CodeSaw: A Social Visualization of Distributed
Software Development

Eric Gilbert and Karrie Karahalios

University of Illinois
Urbana-Champaign, Illinois, USA
{egilber2, kkarahal}@cs.uiuc.edu

Abstract. We present CodeSaw, a social visualization of distributed software
development. CodeSaw visualizes a distributed software community from two
important and independent perspectives: code repositories and project communi-
cation. By bringing together both shared artifacts (code) and the talk surrounding
those artifacts (project mail), CodeSaw reveals group dynamics that lie buried
in existing technologies. This paper describes the visualization and its design
process. We apply CodeSaw to a popular open source project, showing how the
visualization reveals group dynamics and individual roles. The paper ends with a
discussion of the results of an online field study with prominent open source de-
velopers. The field study suggests that CodeSaw positively affects communities
and provides incentives to distributed developers. Furthermore, an important de-
sign lesson from the field study leads us to introduce a novel interaction technique
for social visualization called spatial messaging.

1 Introduction

A recent study suggests that nearly 1.1 million software developers in North America
participate in open source development [1]. Major companies and governments have
adopted open source software for critical infrastructure. Projects like Linux, Apache
and Mozilla have propelled the open source “movement” into the popular consciousness
through their media attention.

Open source software development operates quite differently than traditional soft-
ware development. Developers do not meet face to face. There are few schedules. In all
but the most prominent projects, there is no plan. Developers choose what they work
on and how much time they spend working on it. In almost all cases, developers do not
get paid for their work. Traditional mechanisms for coordinating work (e.g., schedules,
plans, face to face meetings) are absent [2], yet studies show that distributed develop-
ment needs coordination more than collocated development [3]. We are just starting to
learn what drives these communities.

At the same time, many open source communities also represent vibrant online
social spaces [4]. Developers have heated emailed exchanges on the project mailing
list about feature additions. Legal issues concerning software licensing get vigorously
discussed. Code is checked out, checked in and reviewed by community leaders in
cycles of iterative development. The code and email archives left behind tell the story.

s
Y marv_sf

i G A S e St S e N 1stweekofJune
—— Interesting files changed

T T v
0 0 gtkoomv.c
util.c
Galm 2004 msn.c
util.h
yahoo_profile.c

Fig. 1. CodeSaw showing Gaim in 2004. Small timelines denote developers, with time progress-
ing from left to right. The top of each axis represents code contributions; the bottom represents
project communication. The user has compared two developers by dragging their timelines into
the investigation area at the top. By hovering, the user sees the top 5 files changed by a developer.

Yet, for the most part, projects leave these archives untapped. The sheer size of the
archives may play a significant role. A typical open source project can generate over
20,000 CVS code checkins. A project mailing list may hold years of conversations,
comprising thousands of individual email messages. While a long history of group dy-
namics lives in these archives, the current state of technology leaves it buried.

In this paper, we present CodeSaw, a social visualization of distributed software
development. CodeSaw combines code repository information with project communi-
cation to visualize a software community from two independent perspectives. By bring-
ing together both shared artifacts (code) and the talk surrounding those artifacts (project
mail), CodeSaw reveals group dynamics that lie buried in existing technologies. Code-
Saw’s interface allows users to compare developers, dig deeper into archives and leave
messages on the visualization itself (Figures 1 and 4). CodeSaw underwent an itera-
tive design process, and we evaluated CodeSaw in an online field study with lead open
source developers.

CodeSaw can benefit both community insiders and outsiders. For outsiders, Code-
Saw provides an opportunity to compare open source projects and dig deeper into par-
ticularly relevant ones. For project developers, the foundation of the community, Code-

Saw offers a chance to reflect on their community and their contributions. Especially
because most open source developers do not get paid for their work, seeing their contri-
butions in the community context can be powerful. One user study participant said that
CodeSaw recalled an important time when she worked closely with another developer
who had left the project. Another told us that CodeSaw made him feel “vindicated.” Our
contributions include: the CodeSaw visualization, an example of how CodeSaw can re-
veal roles in open source projects, the evaluation of CodeSaw and a novel interaction
technique for social visualization called spatial messaging.

2 Related Work

We begin by reviewing related work in distributed software development, our target
audience. Afterward, we review related work in visualization.

