
User-centered Design & Business Process Modeling:
Cross Road in Rapid Prototyping Tools

Noi Sukaviriya1, VibhaSinha2,
Thejaswini Ramachandra3, Senthil Mani2, and Markus Stolze1

1 IBM TJ Watson Research Center, Hawthorne, NY

2 IBM India Research lab, Delhi, India
3 IBM Software Group, Bangalore, India

{noi, mgstolze}@us.ibm.com
{vibha.sinha, thejaswini, sentmani}@in.ibm.com

Abstract. Fast production of a solution is a necessity in the world of
competitive IT consulting business today. In engagements where early user
interface design mock-ups are needed to visualize proposed business processes,
the need to quickly create UI becomes prominent very early in the process. Our
work aims to speed up the UI design process, enabling rapid creation of low-
fidelity UI design with traditional user-centered design thinking but different
tooling concepts. This paper explains the approach and the rationale behind our
model and tools. One key focal point is in leveraging business process models
as a starting point of the UI design process. The other focal point is on using a
model-driven approach with designer-centered tools to eliminate some design
overheads, to help manage a large design space, and to cope with changes in
requirements. We used examples from a real business engagement to derive
and strengthen this work.

Keywords: User-centered Design Process, UI Design, Model-driven User
Interface, Low-fidelity UI Tools

1 Problem Statements and Context

In the world where competition for business is severe, we are in need for better
tooling to support the solution design process. One such design activity is the user-
centered design process. Whilst user observations and interviews are essential part of
the process, these activities are undoubtedly irreplaceable by IT tools. However,
some other parts of the user-centered design process – in particular coming up with
low-fidelity UI mock-ups in the early design phase – is still lacking by way of
appropriate tools. Many popular tools designers use today such as Adobe Illustrator,
Adobe Photoshop, or Microsoft PowerPoint, were developed for other purposes such
as drawings and presentations. They support high-fidelity drawings in nature and
require high-fidelity efforts to produce low-fidelity mock-ups. This class of tools also
lacks support for information structure and design management, hence dealing with
requirement changes throughout a project is rather painstaking. Another class of

tools such as Macromedia Dreamweaver popular for creating web-based interfaces
has more support on data connections and back end services, but the tooling itself is
yet another high-fidelity tool. Some research tools were explored such as SILK [1]
and DENIM [2] for capturing hand sketches low-fidelity UI and navigation structure.
However, the outputs of these tools are not sufficiently organized visually, hence are
not practical for business practices. None of these tools mentioned allow a quick way
to come up with low-fidelity mock-ups with support for proper alignment and visual
organization.

Many people often associate low-fidelity mock-ups with low-cost, hand-drawn
interfaces. While paper and pencil are the most used tools, designers use other tools
in conjunction [3]. Our preliminary interviews with several user-centered designers
revealed that hand-drawn sketches were not used when they presented their UI mock-
ups. They always start out with hand sketching but that typically lasted shortly.
Some mentioned that their hand-drawn sketches did not look organized enough. But
most agreed that it would take an even larger effort to use hand-drawn sketches
including re-drawing repeatedly and scanning paper sketches. Needless to say that
maintaining hand-drawn sketch changes even in the early design phase for a large
project is far from viable. There’s a level of visual organization and alignments,
implicitly required in presenting UI design ideas in the early design phase, especially
in information intensive applications. Without sufficient visual organization, the
review process will suffer. All of the designers we interviewed commonly use high-
fidelity tools mentioned above to create mock-ups that look low in fidelity.

