp transitions between adjacent tiles due to different resolution
levels. We found that the benefit of perceiving finer details of the data set out-
weighs these slight optical confusions. A user study we conducted [12] showed
that sharp transitions between different levels of resolution on a tiled wall do not
cause as much confusion as mismatches in brightness and color between screens.
The problem of discontinuities caused by monitor bezels requires deeper inves-
tigation in the context of human-computer interaction. Software [25] as well as
hardware dependent solutions [12] have already been proposed.

10 Conclusion

In this paper we presented a method to effectively visualize volumetric data sets
on tiled displays. Our implementation is based on a spatial subdivision scheme
using octrees and incorporates a multi-resolution wavelet representation of the
data. We were able to show that our approach increases the quality of visu-
alizations by individually exploiting the resources of each rendering node. The
system is interactive and allows users to explore data sets nearly in a real-time
fashion. Our implementation was tested on a fifty tile display that is driven by
twenty-five rendering nodes. In the future, we plan to investigate modifications
of our data structure and implement memory caching and prefetching strategies
to minimize I/O latencies. Additionally, we want to exploit further features of
current state-of-the-art GPUs.

11 Acknowledgements

This work was supported by the German Research Foundation (Deutsche For-
schungsgemeinschaft, DFG) as part of the International Graduate School (Inter-
national Research Training Group, IRTG 1131) in Kaiserslautern, Germany. The



XIX

authors would like to thank Stephen F. Jenks and Sung-Jin Kim (University of
California, Irvine), Falko Kuester and Kai-Uwe Doerr (University of California,
San Diego) and the National Science Foundation for their support.

References

1. OpenSG, http://www.opensg.org/
2. Amin, M.B., Grama, A., Singh, V.: Fast volume rendering using an efficient, scal-

able parallel formulation of the shear-warp algorithm. In: PRS ’95: Proceedings of
the IEEE symposium on Parallel rendering. pp. 7–14. ACM, New York, NY, USA
(1995)

3. Bajaj, C., Ihm, I., Park, S., Song, D.: Compression-Based Ray Casting of Very
Large Volume Data in Distributed Environments. In: HPC ’00: Proceedings of
the The Fourth International Conference on High-Performance Computing in the
Asia-Pacific Region-Volume 2. p. 720. IEEE Computer Society, Washington, DC,
USA (2000)

4. Baudisch, P., Good, N., Stewart, P.: Focus plus context screens: combining display
technology with visualization techniques. In: UIST ’01: Proceedings of the 14th
annual ACM symposium on User interface software and technology. pp. 31–40
(2001)

5. Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker, A., Cruz-Neira, C.: VR
Juggler: A Virtual Platform for Virtual Reality Application Development. In: VR
’01: Proceedings of the Virtual Reality 2001 Conference (VR’01). p. 89 (2001)

6. Cabral, B., Cam, N., Foran, J.: Accelerated Volume Rendering and Tomographic
Reconstruction using Texture Mapping Hardware. In: VVS ’94: Proceedings of the
1994 Symposium on Volume Visualization. pp. 91–98. ACM, New York, NY, USA
(1994)

7. Calderbank, A.R., Daubechies, I., Sweldens, W., Yeo, B.L.: Wavelet transforms
that map integers to integers. Appl. Comput. Harmon. Anal. 5(3), 332–369 (1998)

8. CAVELib Application Programmer Interface (api), http://www.mechdyne.com/

integratedSolutions/software/products/CAVELib/CAVELib.htm
9. Chen, H., Clark, D.W., Liu, Z., Wallace, G., Li, K., Chen, Y.: Software Environ-

ments for Cluster-Based Display Systems. In: CCGRID ’01: Proceedings of the
1st International Symposium on Cluster Computing and the Grid. p. 202. IEEE
Computer Society, Washington, DC, USA (2001)

10. Deller, M., Thelen, S., Steffen, D., Olech, P., Ebert, A., J.Malburg, Meyer, J.:
A Highly Scalable Rendering Framework for Arbitrary Display and Display-in-
Display Configurations. In: Proceedings of the 2009 International Conference on
Computer Graphics and Virtual Reality, CGVR’09 (2009)

11. Doerr, K.U., Kuester, F.: http://vis.ucsd.edu/~cglx/
12. Ebert, A., Thelen, S., Olech, P.S., Meyer, J., Hagen, H.: Tiled++: An Enhanced

Tiled Hi-Res Display Wall. IEEE Transactions on Visualization and Computer
Graphics 16(1), 120–132 (2010)

