
 The Use of Information Visualization to Support Software
Configuration Management∗

Roberto Therón1, Antonio González1, Francisco J. García1,
Pablo Santos2

1 Departamento de Informática y Automática, Universidad de Salamanca,
Plaza de la Merced s/n. 37008, Salamanca, Spain

{theron, agtorres, fgarcia}@usal.es

2 Códice Software, Edificio Centro, Parque Tecnológico de Boecillo
47151, Valladolid, Spain

psantosl@codicesoftware.com

Abstract. This paper addresses the visualization of the collaboration history in
the development of software items using a simple interactive representation
called Revision Tree. The visualization presents detailed information on a
single software item with the intention of supporting the awareness of the
project managers and developers about the item evolution and the collaboration
taking place on its development. We considered that repositories of Software
Configuration Management tools are the best information source to extract
relevant information dealing with the relationships between the programmers
and software items, as well as information regarding the creation of baselines,
branches and revisions, and useful date and time details for the arrangement of
the development timeline and collaboration representation.

Keywords: Software Configuration Management (SCM), Information visualization,
Focus + context, Time line, Polyfocal display, Interaction, Revision Tree

1 Introduction

The software development process and the collaboration that it involves are difficult
to understand and represent, due to the large number of software items that constitute
a software product. Moreover, the collaboration taking place in the development of
each item is concurrent and may be distributed across several geographical locations.
Software Configuration Management (SCM) controls the evolution of complex
systems [1] taking into consideration the communication at every level of the
organization as well as the changes of code and documentation. To accomplish this
purpose, the tools supporting such a process must provide services for the
management of the component database, enhancing the environment of the
developers, managing concurrency and collaboration, and recording changes

∗ This work was supported by the Education and Science Ministry of Spain under
projects TSI2005-00960 and TIN2006-06313.

2 Roberto Therón et al.

including time, date, which modules were affected, how long the modification took
and information about who did the change.

The IEEE Standard 828-1990 [2] states that “SCM activities include the
identification and establishment of baselines; the review, approval, and control of
changes; the tracking and reporting of such changes; the audits and reviews of the
evolving software product; and the control of interface documentation and project
supplier SCM”. Hence, the importance of SCM repositories as the information source
to extract the collaboration activities taking place during project developments, as
well as key information as the identification and establishment of baselines and
revisions and the tracking of changes including dates and times. However, in spite of
the richness of this data source and decades after the first SCM systems were released,
there is an important lack of mechanisms with which to convey, by means of proper
representations, how the contribution and collaboration of team members occurs in a
particular project.

In recent years, the field of information visualization has played an important role
in providing insight through visual representations combined with interaction
techniques that take advantage of the human eye’s broad bandwidth pathway to the
mind, allowing experts to see, explore, and understand large amounts of information
at once [3]. Traditionally, the software development process has been a subject of
interest for information visualization practitioners. Thus, the software visualization
community is providing excellent results which are being featured in main stream
IDEs. Nevertheless SCM tools can still be enhanced by using highly interactive
visualizations rather than mere “static” representations.

The interactive visual solution we propose in this paper considers both space and
time strategies: the space strategy uses layout and graphic design to pack appropriate
information in one view, while the time strategy uses view transitions to spread
information over multiple views [4]. Additionally, we take into consideration several
techniques to support navigation, interpretation of visual elements and understanding
relationships among items in their full context [5].

There are also many information visualization techniques, each one with its
advantages and disadvantages; the use of a sort of combination to provide a real
solution to end users is very frequently required. Spence [6] and Card et al. [7]
provide excellent surveys of information visualization mechanisms and techniques.
We support our visualization through the use of a grid-based structure, selection,
navigation, filtering and zoom interaction mechanisms, in addition to polyfocal
display, a tree hierarchy (a directed graph) and a time line as visualization techniques.