In IT consulting practices, many business engagements nowadays often start with
business process modeling – be it for an entirely new business process or
transforming an old process to a new and improved one. Within our company, while
Microsoft Visio is still the most popular tool for business process modeling, many
consultants now have switched to use an IBM software product called Websphere
Business Modeler (WBM.) In this kind of engagements, business analysts use WBM
to draw business process diagrams, which are then used as a way to propose and have
the customers approve the work. Prompt demand for low-fidelity UI mock-ups is
three-fold in such engagements. First is an earlier need even before the UCD process
begins. Low-fidelity UI designs and storyboards are commonly used as a means to
visualize how a business process might work. Visualization of connected boxes as
usually diagrammed in a business model has limitations; they do not give people a
good grasp of a more tangible understanding of the process. Secondly, once the work
is approved, low-fidelity user interface mock-ups are needed as an instrument for
discussing detailed system design and requirements. Throughout the early design
phase, business analysts, subject matter experts, architects, and UCD designers
gradually and repeatedly discuss over different parts of the UI design to comb out
detailed requirements, conflicts of understanding, and realization of the need for
further investigations. The UI design repeatedly changes over the course of this
activity. The essence of using low-fidelity mock-ups as a way to share the
understanding of a solution is monumental in our experience. Lastly, once the design
starts to firm up, user-centered designers review low-fidelity UI mock-ups with the
users for early design feedback. This has to be done as quickly as possible before
turning the design into high-fidelity as the development team is often ready and
waiting for inputs at this stage.

The needs for UI mock-ups early in the design phase do not require high fidelity
really. That is, not all buttons have to be in the right place, not all UI components
have to be in their final locations. The mock-ups do not need finished styles and look.
The mock-ups are used for the purpose of understanding the process. For business
executives who view the UI with a business process, the low-fidelity mock-ups
merely gives them another, yet very powerful, perspective to the process flow and
interactions between people in the process. For business analysts and subject matter
experts (SMEs), low-fidelity UIs are just a matter of making sure the required
business functions are supported and information is presented with the proper
semantics. For the end users, designers use low-fidelity UI mock-ups to solicit their
feedback. Designers focus on whether the users can understand the information
presented, whether they can perceive what needs to be done, whether some
information is missing, and whether certain information is not necessary. We do not
want to present high-fidelity UI design to these various reviewers as they may be
caught in unnecessary cosmetic discussions [4.]

We hope to have convinced the readers at this point of the increasing demand for
quick low-fidelity UI mock-ups and their business contributions early in the design
process. Lack of proper tooling support for quick UI sketches that can change
frequently and rapidly would enhance the requirement gathering process. Our focus
is on a fast UI mock up tool that leverages business process models that helps
maintain the UCD perspectives. We also focus on helping designers manage a large
design space. Our other goal not emphasized in this paper is to support the end-to-end
UI design process from low fidelity to high fidelity design to UI code generation.
This latter endeavor requires a clean separation of concerns from people with different
skill sets, i.e. UCD designers and developers, as moving from design to development
increasingly adds technical complexity. Our ultimate goal is to encompass within our
model and tools sufficient support for low fidelity design thinking and management,
as well as the high fidelity UI production process while maintaining the overall
usability of the tools.

2 Related Work

Recent related research with a similar goal to our work of providing UCD support is
in by Campos and Nunes in [5]. In this work, they built a user-centered tool for rapid
prototyping using the notations for abstract prototypes developed by Constantine [6].
Their focus is on using interaction patterns to fill in design blocks while our work fills
in design blocks with connections to business data elements, users’ read/write access
to information as restricted by the business process, and UI related semantics called
upon by the designer.

Automatic generation of user interfaces dated back to the early 90’s. In [7], a
comprehensive notation for expressing the quality of data attributes was used. The
automatic generation effort in this work attempted to lay out page detail as well as a
page’s grouping and semantic structure; the latter task is proved to be quite easy for
an expert designer to do but harder for a machine. While the work in [7] eliminated
the tediousness of repeatedly laying out component in detail, the entangled

complexity of trying to solve semantic layout problem outweighed the benefits. A
smaller piece of work in [8] is much more practical and use a similar technique as
deployed by our work here of laying out a small number of components piecemeal.

