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Abstract. In many modern working environments interruptions are
commonplace as users must temporarily suspend a task to complete
an unexpected intervening activity. As users are faced with more and
more sources of information competing for their attention, it is becom-
ing increasingly important to understand how interruptions affect their
abilities to complete tasks. This paper introduces a new perspective for
research in this field by employing analytical, model-based techniques
that are informed by well-established cognitive theories and empirical
data available in the literature. We propose stochastic modelling and
model checking to predict measures of the disruptive effects of interrup-
tions to two well-known interaction techniques: Drag ’n Drop and Speak
’n Drop. The approach also provides a way to compare the resilience of
different interaction techniques to the presence of external interruptions
that users need to handle. The obtained results are in a form that allows
validation with results obtained by empirical studies involving real users.

1 Introduction

In many modern working environments interruptions are commonplace as users
must temporarily suspend a task to complete an unexpected intervening activ-
ity. Interruptions are unpredictable and quite often cannot be disregarded by
users in working environments. Web page pop-ups, phone calls, emails, instant
messaging and social events can also be disruptive when people need to concen-
trate on certain tasks. One of the interesting aspects of interruptions, according
to O’Connaill and Frohlich [17], is that they reveal that the timespace of any
individual is not owned and controlled in the same way as their workspace, but
can collide and merge with that of another individual unexpectedly.

Research has shown that different types of interruptions can affect their
disruptiveness. Quite often, interruptions are associated with negative effects:
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resuming a task after an interruption is difficult and may take a long time, in-
terrupted tasks are perceived as harder than uninterrupted ones, interruptions
cause more cognitive workload and they are quite often annoying and frustrating
because they disrupt people from completing their work.

Interruptions can also lead to incidents due to human error. According to
Trafton & Monk [22], pilots experiencing interruptions during preflight check-
lists have been blamed for multiple aviation crashes. In addition, recent studies
have shown that interruptions may be an important factor in driving, emer-
gency room care and nursing errors. Indeed, frequent interruptions can reduce
user performance. However, not all interruptions have negative impact: aware-
ness systems such as alarms and alert systems effectively shift our attention to
matters that need immediate care and, at least for simple tasks, interruptions
may actually increase performance.

As users are faced with more and more sources of information competing for
their attention at any time, it is becoming increasingly important to understand
how interruptions affect one’s abilities to complete tasks [5]. Interruptions raise
questions of non-exclusive practical and theoretical significance including: How
many interruptions occur at work? How is performance affected by various in-
terruption characteristics, like complexity, duration, timing and frequency? How
many interruptions are disregarded rather than handled? Who benefits from the
ensuing interactions? How disruptive are interruptions to prior tasks? What can
be done to mitigate negative disruptive effects? Most current research tackles
these questions by conducting empirical studies with users, either on controlled
conditions (i.e. usability labs) or on working environments (e.g. ethnographical
studies). This paper introduces a new perspective for the research in this field
by employing stochastic model-based techniques during early phases (i.e. speci-
fication phases) of the development process of interactive systems to investigate
potential disruptive effects of interruptions on user performance and the re-
silience of interaction techniques to such interruptions, i.e. the ability to sustain
the impact of interruptions and recover and resume its operations [11].

Outline of the paper. We start by a review of the literature on interruptions
in Sect. 2 followed by a description of our proposed methodology in Sect. 3.
In Sect. 4 we briefly recall the cognitive theory ICS that we use to motivate
the models of the user aspects of the interaction techniques presented in Sect. 5.
The stochastic model addressing the multi-modal Speak ’n Drop interaction tech-
nique is presented in Sect. 6. In Sect. 7 the results of the performance analysis of
the models are presented and their differences in resilience to external interrupts
are discussed for different assumptions on the average number of interrupts that
occur. Finally, in Sect. 8 we conclude the paper with some considerations on
current work and a discussion of future research on this topic.

2 Task Interruptions

Interruptions occur when a person is working on a primary task (usually long-
lasting) and an alert for a secondary task occurs [22]. Sources of alerts could
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be either internal (i.e. user thoughts) or external (e.g. a person coming into the
room to ask the person a question, a fire alarm, instant messaging). An important
aspect of alerts is that they create an interruption lag as the user has to turn her
attention to the interruption. The person then starts the secondary task. After
completing it, the person must resume the primary task. During the resumption
lag, the person must figure out what she was doing during the primary task
and what to do next. Finally, the person resumes the primary task. From this
task analysis and real-world examples, it is clear that different aspects of the
cognitive system are relevant to the study of interruptions and resumptions.