Distributed Software Development. Gutwin, et al. interviewed open source develop-
ers to learn more about the mechanisms that underlie their collaboration [5]. In their
study, they found that developers do maintain awareness of one another, and that text-
based communication (e.g., mailing lists and chat systems) is the primary vehicle for
maintaining it. Along the same lines, LaToza’s study claims that 40% of a developer’s
time is devoted to communicating about code [6].

Researchers have also looked at open source communities from an organizational
perspective. Mockus, et al. studied two well-known and successful open source projects,
Apache and Mozilla [2]. In their study, they looked into the assignment of roles in each
community. They found that a core group of about 10 - 15 developers used mailing lists
to coordinate and assign work. Kraut and Streeter stressed the uncertainty, interdepen-
dence and informal communication of software development [7]. Noting the distinct
problems of scale inherent in large software systems, they point out that “many soft-
ware systems ... are very large and far beyond the ability of any individual or small
group to create or even understand in detail.” In the context of maintaining large soft-
ware systems, Singer found that code repositories (e.g., CVS) are important sources of
information for programmers [8].

Our work leverages the lessons of these studies. For example, incorporating Gutwin’s
analysis, CodeSaw uses mailing list email communication in its visualization. CodeSaw
aims to address the need for a visualization that promotes awareness, both social and
work-related, among distributed developers.

Visualization. A number of projects have visualized software projects [9-14]. SeeSys
[9] takes an overall project approach, using a treemap visualization of the source code
file system. SeeSys works particularly well for very large projects that are also relatively
stable. Augur [11] adopts a line-oriented style, presenting one user with an integrated
visual-diff display of CVS records. Augur, as in [12, 13], also gives users a social net-
work view of the code and a temporal view. While Augur shows a line-oriented tempo-
ral history, CodeSaw abstracts that information. CodeSaw shows one year in the life of
a project, and is not tied to any one file. CodeSaw also differs from Augur by adding

spatial messaging and email communication, social features, to its visualization. We
designed CodeSaw as a community mirror, a visualization for an entire group.

Collaborative contribution has been studied outside of the source code context. His-
tory Flow [15] and Authorlines [16] visualize Wikipedia and Usenet postings, respec-
tively. History Flow focuses on the interaction of collaborators on one Wikipedia entry.
Authorlines deals with one user’s posts to Usenet.

CodeSaw builds on the research presented here. CodeSaw seeks to visualize one
year in the life of a project in an informative and intuitive way. Secondly, CodeSaw aims
to present an aesthetically intriguing visualization. An aesthetically intriguing visual-
ization can invite play, an important part of interacting deeply with data [17]. CodeSaw
primarily differs from existing work by visualizing two important and contrasting infor-
mation sources: code repositories and project communication. CodeSaw also presents
a new, social approach to visualizing software development, exemplified by its spatial
messaging and its focus as a community mirror.

3 CodeSaw’s Iterative Design Process

Exploring the Design Space. To establish baseline requirements for CodeSaw, we
conducted informal interviews about the collaborative software process with eight col-
leagues at our university. Five of our colleagues had worked on open source projects
before; the other three had worked on many academic or commercial software projects.

Results. From our interviews we observed the following:

— Developers felt disconnected from the rest of the community. While working hard
on one area of the code base, a developer may have a difficult time appreciating
the work happening in other areas. This observation motivates tools that promote
awareness and sociality inside the community. Such a tool could help confer value
onto developers’ contributions. However, developers noted that one metric alone
would not capture the multiple dimensions of their work.

— Developers used the project mailing list to maintain awareness. This observation
echoes the findings of Kraut and Streeter [7]. Developers used informal communi-
cation on the project mailing list to coordinate work and to get to know one another.

Iterations. CodeSaw evolved from a prototype to its current form over the course of
four major iterations. After the development of each iteration, we conducted formative
evaluations with between three and four software developers. In these sessions, devel-
opers used CodeSaw to explore a typical open source community, thinking aloud during
the process. While it might be useful to present each of the iterations, for the sake of
brevity we condensed this discussion into the following section. Next, we present Code-
Saw’s design rationale as a series of design implications learned from our formative
evaluations.