There has been related research on generating user interfaces from task-based
models. The work by Paterno in a series of publications [9, 10, 11] focused on a tool
for modeling tasks and automatically generating user interfaces from high-level
specification and from analyzing task structures. The task model is device
independent therefore can automatically generate to multiple platforms [10].
Venderdonkt in [12] does semi-automatic generations through Automatic Interaction
Objects structure. Our work uses the business task model as the input into the design
process. We are using business task as requirements but currently are not using it to
the full extent in helping generating the UI. We find that large enterprises have rather
complex workflow and work context, and only small portion of this complexity is
captured in business process model. User-centered designers still depend a great deal
on closing the knowledge gap through business requirements and user observations to
be able to properly complete their work.

Last but not least, a company called iRise [13] of which products center around
simulating UI design and visualizing IT solutions early in the design phase. Their
products are capable of generating rather attractive UI. Our work shared a common
goal of the ability to visualize IT solution early. However, our work aims also at
transporting the low-fidelity mock-ups into high-fidelity as well. Our low-fidelity
mock-ups are executable user interface and can be beyond presentation materials.

3 Our Approach

In this section, we will walk the readers through our end-to-end approach. We start
from a business model (Section 2.1) then transform it into various views in our user-
centered the Human Interactions (HI) perspective (Section 2.2). These views are
designed to provide different aspects of user-centric information harvested from a
business process. The views are also designed as places upon which a design such as
pages and grouping of information are built. Section 2.3 describes how design pages
are roughly laid out and filled with some automation help. Section 2.4 describes the
user interface generation and illustrates the outputs.

3.1 Business Model as a Starting Point

Our starting point is, but not necessarily always, a business process model. Though
there are several process notations used in the industry [14, 15], we find the basic
information in business processes having to do with “who” will do which “task”
“when” in the business process, the sequence of business tasks, and what are the
inputs and outputs of a task, to be the most useful set of information for starting a user
interface design. This set of information interestingly shared some characteristics
with the user task model commonly used as a starting point for user-centered design
process [16]. Let’s put aside for later, if it occurs in your mind, whether business
modeling and user task modeling, if done in the same tools, would yield the same

“task model.” In our approach, we gladly take the business process as is and turn it
into perspectives that are more in tune with the user-centered design thinking. Before
we embark into further detail, let’s look at an example of an invoice-to-cash business
process in Figure 1. Please note here that the complete invoice-to-cash process is
rather large consisting of several process diagrams. We only reveal a snippet of the
process to illustrate the examples in this paper. For confidentiality reasons, we will
not reveal much further information on the entire model.

Fig. 1. A snippet of the Invoice to Cash business process shown in the Process Editor in IBM
Websphere Business Modeler 6.0.

From Figure 1, we want to point out information that is essential for understanding
the following steps in our approach. Notice the “Cash Collection” task at the leftmost
of the diagram. A user role “Cash Collector” is identified below the task. The cash
collection task, as we learned from SMEs and user observations, typically involves
the user calling customers based on “transactions,” which is one type of input to the
task. Another type of input is “collection task” – a group of transactions
recommended to Cash Collector for collection. Documents that flow between tasks
are referred to in this paper as “information artifacts.” Attributes of each artifact in
this model and their data types can be defined through other editors in WBM. The
directions of arrows indicate the directions of the process flow. Cylinders denote
repositories in which information artifacts in various stages are stored.

3.2 Transformation into Human Interaction Perspective

The next step in our approach is converting the business process model into the HI
perspective to give designers a schematic summary of the process. There are 4 views
in the HI perspective:
• “User role – Artifacts” – shows all information artifacts needed per user role
• “Artifacts – User role” – shows per each artifact user roles with access to it

• “User role – Task” – shows business tasks required for each user role
• “User role – Design”– shows UI design pages that have been defined for each

user role. This view has empty content initially.