Since the seminal work of Zeigarnik [24], who was the first to publish the
relations between interruption and selective memory, researchers have not ceased
to document other effects of interruption in human behaviour.

There have been several attempts to formalise cognitive models describing
the impact of interruptions in human behaviour. Only a few, however, address
formal description techniques to describe the occurrence of interruptions in sys-
tem specifications [12]. In fact, there seems to be a gap in the literature con-
cerning predictive methods to system specifications towards hazardous effects of
interruptions. A main problem is to identify suitable notation to formalise inter-
ruptions occurring in interactive systems. The unpredictability of interruptions
would favour the use of declarative models to describe what should be accom-
plished by the user system (whatever happens) rather than describing the steps
required (i.e. control flow) to accomplish it [21]. Nevertheless, there are situa-
tions where the interruption of an actual task should be considered part of the
user goals, e.g. to cancel document printing. Indeed, task models like CTT [20]
explicitly provide the operator suspend/resume to allow explicit modelling be-
tween tasks. Similarly, West and Nagy [23] have added theoretical structures
to the notation GOMS to overcome its limitations for analysing interruptions
when task switching is common. Jambon [12] has analysed the idiosyncrasies of
relationships between tasks (e.g. parallelism and sequence) to derive a formal
model (using automata) describing the semantics of interruptions in notations
like MAD, UAN and Petri nets. However, none of these works has yet evolved to
a systematic analysis approach to deal with interruptions during task execution.

3 Methodology

The methodology we propose and experiment in this paper exceeds the specific
case of interruptions and can be used whenever it is necessary to make design
decisions concerned with usability issues. For this purpose we address syndetic
modelling [6], relevant human factor studies and formal specification with par-
ticular emphasis on stochastic techniques [4]. Syndetic modelling is a conceptual
breakthrough in interactive system and man-machine interface design. It pro-
vides design and formal specification and verification techniques that take into
account both human’s capabilities and limitations together with robustness of in-
teractive systems, thus enabling the study of the joint man-machine behaviour.
Such joint models allow for the investigation of properties expressing require-
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ments or expectations and provide insight in the extent to which an interactive
system meets such requirements and constraints. The point of departure from
known design methods is the requirement that the system should be usable. This
is not just a mechanical property of the system, but a statement that implicitly
or explicitly must embody some claim or understanding about human capabili-
ties and limitations. In other words, in addition to being a (formally) provable
consequence of the specification, the property must also be psychologically valid.

With a syndetic approach, capabilities of and constraints on user behaviour
are expressed explicitly by representing a cognitive model (or an approximation)
as a formal theory, which can then be integrated or combined with the model
of system behaviour. In this way, the user model is explicit and it contains the
theoretical basis for the claims based on it; the model is as correct as the theory
it encapsulates. However, properties can be expressed and verified only at the
level of abstraction at which available models describe cognitive behaviour. If
this is not the case, we need to refine aspects of user behaviour in the model
by addressing human factors and usability studies. Given a set of statistical
characteristics of both system and user performance derived from literature and
available empirical data, we can use stochastic modelling techniques to under-
stand the character of the interaction between user and system. We can see the
resulting specification as a means to make explicit the assumptions about the
capabilities of both user and system, and to explore the behaviour of the com-
bination of system and user based on these assumptions. In this way, answers
to design questions can be both easier to relate to empirical performance data
from human factors and usability studies, and the analysis results can be more
meaningful for interpretation by human factors experts. Moreover, much modern
and emerging user interface technology is stochastic in nature, which provides
additional motivation to apply stochastic techniques to model interaction.

Our methodology uses a range of theories and techniques, from cognition
to formal languages, to model interaction. For the purpose of the current work
we make use of the following theories and techniques and, consequently, apply
them: ICS theory [2]; studies on pointing gestures [14, 8]; the PEPA process
algebra [10]; the stochastic model checker PRISM [13]. We use these to develop
a case study for comparing two interaction techniques to remove objects from a
display in the presence of interrupts.