4 CodeSaw

CodeSaw shows up to eight developers over the course of one year (Figure 1) [18].
Prior work pointed out that most projects have around 10 core developers. Our own
experiments support this. In trials with 20 randomly selected open source projects, not
one had more than 8 core developers.

4.1 Design Rationale

Design Implication: Focus on people. Users of the prototype started by asking simple
social questions. “When was I most active?” “Who writes more code than me?” “What
was going on on the mailing list then?”” From the start it was evident that the prototype
had difficulty answering these simple questions. We noticed that users of the visualiza-
tion asked questions that revolved around people: themselves and the others working
in the periphery. Therefore, CodeSaw focuses first and foremost on the people in the
community.

Social Data Analysis. During formative evaluations, users would often call over other
people to look at their discoveries. In one instance, a user noted that a particular devel-
oper only contributed code during the summer, wondering “if this developer might be
a student.” In another instance, a user commented that with the exception of one devel-
oper, no one had contributed to a particular project during the last week of December.
Talking about the one developer that contributed, the user said, “the holidays must not
have been good, since this guy worked so much.” The developer contributed only code
during this period; the mailing list was silent, implying that the developer worked alone.
We feel that our focus on people directly lead to the social data analysis we observed.

Design Implication: Allow users to explore context. While early CodeSaw iterations
achieved a simplicity that users liked, some felt that it hid too much information. They
asked for a way to uncover some of the information that CodeSaw aggregated or dis-
carded. For example, a number of designers wanted to know on what files the developers
were working, or what phrases the developers were most commonly writing in emails
at the time of a release.

To uncover the email discussion, CodeSaw shows excerpts from the email dialog
on the project mailing list. In the same way that the source files are listed by their
activity levels, email words are sorted by their frequency of appearance in the email
exchange (Figure 2). The choice to include salient words from an email dialog mirrors
the design choices made in the recent Themail [19]. In Themail, Viégas, et al. used
prominent words from email exchanges to paint a portrait of relationships. In addition,
users wondered aloud many times if release dates coincided with spikes in activity. To
provide this contextual information, CodeSaw plots release names along the bottom of
the visualization. This simple addition provides some interesting insights about releases
and milestones.

marv_sf

3rd week of June
Interesting Words In Email

VErSion

gtk
notification
list

Fig. 2. CodeSaw exposes project email dialog to reveal informal communication. This design
choice helps users explore the online social space. In this example, a user has hovered over the
timeline of particular developer to find out what he was saying on the mailing list.

Design Implication: Only visualize essential information. The CodeSaw prototype used
a large portion of the available information in the visualization: number of lines added,
number of lines subtracted, recency of changes, etc. Initially, we hypothesized that code
developers would want such a high level of detail. However, users told us that it exposed
too much information. If they wanted such high levels of detail, users could more easily
go back to the CVS archives and the code itself. Only the information items indicated
as very useful by users made their way into CodeSaw.

Design Implication: Keep it quick and simple. In early iterations, a technical constraint
made users wait for all of the data to load from the database before showing the vi-
sualization. CodeSaw requires a number of complex database queries that can take a
considerable amount of time. Users often felt frustrated with the long time they had to
wait to see anything. Following the lead of Wattenberg in NameVoyager [20], the data
for all eight developers loads in parallel. The small timelines animate from left to right
as data fills into them. Many have commented on the aesthetic beauty of this technique.

CodeSaw presents an easily graspable concept for code contributions: raw number
of code lines added. Although this choice throws away some important information
about a developer’s actions, most designers and developers considered it a fairly ac-
curate representation of work. We made a similar decision with email. CodeSaw goes
with a simple metric, the number of words written in email on the project mailing list.

This simplified representation is very powerful. Most existing tools focus on only
one archive. CodeSaw, on the other hand, incorporates two archives, visualizing the
community from two important and separate perspectives. CodeSaw intuitively made
sense to users, since it did not incorporate complex measurements that were hard to
understand quickly. Unlike our experience with early iterations, many people said that
they would not need to go back to CVS to see the things that CodeSaw told them.

4.2 The Visualization Details

The area under each triangle is calculated as follows. The raw number of code lines
added to a source file by a developer determines the area under the top triangles. The
raw number of words written on the project mailing list determines the area under the
bottom triangles.