13. Elvins, T.T.: Volume Rendering on a Distributed Memory Parallel Computer. In:
VIS ’92: Proceedings of the 3rd Conference on Visualization ’92. pp. 93–98. IEEE
Computer Society Press, Los Alamitos, CA, USA (1992)

14. Garcia, A., Shen, H.W.: An Interleaved Parallel Volume Renderer with PC-clusters.
In: EGPGV ’02: Proceedings of the Fourth Eurographics Workshop on Parallel
Graphics and Visualization. pp. 51–59. Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland (2002)



XX

15. The Geowall2., http://www.evl.uic.edu/cavern/optiputer/geowall2.html
16. Heirich, A., Moll, L.: Scalable Distributed Visualization using off-the-shelf Com-

ponents. In: PVGS ’99: Proceedings of the 1999 IEEE Symposium on Parallel
Visualization and Graphics. pp. 55–59. IEEE Computer Society, Washington, DC,
USA (1999)

17. Humphreys, G., Houston, M., Ng, R., Frank, R., Ahern, S., Kirchner, P.D.,
Klosowski, J.T.: Chromium: A Stream-Processing Framework for Interactive Ren-
dering on Clusters. ACM Trans. Graph. 21(3), 693–702 (2002)

18. KIST Imaging Media Research: IMRC Wiki: The NAVER Framework, http://
www.imrc.kist.re.kr/wiki/NAVER_Framework

19. Kruger, J., Westermann, R.: Acceleration Techniques for GPU-based Volume Ren-
dering. In: VIS ’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03).
p. 38. IEEE Computer Society, Washington, DC, USA (2003)

20. LaMar, E., Hamann, B., Joy, K.I.: Multiresolution Techniques for Interactive
Texture-Based Volume Visualization. In: VIS ’99: Proceedings of the Conference
on Visualization ’99. pp. 355–361. IEEE Computer Society Press, Los Alamitos,
CA, USA (1999)

21. Levoy, M.: Efficient Ray Tracing of Volume Data. ACM Trans. Graph. 9(3), 245–
261 (1990)

22. Li, C., Lin, H., Shi, J.: A Survey of Multi-Projector Tiled Display Wall Construc-
tion. In: ICIG ’04: Proceedings of the Third International Conference on Image and
Graphics. pp. 452–455. IEEE Computer Society, Washington, DC, USA (2004)

23. Lombeyda, S., Moll, L., Shand, M., Breen, D., Heirich, A.: Scalable Interactive
Volume Rendering using off-the-shelf Components. In: PVG ’01: Proceedings of
the IEEE 2001 Symposium on Parallel and large-data Visualization and Graphics.
pp. 115–121. IEEE Press, Piscataway, NJ, USA (2001)

24. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface con-
struction algorithm. SIGGRAPH Comput. Graph. 21(4), 163–169 (1987)

25. Mackinlay, J.D., Heer, J.: Wideband displays: mitigating multiple monitor seams.
In: CHI ’04: CHI ’04 extended abstracts on Human factors in computing systems.
pp. 1521–1524. ACM, New York, NY, USA (2004)

26. Majumder, A., Brown, M.S.: Practical Multi-projector Display Design. A. K. Pe-
ters, Ltd., Natick, MA, USA (2007)

27. Majumder, A., He, Z., Towles, H., Welch, G.: Achieving color uniformity across
multi-projector displays. In: VIS ’00: Proceedings of the conference on Visualization
’00. pp. 117–124. IEEE Computer Society Press, Los Alamitos, CA, USA (2000)

28. Majumder, A., Stevens, R.: Perceptual photometric seamlessness in projection-
based tiled displays. ACM Trans. Graph. 24(1), 118–139 (2005)

29. Max, N.: Optical Models for Direct Volume Rendering. IEEE Transactions on
Visualization and Computer Graphics 1(2), 99–108 (1995)

30. Meyer, J., Borg, R., Hamann, B., Joy, K., Olsen, A.: Network-Based Rendering
Techniques for Large-Scale Volume Data Sets. In: Farin, G., Hamann, B. and
Hagen, H., eds., Hierarchical and Geometrical Methods in Scientific Visualization.
pp. 283–296. Springer-Verlag, Heidelberg, Germany (2002)

31. Meyer, J.: Interactive Visualization of Medical and Biological Data Sets. Ph.D.
thesis, University of Kaiserslautern (1999)

32. Meyer, J., Gelder, S., Heiming, C., Hagen, H.: Interactive Rendering - A Time-
Based Approach. In: SIAM Conference on Geometric Design (1997)

33. Molnar, S., Cox, M., Ellsworth, D., Fuchs, H.: A Sorting Classification of Parallel
Rendering. Tech. rep., Chapel Hill, NC, USA (1994)