4 Interacting Cognitive Subsystems

Interacting Cognitive Subsystems (ICS) [2] is a comprehensive model of human
information processing that describes cognition in terms of a collection of sub-
systems, each of which process different mental representations. There are three
sensory subsystems (visual, acoustic, body state), four central subsystems com-
posed of two structural subsystems (morphonolexical, object) and two meaning
subsystems (propositional, implicational), and two effectors subsystems (articu-
latory, limb). These representational subsystems are supplemented by peripheral
somatic and visceral response systems (Fig. 1).
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Fig. 1. ICS architecture configured for gestural interaction.

The internal decomposition of all subsystems is identical. Incoming data
streams arrive at an input array, from which they are copied to an image record
representing an unbounded episodic store of all data received by that subsystem.
In parallel with this copy process, each subsystem also contains transformation
processes to convert incoming data to certain other mental codes. This output is
passed through a data network to other subsystems. If the incoming data stream
is incomplete or unstable, a process can augment it by accessing or buffering the
data stream via the image record. However, only one transformation a time can
be buffered in a given processing configuration. Coherent data streams may be
blended at a subsystem’s input array, as a result of which a process can engage
and transform data streams derived from multiple input sources.

Overall behaviour of the cognitive system is constrained by the possible
transformations and by several principles of processing. Visual information for
instance cannot be translated directly into propositional code, but must be pro-
cessed via the object system that addresses spatial structure. Although in prin-
ciple all processes are continuously trying to generate code, only some of the
processes will generate stable output that is relevant to a given task. This col-
lection of processes is called a configuration. The thick lines in Fig. 1 show the
configuration of resources deployed while using a hand-controlled input device
to operate on some object within a visual scene.
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Fig. 2. Example of display.

5 Case Study

We developed a case study in order to highlight the potential of the proposed
methodology. The choice of the case study is motivated by the fact that a number
of real-life applications require operators to remove objects from the current
system presentation, such as, e.g., in multi-modal man-machine interfaces for
space ground segment applications [19].

We assume the presentation to be composed of a set of icons on a display,
the standard device for output communication in man-machine interfaces. It is
well known from psychological theories [9] that design and layout of objects in a
visual scene, as well as other (multi-)media structures, play a fundamental role in
the way people perceive, think and react to sensorial stimuli. However, this level
of detail is beyond the scope of our current work. We assume that the symbolic
configuration or pattern of icons is based on a set of features that directs the
structuring of the visual scene into a group of icons with one distinguished icon
(the trash in our case). The user is asked to remove the icons from the display
(see Fig. 2) using one of the following two interaction techniques.

Drag ’n Drop This well-known technique works as follows: (i) by means of a
mouse device, the user moves the cursor on the display over one of the icons; (ii)
by pressing the appropriate button of the mouse, she selects that icon which gets
highlighted and linked to the cursor; (iii) while keeping the button pressed, she
moves the mouse dragging the icon over the trash; (iv) she releases the button
causing the system to remove the icon from the display.

Speak ’n Drop This multimodal technique uses a combination of mouse and
voice commands: (i) the user selects one of the icons by positioning the cursor
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over it and by pressing and releasing (click) the appropriate button of the mouse;
(ii) she pronounces the word delete interpreted as a command by the system.
When both the icon selection and the delete command are acquired by the
system, that icon is removed from the display. No constraints are imposed on
the users’ behaviour, i.e. the modalities can be used in any order as well as
concurrently, and the system must be designed to cope with this.

The performance of a user using a particular technique can be characterised
by the number of items she is able to drop during a fixed period of time. We
assume an interrupt to manifest itself as a pop-up window fully covering the
display. The user has to click the mouse button over a push button positioned in
the centre of the window to make it disappear and to resume the previous task.

6 Model Development

To illustrate the methodology, we first describe the general assumptions w.r.t. the
case study, followed by the steps necessary to develop a stochastic model of it.

We include in the model only correct behaviour of both the user and the sys-
tem. We do this deliberately in order to be able to separate two concerns: reduc-
tion of performance due to the occurrence of external interrupts and reduction
of performance due to user and/or system errors. Although the consideration of
the combination of erroneous behaviour and interrupts would be interesting too,
it is useful to be able to study the effects of these two aspects first in separation.
In fact, if both aspects would be included in the model from the beginning it
would be no longer clear to which extent a certain outcome should be attributed
to erroneous behaviour, to the effect of interrupts or to both. In this work we are
mainly interested in the effect of interrupts and a formal model based methodol-
ogy that allows one to compare the resilience to external interrupts of different
interaction techniques.