The timelines in CodeSaw employ Tufte’s small multiples concept [21]. Small mul-
tiples are representations of information that repeat a common design and scale, inviting
comparison. In Envisioning Information, Tufte writes, “for a wide range of problems
in data presentation, small multiples are the best design solution.” The small timelines
in CodeSaw allow a user to compare developers. By adding any combination of devel-
opers to the detail graph, a user can learn much more about the people involved. While
resembling a Zooming User Interface [22], our technique differs by reserving screen
space for drag-and-drop comparison which affords any combination of timelines in the
investigation.

5 Using CodeSaw To Find Trends And Roles

Having described CodeSaw’s design, we turn now to using CodeSaw to find trends and
roles in an open source community. In the example that follows we applied CodeSaw
to the popular open source project Gaim [23]. Figure 1 shows Gaim broadly, looking
at all core developers over the year 2004. Figure 3, on the other hand, shows a detailed
view of two developers. Both views give us insight into the community.

A glance at Figure 1 tells us that Gaim was very active in 2004. A closer look at
Figure 1, however, also shows us that one or two people do the majority of the work.
We have seen this trend in all 20 open source projects we have analyzed with CodeSaw.
A handful of leaders emerge who keep the project moving.

A closer look at the developers in Figure 3 offers insights into their behavior pat-
terns. Until May, marv_sf wrote only mail (a). In the last few weeks of April, marv_sf
and thekingant write a large amount of mail corresponding to a project release (b).
CodeSaw denotes a project release by a thin gray line. Almost directly after April’s
mail surge, marv_sf starts coding for the first time, backed up by thekingant (c). marv_sf
makes significant contributions to Gaim during these couple of months. Did thekingant
convince marv_sf to code for Gaim?

By July, marv_sf has stopped coding for the most part. He contributes almost no
code for the rest of the year, in fact (d). We can also see that thekingant and marv_sf
tend to peak in project mail at the same times, usually connected to a release (e). In the
first week of October, right before a release, both developers go silent-no code or mail
(f). Did the project go down, or did both developers happen to take a break at the same
time? Do they know each other personally?

Viewing CodeSaw from the outside, we can try to project a story onto the visu-
alization. Did the surge in production by the thekingant inspire marv_sf? Did marv_sf
finish a hard semester at school and suddenly find a lot of time on his hands? However,
CodeSaw is primarily designed as a community mirror. From the outside we can learn
important things about a project, but we do not get the critical context that only the

Fig. 3. A closer look at two core developers in Gaim. Until May, marv_sf writes almost no code
(a). Then, following a surge in mail by both developers (b), marv_sf makes a big code contribution
(c). However, his coding is short-lived (d). thekingant and marv_sf write mail at about the same
time (e), and they take a break during the same week (f). What is their relationship?

community itself can provide. In this respect, we feel that CodeSaw achieves a good
balance between revealing private information to the world and leaving enough of it
ambiguous so as to not invade privacy.

6 Online Field Study

Since we wanted to test CodeSaw “in the wild,” we distributed CodeSaw via the web
to developers around the world. We wanted developers to integrate CodeSaw into their
regular routines and projects, which we could not accomplish in the lab. We recruited by
targeting project mailing lists and lead developers of open source projects. The projects
were all hosted on SourceForge.net. In total, nearly 500 recruitment messages were
sent over the course of one month. Subjects received a $20 gift certificate to an online
retailer for their participation in the study.

Our approach allowed developers to see their own project history visualized. After
interacting with CodeSaw from somewhere between 30 minutes to one hour, partici-
pants completed an online survey. We asked users to complete the survey no more than
one hour after they finished using CodeSaw. Participants were free to continue using
CodeSaw after completing the survey. Because we wanted to do an in situ study, and
the participants were scattered across the world, we could not do interviews. So we re-
placed interviews with the best thing we could: an in-depth online survey. The survey
asked participants about their satisfaction and enjoyment with CodeSaw. In addition,
the survey asked participants about the effectiveness of CodeSaw in visualizing their
community.

6.1 Participants and their projects

Nine participants took part in the evaluation of CodeSaw. Two were female and seven
were male. The subjects ranged in age from 19 to 61. Five came from open source
projects; four belonged to the same project at a research laboratory. The four from the
research laboratory spent about half of their time in the same office and about half at a
distance. They used email on the project mailing list to coordinate work. The research
project had been ongoing for three years at the time of the study. In terms of code, the
project consisted of 801 source code files.