XXI

34. National Library of Medicine: The Visible Human Project, http://www.nlm.nih.
gov/research/visible/visible_human.html

35. Nguyen, H.T.: Large-scale Volume Rendering using Multi-resolution Wavelets,
Subdivision, and Multi-dimensional Transfer Functions. Ph.D. thesis, University
of California, Irvine (2008)

36. Ni, T., Schmidt, G.S., Staadt, O.G., Ball, R., May, R.: A Survey of Large High-
Resolution Display Technologies, Techniques, and Applications. In: VR ’06: Pro-
ceedings of the IEEE Conference on Virtual Reality. p. 31. IEEE Computer Society,
Washington, DC, USA (2006)

37. Palmer, M.E., Totty, B., Taylor, S.: Ray Casting on Shared-Memory Architectures:
Memory-Hierarchy Considerations in Volume Rendering. IEEE Concurrency 6(1),
20–35 (1998)

38. Plate, J., Tirtasana, M., Carmona, R., Fröhlich, B.: Octreemizer: a hierarchical
approach for interactive roaming through very large volumes. In: VISSYM ’02:
Proceedings of the Symposium on Data Visualisation 2002. pp. 53–ff. Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland (2002)

39. Raffin, B., Soares, L.: PC Clusters for Virtual Reality. In: VR ’06: Proceedings of
the IEEE Conference on Virtual Reality. pp. 215–222. IEEE Computer Society,
Washington, DC, USA (2006)

40. Reiners, D.: OpenSG: A Scene Graph System for Flexible and Efficient Realtime
Rendering for Virtual and Augmented Reality Applications. Ph.D. thesis, Technis-
che Universität Darmstadt (2002)

41. Rezk-Salama, C., Engel, K., Bauer, M., Greiner, G., Ertl, T.: Interactive volume
on standard PC graphics hardware using multi-textures and multi-stage rasteri-
zation. In: HWWS ’00: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
workshop on Graphics hardware. pp. 109–118. ACM, New York, NY, USA (2000)

42. Roettger, S., Guthe, S., Weiskopf, D., Ertl, T., Strasser, W.: Smart hardware-
accelerated Volume Rendering. In: VISSYM ’03: Proceedings of the symposium
on Data visualisation 2003. pp. 231–238. Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland (2003)

43. Rusinkiewicz, S., Levoy, M.: Qsplat: a multiresolution point rendering system for
large meshes. In: SIGGRAPH ’00: Proceedings of the 27th annual conference on
Computer graphics and interactive techniques. pp. 343–352. ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA (2000)

44. Schaeffer, B., Goudeseune, C.: Syzygy: Native PC Cluster VR. In: VR ’03:Pro-
ceedings of the IEEE Virtual Reality 2003. p. 15 (2003)

45. Schwarz, N.: Distributed Volume Rendering of Very Large Data on High-Resolution
Scalable Displays. Master’s thesis, University of Illinois at Chicago (2007)

46. Schwarz, N., Venkataraman, S., Renambot, L., Krishnaprasad, N., Vishwanath,
V., Leigh, J., Johnson, A., Kent, G., Nayak, A.: Vol-a-Tile - A Tool for Interactive
Exploration of Large Volumetric Data on Scalable Tiled Displays. In: VIS ’04:
Proceedings of the Conference on Visualization ’04. p. 598.19. IEEE Computer
Society, Washington, DC, USA (2004)

47. Soares, L.P., Zuffo, M.K.: JINX: an X3D browser for VR immersive simulation
based on clusters of commodity computers. In: Web3D ’04: Proceedings of the
Ninth International Conference on 3D Web Technology. pp. 79–86 (2004)

48. Weiler, M., Westermann, R., Hansen, C., Zimmermann, K., Ertl, T.: Level-of-
Detail Volume Rendering via 3D Textures. In: VVS ’00: Proceedings of the 2000
IEEE Symposium on Volume Visualization. pp. 7–13. ACM, New York, NY, USA
(2000)



XXII

49. Westover, L.: Interactive Volume Rendering. In: VVS ’89: Proceedings of the 1989
Chapel Hill workshop on Volume visualization. pp. 9–16. ACM, New York, NY,
USA (1989)

50. Westover, L.: Footprint Evaluation for Volume Rendering. In: SIGGRAPH ’90:
Proceedings of the 17th annual conference on Computer graphics and interactive
techniques. pp. 367–376. ACM, New York, NY, USA (1990)

51. Wilson, O., VanGelder, A., Wilhelms, J.: Direct Volume Rendering via 3D Tex-
tures. Tech. rep., Santa Cruz, CA, USA (1994)