A further concern is the level of abstraction used for modelling. We choose to
keep the models relatively abstract, modelling observable events, and to refine
the models only after a clear indication that this would lead to significantly
better approximations. Finally, we use exponential distributions to approximate
the average duration of activities. This way we make minimal assumptions on
the exact shape of the distribution of the duration of individual actions.

6.1 User Model

In the first phase of model development, we consider an abstract view of the
flow of information between interaction devices, system and user with the aim of
getting insights in the cognitive resources required to perform the task at hand.

Referring to the ICS theory, features, such as colours and edges, contribute
to form a mental visual representation derived from raw data acquired by the
eyes. The structure of the visual scene in terms of icons is a more abstract object
representation obtained by combining the visual representation with the knowl-
edge and the experience the perceiver has of the world. This knowledge comes
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from a level of abstraction, where objects are named and their properties iden-
tified in terms of a propositional representation. Thus, the current structuring
of the visual scene is used to augment the propositional knowledge about the
objects being sensed. Visual and propositional representations can be combined
to produce a further level, called implicational representation, where the general
meaning of information is stated. Combining implicational and propositional
knowledge, people are able to define goals and to act accordingly. Consequently,
the object representation enriched by propositional data can be transformed into
limb representation controlling physical actions performed, e.g., by hands and
eyes. A continuous source of sensorial information, body state representation, pro-
vides feedback to the co-ordination of the physical actions. In the Drag ’n Drop
case, this is thinking mentally of moving the cursor over one of the icons, push
the mouse button to select it, drag it over the trash and release the button. The
propositional knowledge can be transformed into a morphonolexical representa-
tion describing the phrases’ structure. This is transformed into an articulatory
representation controlling the physical production of speech. For Speak ’n Drop,
this involves thinking mentally of moving the cursor over one of the icons on the
display followed by a mouse click, while pronouncing the word delete.

The above reasoning is described by a set of subsystems, where knowledge
is stored as representations, a set of processes transforming the knowledge from
one representation into another, and a set of communication paths carrying the
information from one subsystem to another. The set of transformations in place
at a given moment in time, fully characterises the mental activity and is referred
to as a configuration. The reaction time is the interval from the acquisition of
sensorial data to the production of physical actions. It represents the time the
user needs to put in place the appropriate mental configuration in order to re-
act to sensorial data. From literature on cognitive psychology it is known that
each transformation step in such a configuration takes approximately 40 millisec-
onds on average. Consequently, the time required to deploy the configuration for
graphical interaction in Drag ’n Drop is at least 240 ms. The configurations for
Drag ’n Drop and Speak ’n Drop, resp., are specified by

DnDconfig ⊇
[ 0@ {:vis-implic:, :prop-implic:},

{:obj-prop:, :implic-prop:},
{:vis-obj:, :prop-obj:}, {:obj-lim:, :bs-lim:}

1A and

SnDconfig ⊇
[ 0BB@

{:ac-mpl:, :prop-mpl:}, {:mpl-art:},
{:vis-implic:, :prop-implic:},
{:obj-prop:, :implic-prop:, :mpl-prop:},
{:vis-obj:, :prop-obj:}, {:obj-lim:, :bs-lim:}

1CCA
The ICS theory can be used also to describe which changes in mental config-

urations occur when unexpected events happen during a user’s activity aiming
at satisfying a specific goal. The mechanism put in action is the stopping of the
activity of effector subsystems and the deployment of the following configuration:

RecoveryConfig ⊇
[ „

{:ac-implic:, :bs-implic:, :vis-implic:, :prop-implic:},
{:implic-prop:}

«
The sensorial and propositional information is blended at the implicational

subsystem and fed back into the propositional subsystem. This loop with infor-
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mation mutually exchanged between implicational and propositional subsystems,
enables to get insights on what we know both as facts and feelings and to reason
about the current context in which the unexpected event has occurred.