Each of the five open source participants worked on a distinct project. Each project
was among the top 200 most active projects hosted on SourceForge.net [24]. The dura-
tion of the projects ranged from one to four years. In terms of code, the projects ranged
from 376 source files to 1785 source files, with a mean of 980. We chose these projects
because they are representative of open source projects generally.

Each participant had developed software for more than three years. Six of the nine
participants had used CVS for more than three years; the other three participants had
used it for between one and three years.

7 Results

Overall, participants enjoyed using CodeSaw to investigate their project’s history. When
asked, using a S-point Likert scale, how easy CodeSaw was to use, participants re-

10

sponded, on average 1.6 (1 being the most and 5 being the least). Not including watch-
ing a one minute introductory video, 8 of 9 participants said that it took them 10 minutes
or less to get comfortable with CodeSaw, validating our design goal of a visualization
that novices can access quickly. When asked how often they would use CodeSaw if it
were deployed into their community, 7 of 9 said they would use it on a monthly basis
or at release time. Since many projects go through 5 to 20 releases a year, we feel that
this result is positive. Although participants were, for the most part, positive about their
experience with CodeSaw, some pointed out flaws. We address these design lessons in
the section entitled Incorporating Field Study Results.

7.1 Community

Many of the participants reported seeing confirming and surprising aspects of their
community in CodeSaw:

It was interesting to see the contributions over time in an easy graphical inter-
face. I am not sure it was surprising, rather confirming.

It gave me a better idea about what the overall community is doing.
Other participants noted that CodeSaw exposed roles in the community:

It confirmed my long-held suspicions about the community. It was easy to see
who was doing the development and who was doing the commentary. Often
they were not the same people.

It was interesting. At first I felt as though I had not contributed much, but then I
realized that I had a ’surrogate’. I was working closely with another developer
who committed the changes to the code base.

While most participants felt that CodeSaw seemed most relevant to core developers,
one participant felt that CodeSaw would be of better use to outsiders looking in:

As a developer I pretty much knew what was happening, but this would be more
useful to an outsider who wanted to understand the activity of each contributor.

In this case, CodeSaw could be of use to newcomers to a project. They could dis-
cover at a glance who contributes when and to what parts of the code base.

Two participants that worked on projects with less than 5 developers commented on
the loneliness that CodeSaw engendered:

1 feel a bit lonely. It doesn’t reflect the community in a whole. There’s a lot of
people passing by in the forums. People sending bug reports and patches are
not taken into account.

Viewing/visualizing the [anonymous] traffic on the forums and the lists would
be great.

We did not explicitly design for projects with just a few developers. However, in ret-
rospect it seems clear that CodeSaw does not serve these projects well. The participant
behind the first comment above said, “I don’t feel like using it again. As I’'m almost the
only contributor, it doesn’t make much sense.” The Incorporating Field Study Results
section specifically addresses these feelings of loneliness.

7.2 Incentives for Developers
Participants also remarked on the incentives CodeSaw provides to developers:

I'd love to have it in the “activity page” of the project to show the “pulse”. It
might be interesting as an immediate reward for developers. CodeSaw might
show the “most active people” in the community very easily, and it could show
the history of the project (some project leaders might want to erase some parts
of it though). :-)

It made me appreciative of who was doing the work.

When asked how CodeSaw made him feel about his contributions to his project, one
participant simply responded, “Vindicated. :-)”

Two of the participants commented on the potential for CodeSaw as a project man-
agement tool, an application we did not explicitly design for:

For example, if one looks at <username> in 2005, he did no development work
that year. If the project were waiting for him to do something and a milestone
was not met, we could get after him.

I found some surprises - some developers were not attributed as working on
the code I *thought* they were working on in a given period. Others were not
contributing much code during periods when I thought they should have been.

No one worried about privacy or about a boss having this tool. Since only one partic-
ipant described himself as a project manager, we found this result somewhat surprising.

8 Incorporating Field Study Results: Spatial Messaging

In the field study, we learned that CodeSaw helped users better understand their commu-
nities and provided incentives for developers. However, we also learned that CodeSaw
created feelings of loneliness in communities with only a few developers. We view this
as the major design lesson from the field study and hope that designers of other social
visualizations can learn from our experience.