We considered what is going on in the project in our design, who else is working
on the project, what they are doing, how long they have been working on a revision,
how their work may impact the work of others and the overall framework designed by
Storey in [8] for describing the visualizations of human activities in software
engineering.

This paper is devoted to present the first contribution to the SCM tool
(PlasticSCM) developed by Códice Software (http://www.codicesoftware.com); an
interactive 2D visualization, named Revision Tree, which allows visualizing the
contributions of the team members, through several revisions, baselines and long
periods of time, on the same item or document within the software project. This way,
the rest of the paper is organized as follows: Section 2 reviews some related works

The Use of Information Visualization to Support Software Configuration Management 3

applied to the visualization of software evolution and software visualization
techniques; Section 3 discusses the design of the Revision Tree visualization; Section
4 analyzes a case study in which the results of the Revision Tree are compared with
the ones offered by a 3D version tree present in the current version of PlasticSCM
tool; and, finally, Section 5 discusses the conclusions and future work.

2 Related work

Considerable work has been dedicated to study the software visualization and
information visualization areas. Gracanin [9] states that Software Visualization is “a
discipline that makes use of various forms of imagery to provide insight and
understanding and to reduce complexity of the existing software system under
consideration”. As a consequence, it is important to identify the tasks that will be
performed by the visualization as well as its scope and content, who the audience will
be, what data source is going to be represented, how it will be represented, which
medium will be used for the representation, the forms and techniques that will be used
by the presentation and how the user is going to interact with the visualization.

Although we concentrate on the evolution of individual items and the collaboration
of software teams on its development, in this section we will review some useful ideas
that have been applied in the visual representation of Software Configuration
Management tools repositories.

Xie et al. [10] list a set of questions that can be used to guide the design of
visualizations of SCM tools repositories; for the purposes of this paper, it is relevant
to determine which authors worked on the same file, when a modification was made
and how many authors worked on the release of the system.

Moreover, Eick et al. [11] accurately state that a fundamental problem in
visualizing software changes is to choose effective visual representations or
metaphors and review some of them, as well as some combinations showing different
data perspectives filtered by developer, basic statistics about changes, size of the
changes, activity carry out by developer, etc.

Voinea and Telea [12] support the idea that software configuration management
repositories are valuable for project accounting, development audits and
understanding the evolution of software projects. We strongly agree with these
authors about the richness of software repositories; thus, the effective design of the
repository of SCM tools can provide information about the development process that
is not possible to acquire from any other source and through a well-designed
visualization, it is possible to navigate the repository data and get an insight of what is
going on in the project. The same authors also propose two visualizations for software
management configuration repositories in [13] and [14]. Those proposals
demonstrated that the adequate use of 2D visualizations in conjunction with colors
and textures contribute to the development of powerful multidimensional
visualization solutions.

Gall et. al. [15] developed an interesting approach using 3D representations and
color coding applied to software evolution through the time, thinking over structure
and attribute changes. The attributes are the revision number, item size and

4 Roberto Therón et al.

complexity. This approach visualizes the version and each item attributes every time,
using one color for each attribute.

There are several proposals addressing the representation of temporal spaces using
many different structures. Morris et al. [16] worked with the visualization of temporal
hierarchies plotting research documents along a horizontal track in the time line and
placing related documents according to the hierarchical structure produced by the
clustering phase. Card et al. [17] developed a visualization that allows exploring
hierarchies that change with time by using searches, navigating through a hierarchical
presentation and filtering results with the assistance of a time slider control. Therón
[3] proposed a tree-ring metaphor to represent hierarchical time-based structures and
applied it to browse and discover relationships in the history of computer languages.
Kumar and Garland [18] proposed a solution for the visualization of time-varying
graphs, where the users can slide to different time periods to explore the graph or
discover trends interacting with the presentation.