Fig. 2. The “User role – Artifact” View

Figure 2 illustrates the “User role – Artifact” view as initially populated from the
business model illustrated in Figure 1. The view centers on user roles; it shows all the
artifacts that each role requires for performing their tasks extracted from inputs to
each business task. From the design point of view, this summarizes part of the design
scope – how many user roles am I designing for? It also gives a sub-scope for each
user – what type of information, from business perspectives, is needed by each user
role. Since our tool is implemented on an Eclipse-based platform, we use a tree-like
structure to present the hierarchical relationships of user roles and artifacts in the
Eclipse style. The underlying information model that supports the 4 views is not quite
so hierarchical but rather with many interconnections. We made efforts to conceal the
UML2 model behind the scene and at the same time conform to standard views in the
Eclipse environment.

In Figure 2, notice the two types of artifacts. The “Business Artifact” denotes
information artifacts that flow from one task to another. The “Contextual Artifact”
denotes artifacts that are inputs or outputs to but do not flow across business tasks.
We use this information to guesstimate the importance of an artifact. By assuming
that if an artifact flows from one task to the next, and often from one user role to
another, it must be significant. This is shared information and is often designed with
consistency among user roles. Any artifact that does not flow must be contextual and
is used only in a particular task context. The model for the two categories of artifacts
are actually similar, the separation is purely to provide designers with a cue on which
artifacts might need more careful treatment across user roles. When selecting an
artifact from the tree on the left, the attributes of the artifact is shown in an attribute
editor shown on the right in Figure 2. We will discuss the use of the attribute editor
with the next view.

Complimentary to the “User role – Artifact” view is the “Artifact – User Role”
view illustrated in Figure 3. In this view, each artifact is shown with a list of user

roles that require access to it. The view is designed to help designers with a concrete
understanding of shared artifacts. Knowing that an artifact is used by multiple user
roles, designers may and often opt to design similar interfaces to the same artifact,
unless dictated otherwise by requirements or by their knowledge of the user tasks.

Fig. 3. The “Artifact – User Role” view

The “Artifact – User Role” view is designed to expose business requirements on
read/write access to artifacts. This is derived from the business model; if an artifact
flows in and out of a business task, we assume the user must update it in the task.
Notice in Figure 3 that the Cash Collector has “read/write” access to the
“Transaction” and “Collection Tasks” artifacts. For example, the “Cash Collector”
user role has a read/write “master” copy of the “Transaction” artifact. Any
information refined for the UI in this master copy will govern all partitions of this
artifact when they apply to UI designs. This statement will be made clearer in
Section 2.3 with examples of “data groups,” subsets of this master copy organized to
feed into various pages of the UI design.

A user role may have “read/write” and/or “read only” master copies of an artifact.
Read/write means the user can modify the information while “read only” means the
user can only view it. When a user role has both “read/write” and “read only” access,
it means the user cannot always update the information. A common use case is, for
example, a contract may not be modified after it is signed. Being explicit about
read/write access brings attention to the designer on how the UI may show
information artifacts in various stages of the process.

When a master copy is viewed in the attribute editor, the tasks that are applicable to
the access rights are shown in the “For Tasks:” attribute illustrated in Figure 4. Since
read/write access is derived at the artifact level from the business process, through the
attribute editor, the designer can enrich the information by being more specific –
whether a user role needs to see all or part of data elements of an artifact, and whether
the user can update all or part of data elements of the artifact. This indication of
access rights plays an important part of our tool’s automation. We have an automatic
generation capability that uses data elements and their read/write access to initially
call out appropriate UI elements.

The attribute editor also provides the designer with an opportunity to put UI related
information with data elements of an artifact to be used throughout her design. She
can place a user-friendly label for each data element. In this editor, we introduce a
notion of “UI semantic type” which better describes the UI semantics of data
elements. For example, a basic type string may in deed be a “social security number.”
We use UI semantic types to figure out appropriate display format, i.e., a social
security number should be displayed as 222-33-4444. We also use semantic types to
help pick appropriate sample data for the UI mock-ups. Figure 4 illustrates what the
designer may have done in the attribute editor to enrich the “Transaction” artifact.

Fig. 4. Attributes of the Transaction artifact shown in the Attribute Editor after modifications.