As a response to this lesson, we added spatial messaging to CodeSaw (Figure 4).
Spatial messaging allows users to leave comments on the visualization itself. These
comments are linked to visualization state (i.e., the configuration of timelines in the de-
tail graph). When a user brings the visualization back into the state where the comment
was made, the comment appears. We do not intend to replace traditional communica-
tion channels (e.g., the project mailing list) with spatial messaging. Developers do not
need yet another communication medium to monitor. In fact, we explicitly designed
spatial messaging to supplement existing communication channels. A spatial message
automatically generates mail to the mailing list. The message includes a link that brings
the visualization into the right state.

We designed CodeSaw as a community mirror for developers and users that rarely
meet face to face, yet construct a vibrant online social space. Using spatial messaging,
developers and users can reflect on their shared history in the same place where they
see it. We feel that spatial messaging represents a novel interaction technique for social
visualizations.

12

Fig. 4. CodeSaw incorporates spatial messaging to create a socially activated visualization. A user
hovers over a spatial message, represented as a disk filled with the developer’s color, to reveal its
contents. Spatial messaging allows users to mark up a social visualization in a novel way.

9 Discussion

Overall, users found CodeSaw informative and intuitive. Users enjoyed interacting with
CodeSaw and reported finding both confirming and surprising results. The field study
suggests that CodeSaw positively affects users’ conceptions of their own communities.
In addition, the field study reveals that the visualization serves as a motivation to devel-
opers. This is key in open source communities, since developers volunteer their time.
Based on user comments, we believe that introducing CodeSaw into an open source
project may lead to increased production. We also believe that developers would feel
more valued in the community. However, without a longitudinal study we cannot make
concrete claims. We intend to follow up on this work with quantitative measures in a
longitudinal study.

Since CodeSaw reveals deeply buried, although public, information, we expected
privacy to be a serious concern. The field study showed otherwise. Not a single partici-
pant reported any concerns about privacy. It could turn out that under constant use and
constant observation, CodeSaw would cause users to express privacy concerns.

Because we engaged in four iterations of a user-centered design process, we feel
that CodeSaw reflects the needs of distributed software communities. As suggested by
one of the participants in our field study, we plan to explore options for incorporating
CodeSaw into real open source communities. Sourceforge.net is one option. A longi-

13

tudinal, ecologically-valid user study would provide valuable information to the HCI
community and definitively answer the privacy questions expressed above.

Our field study provides a compelling analysis of the introduction of a social vi-
sualization into real-life open source communities. The field study also motivated the
creation of a novel interaction technique for social visualization, called spatial mes-
saging. Many visualizations revolve around scientific data or highly personal data, like
email or health data. Since the data visualized in CodeSaw lies in a space between the
familiar and the foreign, we believe our field study contributes in an often-overlooked
area of visualization research.

10 Conclusion

We have presented CodeSaw, a social visualization of distributed software development.
CodeSaw visualizes a software community from two unique perspectives: code repos-
itories and project communication. Using two distinct project archives reveals patterns
not available in current technology.

Following an iterative design process, we have explained the rationale behind Code-
Saw as a series of design implications that can be used by other designers. Our online
field study suggests that CodeSaw positively impacts distributed developers’ notions
of community, and that CodeSaw provides incentives for distributed developers. Fol-
lowing a design lesson from our field study, we have also presented a novel interaction
technique for social visualization called spatial messaging. Spatial messaging allows
users to leave comments on the visualization itself.

11 Acknowledgments

We thank the very busy developers in our study for contributing their time to our project.
We also thank the UTUC Social Spaces group for their helpful feedback.