The visualization presented by Lanza in [19] deals with the visualization of
software attributes throughout the time using an evolution matrix with variable
rectangular-sized boxes inside each cell; the width of the boxes represents the number
of methods and the height the number of attributes in the class. This visualization
method is powerful and could be improved borrowing some ideas about colors and
textures from [15].
At this point, it is relevant to reference the work developed by Koike [20][21], which
describes a representation, called VRCS, that shows the evolution of items from the
repository of the software management configuration tool. On this visualization, each
software item is represented by using two dimensions and the overall visualization
with three dimensions, as illustrated in figure 1. This visualization will be analyzed
further, in the presentation of the case study.

Fig. 1. Software history visualization using 3D presentation for several items

Finally, Perforce (http://www.perforce.com/) is a software configuration management
system that includes a visualization module; a sample of which is displayed in figure
2. The visualization offered by this tool is two dimensional and uses a graph to show
the relationships between baselines, branches and revisions. It	
 features	
 an	
 overview	

+	
 detail	
 approach	
 rather	
 than	
 a	
 more	
 convenient	
 focus	
 +	
 context	
 approach	
 [22]	

and	
 will	
 also	
 be	
 discussed	
 in	
 section	
 4.	

The Use of Information Visualization to Support Software Configuration Management 5

3 Revision Trees: visualization of the collaboration history of software
items

In this section we propose a 2D representation for the collaboration history of
software items. The Revision Tree was designed to visualize the contributions of the
team members through several revisions, baselines and long periods of time, on the
same item or document within the software project. In this context it is important to
consider that the evolution of every software item implicitly holds a temporal
attribute, which is the most important and critical element needed to understand the
software development process of any system. The problem at hand presented several
challenges that were addressed in the proposed visualization: the representation of
large revision trees, where the baselines have several branches and each branch many

Fig. 2. Visualization of the evolution of a software item with Perforce.

item revisions; the navigation through the version tree offering a focus + context
view; support to interactivity to enable the inspection of more than one baseline at a
time, exhibit the collaboration of developers for every baseline and correlate all the
information with the time line. The full evolution is displayed for a complete analysis
in figure 3 (it was turn around due to page constrains), and a piece of this
representation is examined further in figure 4.

At this point, it is important to highlight that we decided to use a grid-based
structure because it provides an intuitive mechanism to visualize the working
relationship between authors and baselines by using the rows to represent the authors
and the columns for the baselines (when changes expand during a number of
baselines, the column is named after that interval of baselines). Moreover, grid and
matrix structures are widely known by developers and the cells can be used as

6 Roberto Therón et al.

containers for the drawing of nodes of the directed graph representing the flow of
revisions for the item.

Figure 3 depicts three sketches of the same revision tree and figure 4 shows a zoom
through a piece of this design in order to better review the details. The first sketch (the
one on the top) exposes the normal vista of the design; it uses variable width columns
to accommodate the revisions in each baseline, the distribution of the rows is uniform,
the first row is used for the baseline numbering, the second row represents the time-
line and includes information about the date and hour of creation of a revision, the
horizontal blue lines with arrows on both ends emphasize an individual day and the
vertical blue lines indicate the end of one day; the dark blue small lines in between the
parallel vertical blue lines point out the absence of work, the rounded rectangular
nodes are used to emphasize the creation of branches and the orange line connecting
the blue ovals outline the main code version. This sketch allows us to appreciate all
the baselines and revisions of the item at a glance, as well as the relationships among
baselines and the hierarchical association between baselines and revisions.

The second and third sketches show the use of the bifocal display expanding the
column of the twelfth baseline and the row corresponding to Borja, while the
information of the other baselines shrinks, keeping in the screen all the versioning
information of the item and allowing us to concentrate on the area in which the item
has more activity; although it is also possible to focus on several points of the
representation at a time using the polyfocal feature of the solution.