Fig. 5. The “User role – Task” view

The “User role – Task” view, illustrated in Figure 5, summarizes all business tasks
for each user role. Each business task shows inputs, information needed for the task,
and outputs, the outcomes of the task. Using this view, the designers are informed of
the governing business tasks for each user and should be able to design appropriately.

We will defer the description of the “User role – Design” view to the next section.

3.3 Building Up the Design with Pages and Data Groups

The designer can now start building up the UI design. Imagine this is when a
designer would start sketching out design ideas. Let’s assume after some initial
thoughts, the designer tries out a couple of pages. Figure 6 shows the skeletons of the
2 pages for the Cash Collector user role. While our visual skeletal sketching tool has
not been implemented, here is what the designer might visualize in mind and what
they might do had the tool existed.

 Collection Task List Page Collection Detail Page

Fig. 6. Visual sketches of Cash Collector interface.

The design creates the 2 pages by associating them to the user role Cash Collector
and to the “Cash Collection” task. Figure 7 illustrates the page structure above in the
“User role – Design” view. In this view, pages associated to a particular user role are
specific to that user role. Pages associated with “users” at the top of the user tree are
designed to be reused among multiple user roles. A page consists of “UI fragments,”
which represent visual blocks as shown in Figure 6. A UI fragment is a portion of a
page that displays related UI elements, etc. Partitioning a page into UI fragments is
purely the designer’s discretion.

Next the designer focuses on the information to be placed in various UI fragments
on the pages. Here we introduce a “data group” notion denoting a group of selected
attributes from an artifact’s master copy. A data group singles out data elements
chosen to be displayed in a UI fragment. For example, the collection task list in the
first page will show a list of tasks, each is shown with 5 elements; the list will contain
5 columns, each column corresponds to a data element in the Collection Task artifact.
Figure 8 illustrated the data group for such a list. Notice that in a data group, the
designer has another opportunity to localize UI information, for example, the user-
friendly label may change to fit a small design space. (In this example, the customer
“Location” is re-labeled “Loc” so it occupies a narrower column in the table.) The
resulting UI is shown in Figure 9. Read-write access can be reduced to read-only as
it is more appropriate for a tabular display in this example. Notice that changing from
read only to read/write is not allowed as doing so would violate the restrictions from
the business model. For the data group in Figure 8, the sequence of the selected data
elements is also shuffled to control the column sequence; this is the way the designer
can control the design output.

Fig. 7. Page structure defined in the “User role – Design” view.

Note that designers may add data elements had they found through UCD
investigations that some additional information is needed by the users. Data elements
can be added to the “Master” copy of an artifact hence the addition can be used across
the board and can be included in various data groups. Contextual artifacts can also be
added had the designer found artifacts undocumented in the business model that the
user needs to support a task. When data elements or artifacts are added, discussions
need to happen with business analysts and architects of how appropriate and plausible
to support such information. The result is often a compromise.

We do not allow business artifacts to be added for obvious reasons.

Fig. 8. A data group showing selected attributes for listing Collection Task artifacts.

A page is not completed unless the content is filled. In our tool, the designer may
choose to use high-level components such as a tabular list or a data layout component
and associate data groups to them. The data layout component is one of the most
useful components and can be specified to layout matching UI elements in 1 or
multiple columns. Additional UI components such as a button, a label, etc., can also
be manually added to a UI fragment. Due to space limitation, we will omit detail on
this aspect of the tool.

3.4 Generating the User Interface from the Model

Fig. 9. The generated UI for the collection task list page.

Fig. 10. The generated UI for the collection detail page.

Once pages are sketched out with data groups associated to the appropriate UI
components, designers can generate a user interface to see the results. In addition to
the page layout, the design can also define how pages are linked (not discussed in this
paper.) To generate a UI, the design model is transformed to the execution-oriented
XML model, which is used to further generate the UI pages and connections to a
simulated backend system. Figures 9 and 10 illustrate the resulting interfaces of the 2
pages mentioned in the previous section.