References

1. Orgell, E.: More than 1.1 million developers in north america now working on open source
projects. http://evansdata.com/n2/pr/releases/dps2004.shtml. (2006)

2. Mockus, A., ER., Herbsleb, J.: Two case studies of open source software development:
Apache and mozilla. ACM Trans. Softw. Eng. Methodol. 11(3) (2002) 309-346

3. Herbsleb, J.D., Grinter, R.E.: Splitting the organization and integrating the code: Conway’s
law revisited. In: ICSE °99: Proceedings of the 21st international conference on Software
engineering, Los Alamitos, CA, USA, IEEE Computer Society Press (1999) 85-95

4. SourceForge.net: http://sourceforge.net. (2006)

5. Gutwin, C., Penner, R., Schneider, K.: Group awareness in distributed software develop-
ment. In: CSCW ’04: Proceedings of the 2004 ACM conference on Computer supported
cooperative work, New York, NY, USA, ACM Press (2004) 72-81

6. LaToza, T.D., Venolia, G., DeLine, R.: Maintaining mental models: a study of developer
work habits. In: ICSE ’06: Proceeding of the 28th international conference on Software
engineering, New York, NY, USA, ACM Press (2006) 492-501

14

10.

11.

12.

13.

14.

15.

16.

18.

19.

20.

21.
22.

23.
24.

. Kraut, R.E., Streeter, L.A.: Coordination in software development. Commun. ACM 38(3)

(1995) 69-81

. Singer, J.: Practices of software maintenance. In: ICSM. (1998) 139-145
. Baker, M.J., Eick, S.G.: Space-filling software visualization. Journal of Visual Languages

and Computing (1995) 119 — 133

Eick, S.G., Steffen, J.L., Eric E. Sumner, J.: Seesoft-a tool for visualizing line oriented
software statistics. IEEE Trans. Softw. Eng. 18(11) (1992) 957-968

Froehlich, J., Dourish, P.: Unifying artifacts and activities in a visual tool for distributed
software development teams. In: ICSE ’04: Proceedings of the 26th International Conference
on Software Engineering, Washington, DC, USA, IEEE Computer Society (2004) 387-396
Ducheneaut, N.: Socialization in an open source software community: A socio-technical
analysis. Comput. Supported Coop. Work 14(4) (2005) 323 — 368

Medynskiy, Y.E., Ducheneaut, N., Farahat, A.: Using hybrid networks for the analysis of
online software development communities. In: CHI *06: Proceedings of the SIGCHI con-
ference on Human Factors in computing systems, New York, NY, USA, ACM Press (2006)
513-516

Bernard Kerr, L.T.C., Sweeney, T.: Growing bloom: design of a visualization of project
evolution. In: CHI *06: CHI *06 extended abstracts on Human factors in computing systems,
New York, NY, USA, ACM Press (2006) 93-98

Viégas, F.B., Wattenberg, M., Dave, K.: Studying cooperation and conflict between authors
with history flow visualizations. In: CHI ’04: Proceedings of the SIGCHI conference on
Human factors in computing systems, New York, NY, USA, ACM Press (2004) 575-582
Viégas, F.B., Smith, M.: Newsgroup crowds and authorlines: Visualizing the activity of
individuals in conversational cyberspaces. In: HICSS *04: Proceedings of the Proceedings of
the 37th Annual Hawaii International Conference on System Sciences (HICSS’04) - Track
4, Washington, DC, USA, IEEE Computer Society (2004) 40109.2

. Vande Moere, A.: Form follows data: the symbiosis between design and information visual-

ization. In: CAADfutures. (2005) 167 — 176

Gilbert, E., Karahalios, K.: Lifesource: two cvs visualizations. In: CHI *06: CHI ’06 ex-
tended abstracts on Human factors in computing systems, New York, NY, USA, ACM Press
(2006) 791-796

Viégas, F.B., Golder, S., Donath, J.: Visualizing email content: portraying relationships from
conversational histories. In: CHI *06: Proceedings of the SIGCHI conference on Human
Factors in computing systems, New York, NY, USA, ACM Press (2006) 979-988
Wattenberg, M.: Baby names, visualization, and social data analysis. In: INFOVIS ’05:
Proceedings of the Proceedings of the 2005 IEEE Symposium on Information Visualization,
Washington, DC, USA, IEEE Computer Society (2005) 1

Tufte, E.: The Visual Display of Quantitative Information. Graphics Press (1983)
Bederson, B.B., Hollan, J.D.: Pad++: a zoomable graphical interface system. In: CHI ’95:
Conference companion on Human factors in computing systems, New York, NY, USA, ACM
Press (1995) 23 — 24

Gaim: http://gaim.sourceforge.net. (2006)

SourceForge.net: http://sourceforge.net/top/mostactive.php?type=week. (2006)