An interesting key point of this representation (available on figure 4) is the use of
dark blue small vertical lines to exhibit times when a day has not produced any
changes in the item (as it would usually happen during weekends); this can be seen
for the weekend of 25th and 26th of February, which is a normal situation, but also for
the period between the 2nd and the 7th of March, which may be interesting for the
project manager to observe. This simple approach allows us to discover intuitively
these “non-working” or stable periods. The same approach is used when the period of
stability covers a whole month; in that case, a small, blue circle is used to represent a
stable month in the timeline and the white-gray switching is maintained (this situation
can be seen in figure 3, where April and May produced no changes within baselines
14-22).

Furthermore, the proposal supports more interactivity;, the users can select the
main branch or regular branches of the application as a means of uncluttering
complex revision trees; as a result, the application will bring out all its first level
associations along the presentation, they can also select any node to highlight its
connections. By means of the interaction, the representation can be modified in order
to show the user the exact information he/she wants to see.

One of these interaction techniques in the proposed visualization is a focus +
context technique: the use of variable width columns depending on the number of
revisions in the baselines and the use of bifocal and polyfocal displays. The bifocal
display consists of the capacity of the visualization to expand the rows and columns
intersected in the area of interest; the polyfocal display has the same distortion
behavior but allows focusing on more than one area.

On the other hand, filtering is another useful possibility: it may be interesting to
have the same representation but for a particular period of time, or including only the
information of selected developers.

The Use of Information Visualization to Support Software Configuration Management 7

Fig. 3. Representation proposed for Revision Trees (three different situations depending on the
interaction are shown).

8 Roberto Therón et al.

We recommend reviewing all these design details carefully on figure 4 and use
table 1 for a listing and description of the variables and visual elements in the
representation.

Table 1. Visual elements and variables represented on the Revision Tree visualization

Visual element Description Representation

Authors Names of the developers. Label with the name of the
developer.

Baseline Number of the baselines. It is displayed at the top of the
visualization.

Date It indicates the creation date of branches,
baselines or revisions.

Label with the date. It is
exhibited on the timeline.

Day column It is the graphical space for the representation
of a day having activity in the creation of
branches, baselines or revisions.

A dark blue line with arrows on
both ends.

Time Shows the time when a new branch or revision
has been created in the main branch or any
other.

Label with the time. It is shown
on the timeline.

New main branch Indicates the creation of the main branch. Purple large oval
New branch It shows the creation of a new branch. Yellow large oval
Main branch line It highlights the main branch. orange arrows
Arches Connect the branches and revisions created by

the developer working on the main branch.
Green arches.

Main branch
revisions

Revisions created in the main branch. Blue nodes

Branch line The branch line connects the main branch with
other branches and the revisions within that
branch or between two branches.

Green arrows.

Revision This symbol represents the creation of a new
revision of the software item.

Yellow nodes

Merge A merge occurs when one or more branches
are combined with the branch.

Incoming arrows coming from
other branches into the main
branch.

Idle day It denotes a day without any activity in the
creation of baselines, branches or revisions.

A small vertical blue line in the
timeline, for each day with no
activity.

Idle month This symbol represents an entire month
without any activity in the creation of
baselines, branches or revisions.

A small blue circle is used to
represent a stable month in the
timeline

When assessing the proposed Revision Tree, it becomes evident that it is possible

to obtain a great amount of information at a glance and that a detailed explanation to
discover data of relevance is not required; it is easy to follow up on contributions to
the development of a software item and understand how it has evolved throughout.
This visualization also provides useful information for project managers; they can
become aware of who has been working most in the development of the item, if
someone has quit or been fired from the company, as well as discover if the last
revisions made by that programmer to the item were merged or if there is a merge that
has never been done for any other reason. They can also get information about the
periods with more activity in the component and recognize when the item is stable,
due to the fact that it is not suffering frequent changes. At present, it is possible to get

The Use of Information Visualization to Support Software Configuration Management 9

a lot more information through the careful checking of every visualization detail,
particularly if a large real-life set of data is used.

Fig. 4. Revision Tree layout showing all design features and the use of the bifocal display.