For each page, the XML model contains 4 main types of information:

 Page content: describes the page layout and placements of UI elements.
 Page bindings: lists the bindings from UI elements to the data elements
 Page interactions: defines actions and page transitions

 Styles: low fidelity design assumes default styles. More elaborate styles can
be used when extending the model to generate high fidelity UI

We follow the consumer-provider pattern to link the UI to the backend system that
provides data. The page content is used to generate the consumer code and page
bindings and interactions define the provider. The generated provider mainly consists
of stubs to connect to the backend which can provide actual data and other functions
through any of the following: web services, simple java classes, RMI etc. In the
absence of connections to actual backend systems, the default provider gives dummy
data for different UI elements. The dummy data is generated based on the semantic
types associated with the attributes in the artifact model. We use a test database which
contains sample data for different semantic types.

The Human Interaction (HI) model is captured in both UML2 and XML – UML
mostly for supporting the design tool and XML for generating executable UIs. To
generate a UI, we transform our generic XML model into a platform-specific XML
for IBM Websphere Portlet Factory, a commercial product. The result UI runs on any
application server for JSP pages, or as portlets in Websphere Process Server.

The same model can be extended to generate the high fidelity UI and backend
connections to the actual web services in a production setting. This would require
inputs from the designers for the style information and input from the developers on
what information is passed from one page to another or from UI to backend for
different events. We are currently looking further into supporting this part of the
design process.

4 The Model

The HI model consists of elements that captures information around user roles. Our
modeling concerns cover both the support for the UI design thinking for designers as
much as capturing the actual content of the visual design, navigation, and user
interactions. Many modeling elements are introduced mainly to provide design
analysis perspectives, flexibility in the design, and design management. A number of
elements, many of which are well hidden, provide technical information to produce
support for execution. Following is the list of key concepts and relations in the HI
model:

• User Role : a category of targeted end users
• Business Artifact : semantically related group of information that flows

between business tasks
• Contextual Artifact : semantically related group of information that is an

input of a task
• Data Element : properties of an artifact
• Data Group : selected data elements of one or more artifacts semantically

grouped together for the purpose of displaying related information
• Page : a set of design equivalent to a full screen

• UI Fragment : a portion of a page that is used for displaying related
information and functions

• UI Element : type of UI components rendered on the screen. Basic types
include text, text input, text area, link, drop down list, radio group, check box
group, two way select list, calendar, etc. Complex types include tabs, list
table, data layout component, navigation component, etc.

• User role – Artifact : a relationship showing user roles that need access to
an artifact, an artifact that is used by a user role

• Artifact – Attribute : a relationship between an artifact and its properties
• Data Group – Attribute : a relationship collecting selected data elements
• User Role – Page : A relationship between a user role and pages that are

designed for the role
• Page – UI Fragment : A relationship between a page and its UI fragments.

Each UI fragment in turn contains information on its height, width, and
position on the page.

• UI Element – Data Group : A relationship between data group and a
(composite) UI element. The type of UI element determines how the data
group may dictate the automatic selection of detailed UI elements that fill
out the fragment.

5 Experience and Analysis

Using business models as a starting point for the UI design process is an interesting
endeavor. One observation we had was that some business processes provide a rather
concrete set of business tasks, to the point that designers can almost visualize what
happens on the screen just from viewing a business process model. Some business
processes are rather abstract. In this case, designers need to do a great deal of
research to understand the nature of these abstract business tasks. The example given
in this paper is an example of the latter. As business processes are not and will most
likely never be user task models, we take business models merely as requirements.
Composing user tasks for these business tasks are upon the discretion of the designers.