4 Case study: Advantages of the Revision Trees as compared with the
use of 3D revision trees

The development of visual representations using three dimensions has become
popular during the last few years. We used the 2D Revision Tree representation to
visualize a large revision tree and compared the results with the ones produced by
Códice Software’s PlasticSCM and its visualization 3D version tree tool, VRCS and
Perforce. Figure 5 shows the 3D version tree for the same example as the one shown
in figure 3 and a zoom in for the first 11 baselines.

The 3D version tree is eye-catching; it has a line representing the main line of the
development and green arrows showing the merge of revisions. Along with the nodes,
there are labels indicating some information about the baselines and revisions.
Although the representation is visually appealing, it shows a number of drawbacks,
the first one being that it is a static representation: the user can only change the point
of view or choose how far he/she is looking at it (i.e, it is only possible to turn around

10 Roberto Therón et al.

the tree and zoom into a region to get closer to a node or area). When zooming in, the
size of the node increases and it is harder to manipulate the tree and the context is lost
because the visualization lacks a context + focus view, so the user becomes
disoriented; when we zoom out, the tree becomes a 3D shape with no special SCM
meaning. Moreover, even after zooming in, you cannot see all the information
represented due to occlusion; the front nodes hide the other nodes representing
revisions.

Fig. 5. Sample three dimensional version tree produced by PlasticSCM showing the

evolution of an item and a zoom in on the selected area.

Although the 2D revision tree performs better in a large screen, even a small space

such as the one used in figure 3 (1 third of a page in a colored print out) can help the
user to obtain a general idea of what was the evolution of a particular item.

At this point, the work of Ware [23] has been very helpful: he analyzes the use of
3D on information visualization and proposes the use of a 2 1/2D attitude when
designing representations. It basically addresses many of the drawbacks of 3D
visualizations and suggests the use of 3D consciously in combination with 2D for
producing better visualization solutions.

Before going on with our analysis, we will discuss some details VRCS and the
Perforce visualization tool. Our main concerns with the visualizations presented in
[19][20] and illustrated in figure 1 are the lack of a focus + context view, the
navigation through the structure, and how it can behave with the presentation of
complex systems due to the high processor and memory demands of three
dimensional visualizations and occlusions. As we discussed above, the visualization
of large revision histories for one item using the three dimensional version trees has
some limitations. Therefore, the visualization of large repositories with many items
containing lots of baselines and revisions would result in a very large hard to navigate

The Use of Information Visualization to Support Software Configuration Management 11

visualization and probably would not provide, within a short time, the information
required by the user.
Besides, the representation produced by Perforce (figure 2) offers an overview +
detail approach, loosing this way a great amount of screen real state. It shows
information about branching and merges and it is possible to obtain the date and time
of revisions by clicking over the nodes and reviewing the information on the Details
tab on the left panel. However, it does not provide information about the programmers
contributing to the development of the item, how long the developers have been
working on the item, nor in regards to periods without activity; furthermore, it is not
possible to compare two baselines or see the time line at a first sight. In conclusion,
this visualization is static and does not offer interaction options.

Table 2. Comparison of visualization tools for the representation of revision trees.

Questions PlasticSCM VRCS Perforce Revision
Tree

Does the visualization provide a focus +
context view?

 X X

How many developers are participating in
the development of the software item?

 X

Who are the developers contributing to the
evolution?

 X

Who is the programmer with more
contributions to the evolution of the item?

 X

How many baselines constitute the whole
evolution process?

X X X

Does the tool offer information about dates
and times of the creation of baselines and
revisions?

 X X

Is there a revision without been merged after
a long time?

 X X

How long has been the development of the
item?

X X X X

Which baseline has more branches and
revisions?

 X

Which branch has more modification
activity?

 X X

Which is the period of time that does not
show any activity?

 X

Is there a period when the item was stable
and then suddenly started having a lot of
activity?

 X

Is it possible to compare baseline activity? X

The table 2 presents a list of questions to compare the visualization tools discussed

above with our design, showing an X mark when the tool demonstrate evidence of
answering a question within a short time and little effort while visualizing a large
version tree.

Currently, in order to show the validity of our proposal, we have implemented a
prototype that features the main ideas exposed above. An incomplete evolution
corresponding to the first twelve baselines of the software item, used as an example,

12 Roberto Therón et al.

is shown in figure 6. It is easy to realize that Borja has done many contributions on
versions 10, 11 and 12 (it was rotated due to page constrains). Revision 1 pointed out
by the node 4 in the main development line has not been merged, the development of
the item started on February, 23rd and revision no. 11 was reached 15 days later; the
baseline with more branches and revisions is number 12; branches 0162 and 0172 are
tied into the number of revisions. There are two periods of time in which there is no
activity in the item and whose dates are between February 24th - February 27th and
March 1st – March 8th, also, the comparison between the baselines is immediate in
this case, due to the short period of time under consideration.

Fig. 6. Revision tree of the first twelve baselines of the overall evolution example.

The Use of Information Visualization to Support Software Configuration Management 13

The brackets on the figure 6 highlight the use of bifocal display, the row

corresponding to Borja has been amplified as well as the column associated to
baseline 10, to show specific details. This figure also shows the use of a focus +
context view; it allows getting information about specific areas while showing the
general picture.

 We consider that, after doing this comparison, our proposal is a valid
representation for the visualization of revision trees and its complete development
incorporating the features described in this paper as well as others that will result
from its evaluation by users, and which will end in a powerful visualization easy to
use and learn while providing the information needed by the users.

5 Conclusions

Revision Tree provides a focus + context view, a grid structure to which all
programmers are familiar with, a timeline to guide and position users in time and
space and several interaction possibilities to make the information the user needs
available. With this presentation, the user can get many answers about how the
evolution of the item is progressing and the team is always aware about who is
working on the different baselines and revisions.

Whereas the visualization is always visible for all revisions, the users can review
all the baselines and revisions in a very short period of time, therefore, there is no
hidden information or an occlusion.

 The timeline representation is clear, showing the complete time interval since the
item was created, it also supports temporal comparisons and it made the concurrency
of the programmers evident. Besides, the interactivity adds functionality to filter or
focus on specific areas: in synthesis, the two-dimensional visualization offers a clear
and functional presentation.

On the other hand, the three dimensional visualization does not support a focus +
context view and only provides useful information at the detail level; to get the
required information the user has to interact with the system for a long period of time.
It allows the inspection of only one revision at a time, while nodes and labels could
occlude the presentation at a general level.

The visualization presented in this paper shows enough evidence to state that for
the representation of the evolution and collaboration in the development of software
items a two dimensional representation offering several interaction possibilities can
result in a powerful solution for the visualization of multidimensional data.

Future improvements will consider the improvement of interaction techniques, the
use of linked views for the visualization of the directory structure of baselines and the
comparison of several baseline structures. Furthermore, a usability test to compare the
three dimensional representation and Revision Tree will be conducted.

There are other challenges also related with this problem; the representation of the
collaboration between programmers and all the items stored in the repository of SCM
tools.

14 Roberto Therón et al.

6 References

1. Estublier, J. Software Configuration Management: A Roadmap. ACM Press. (2000).
2. Berlack, H., Updike-Rumley, M. IEEE standard for software configuration Manager plans. (1990).
3. Theron R. Hierarchical-temporal Data Visualization using a Tree-ring Metaphor Lecture Notes in

Computer Science. Smart Graphics, vol. 4073, Springer-Verlag, Germany (2006) 70-81. 	

4. Mackinlay, J. D., Robertson, G. G., and Card, S. K. The perspective wall: detail and context smoothly

integrated. In CHI ’91: Proceedings of the SIGCHI conference on Human factors in computing
systems, (1991). 173–176.