Our HI perspective and tool are designed such that designers can start the UI
design process with or without a business process. They are also designed such that
information can be added, specifically user roles, artifacts, and attributes. There are
many reasons why this is a viable design. One, business models may not be available
at the time designers need to start. Two, there may be yet ambiguous knowledge at
the start of the design but user-centered designer may have higher confidence in the
accuracy of information they have collected through user observations and could
indeed start mocking up design ideas. Third, we observed that there are often
additional user roles not called upon in the business model. These roles are often in
managerial positions and are not contributing to the operations of the model; they
function as overseers and often require reporting and monitoring capabilities in the UI
design. Currently we allow adding user roles but supporting monitoring types of
interaction designs has not been addressed in the current tooling.

Our approach currently appears very top down. The UI design process is all –
bottom up, top down, and sometimes middle out. We are looking to further support
the design process by allowing designers to flexibly approach a design.

Our work is still on-going. One obvious extension is the visual skeletal sketching
tool and an ability to drag and drop data groups into UI fragments. There are many
other features that we have not addressed in the current tool, for example, shared
templates in the design hierarchy; appropriate style sheets for low fidelity mock up, to
name a few. We plan to take better advantage of business models even deeper such as
using the business flow to help start a UI flow, and using the business task tree as a
place to create user subtasks, etc. We have not validated the tool with the general user
target at this point. Our near future work also includes user validation and more
business cases to refine the tool and research concepts.

References
1. Landay, J. and Myers, B.; Sketching Interfaces: Toward More Human Interface Design.

IEEE Computer, 55-64, March (2001)
2. Lin, J., Thomsen, M., Landay, J.A: Interactive Design: A Visual Language for Sketching

Large and Complex Interactive Designs. Proceedings CHI 2002: ACM Conference on
Human Factors in Computing Systems (2002)

3. Campos, P. and Nunes, N.J,; Practitioner Tools and Workstyles for User-Interface Design.
IEEE Software. January/February 2007 Vol. 24, No. 1 (2007) 73-80

4. Wong, Y.Y.; Rough and Ready Prototypes: Lesson from Graphic Design. Proceedings of
CHI 92: ACM Conference on Human Factors in Computing Systems (1992) 83-84

5. Campos, P.F. and Nunes, N.J.; CanonSketch: a User-Centered Tool for Canonical Abstract
Prototyping. Proceedings of DSV-IS 2004 : International Workshop on Design,
Specification and Verification of Interactive System (2004)

6. Constantine, L.; Canonical Abstract Prototypes for Abstract Visual and Interaction Design.
Proceedings DSV-IS 2003: The International Workshop on Design, Specification and
Verification of Interactive System (2003)

7. Kim, W.C., Foley, J.D.; Providing High-level Control and Expert Assistance in the User
Interface Presentation Design. Proceedings of CHI 93: ACM Conference on Human
Factors in Computing Systems (1993) 430-437

8. de Baar, D., Foley, J.D., Mullet, K.E.; Coupling Application Design and User Interface
Design. Proceedings of CHI 92: ACM Conference on Human Factors in Computing
Systems (1992) 259-266

9. Paterno, F., Mancini, C. Model-based Design of Interactive Applications. ACM
Intelligence Magazine Winter (2000) 26-37.

10. Paterno, F., Santoro, C.; One Model, many Interfaces. Proceedings of 4th International
Conference on Computer-Aided Design of user Interfaces CADUI 2002 (2002) 143-154.

11. Paterno, F.; Tools for Task Modeling: Where We are, Where We are Headed. Proceedings
of International Workshop on TAsk MOdels and DIAgrams for user interface design
TAMODIA 2002 (2002) 10-17.

12. Bouillon, L., Vanderdonckt, J., Chow, K.C.; Flexible Re-engineering of Web Sties.
Proceedings of ACM Conference on Intelligent Interfaces (2004) 132-139

13. http://www.irise.com/
14. http://en.wikipedia.org/wiki/BPMN Business Process Modeling Notation
15. Aalst, W.V.D., Hee, K.V.; Workflow Management: Models, Methods, and Systems. 2nd

edition. The MIT Press (2004)
16. Mayhew, D. The Usability Engineering Lifecycle: A Practitioner’s Handbook for User

Interface Design. 1st Edition. Morgan Kauffmann (1999)