5. Leung, Y. and Apperlley, M. A review and taxonomy of distortion-oriented presentation techniques.
ACM Transactions on Computer-Human Interaction, Volume 1, Number 2 (1994) pages 126 – 160.

6. Spence, R. Information Visualization. ACM Press (2000).
7. Card, S. K., Mackinlay, J., and Shneiderman, B. Readings in Information Visualization: Using Vision

to Think. Morgan Kaufman (1999).
8. Storey, M. D., Cubranic, D., German, D. M.. On the use of visualization to support awareness of

human activities in software development: a survey and a framework. Proceedings of the 2005 ACM
symposium on Software visualization 2005, St. Louis, Missouri May 14-15, 2005 193 – 202.

9. D. Gracanin, K. Matkovic, and M. Eltoweissy, “Software visualization,” Innovations in Systems and
Software Engineering: A NASA Journal, vol. 1 (2005) 221-230.

10. Xie, X., Poshyvanyk, D., and Marcus, A. (2006). Visualization of cvs repository information. In
WCRE ’06: Proceedings of the 13th Working Conference on Reverse Engineering (WCRE 2006),
pages 231–242, Washington, DC, USA. IEEE Computer Society.

11. Eick, S. G., Graves, T. L., Karr, A. F., Mockus, A., and Schuster, P. Visualizing software changes.
IEEE Trans. Softw. Eng., (2002) 28(4):396–412.

12. Voinea, L. and Telea, A. (2006). An open framework for cvs repository querying, analysis and
visualization. In MSR ’06: Proceedings of the 2006 international workshop on Mining software
repositories, pages 33–39, New York, NY, USA. ACM Press.

13. Voinea, L. and Telea, A. (2006). Mining software repositories with cvsgrab. In MSR ’06: Proceedings
of the 2006 international workshop on Mining software repositories, pages 167–168, New York, NY,
USA. ACM Press.

14. Voinea, L. and Telea, A. (2006b). Multiscale and multivariate visualizations of software evolution. In
SOFTVIS 2006. Association for Computing Machinery Inc.

15. Gall, H., Jazayeri, M., and Riva, C. (1999). Visualizing software release histories: The use of color
and third dimension. In ICSM ’99: Proceedings of the IEEE International Conference on Software
Maintenance, page 99, Washington, DC, USA. IEEE Computer Society.	

16. Morris, S.A., Yen, G., Wu, Z., Asnake, B.: Time line visualization of research fronts. Journal of the
American Society for Information Science and Technology 54 (2003) 413–422.

17. Card, S., Suh, B., Pendleton, B., Heer, J., Bodnar. J. TimeTree: Exploring Time Changing
Hierarchies. IEEE Symposium on Visual Analytics Science and Technology (2006).

18. Kumar, G., Garland, M. Visual Exploration of Complex Time-Varying Graphs. IEEE Transactions on
Visualization and Computer Graphics, Vol. 12, Num. 5 (2006)

19. Lanza, M. The evolution matrix: recovering software evolution using software visualization
techniques. IWPSE '01: Proceedings of the 4th International Workshop on Principles of Software
Evolution. (2001). 37—42. New York, NY, USA. ACM Press. ISBN 1-58113-508-4.

20. Koike, H. The role of another spatial dimension in software visualization. ACM Trans. on
Information Systems. 11(3):266-286. (1993).

21. Koike, H., Chu, H.-C. VRCS: Integrating version control and module management using
interactive 3d graphics. In VL ’97: Proceedings of the 1997 IEEE Symposium on Visual
Languages (VL ’97) Washington, DC, USA. IEEE Computer Society. (1997).

22. Rao, R. and Card, S. K. (1994). The table lens: merging graphical and symbolic representations
interactive focus + context visualization for tabular information. In CHI ’94: Proceedings of SIGCHI
conference on Human factors in computing systems, pages 318–322, New York, NY, USA. ACM
Press.

23. Ware, C. (2001) Designing with a 2 1/2D Attitude. Information Design Journal 10(3) 255-262.