To get better insight in the user’s performance in pointing movements, we
need to refine the ICS model by addressing human factors and usability studies.
It is well known that the duration of pointing movements is fairly well approx-
imated by Fitts’ law. Fitts’ law based experiments show that the average time
spent to point at an icon on a computer display by operating a mouse is in the
order of 1000 ms [14]. Additionally, more recent findings [8] show that the move-
ment itself can be distinguished into several phases including a planning phase,
where the display is investigated and the propositional goal is formed; a ballis-
tic phase, where the movement is based on low-level hand control (i.e. without
buffering taking place at limb subsystem); an approach phase, performed under
visual control requiring focus of attention (i.e. with buffering taking place at the
limb subsystem [7]); and an adjustment phase to check that the target has been
reached, similarly requiring the focus of attention. With this information, it is
possible to refine the ICS analysis by splitting the pointing movement into two
distinct phases: the first includes the planning phase plus the ballistic movement;
the second consists of visual control. Consequently, the transfer of the buffer may
occur later w.r.t the start of the movement and this will have important effects
in the case of multimodal interaction.

6.2 Stochastic Automata

We move from the semi-formal and qualitative reasoning to a formal and quan-
titative one by specifying the identified user activity as PEPA (Performance
Evaluation Process Algebra) models [10], described via a parallel composition of
stochastic automata.

Configurations are modelled as states of the automata. Configuration changes
usually identified by an observable action, are modelled as pairs (action type,
rate) linking two states. action type denotes the type of the action and rate the
negative exponential distribution of the activity duration; that is the average
period of time during which a particular configuration (state) is in place. A
special case are actions with infinite rates called passive actions as opposed
to active actions. These play a special role in the parallel composition of the
automata in which synchronisation on (action type, rate) pairs can be specified.
The expected duration of a passive action cooperating with an active one is fully
determined by the rate of the active one. The expected duration of a cooperation
of active actions is a function of the expected durations of the corresponding
activities in the components (typically corresponding to the longest one).

Due to lack of space, we only briefly describe one of the stochastic automata
developed for the Speak ’n Drop interaction, shown in Fig. 3 (a); the interested
reader is referred to [3] for details. To illustrate our approach to calculate the

values of the rate parameters, consider transition Usr
(move,im)−→ UsrMve modelling

the initial part of the pointing movement. The value of rate im is composed of
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a planning phase of 240 ms, which is the time to deploy the relevant mental
configuration, and the average time of the ballistic mouse movement, estimated
to be 670 ms on average given the average distance that a user needs to cover
to reach an icon on the screen obtained from empirical data available in the
literature. Rate im then equals 1/(0.240+0.670) = 1.1. Other values are obtained
in similar ways, resulting in ss = 1.6, vc = 3.4 and mc = 8.33 for this case study.

Speak ’n Drop interaction is multimodal in nature, requiring both speech
and gesture. In a real setting , where pointing gestures are performed in the same
visual space where the referred objects exist, it will result in the performance of
deictic references. In our case, the key question is whether users will be able to
deploy the resources of the interface to achieve their tasks by performing a deixis
or by using a sequential construct. Two major facts constrain user performance
of Speak ’n Drop: the performance of the speech recognition system and the
use of the mouse. Realistic speech recognition systems matching an acceptable
performance accuracy operate at a rate in the range of 2/2.5×real time. For the
use of the mouse, it is known [7] that operating any device in a space different
from the visual one, under visual control, requires the transfer of the buffer to the
limb subsystem. Consequently, users will focus on operating the mouse device
and they will be unable to initiate speech. However, they will be able to sustain
previously initiated speech that is not in conflict with resource allocation.

In Fig. 3(a), transition UsrMve
(startSpeak,ss)−→ UsrSpeak1 defines a user that

starts to speak while operating the mouse before entering visual control and that
will achieve both goals in parallel. The alternate UsrMve

(visualCtrl,vc)−→ UsrOp1
refers to the case in which the visual control is entered before speech is started.
Consequently, pointing occurs first and speaking is delayed.

It is interesting to note the duality of the states UsrEndSpeakOp and UsrSel-
Speak . Both identify a condition in which one of the modalities has reached
a stable point, in the sense that the task can be completed re-starting from
that state after an interrupt has occurred. This requires special attention to be
paid to the presentation of the system state in order to help the recovery of
the propositional goal. For example, how do users know whether or not the sys-
tem has already recognised the pronounced words? and by what means can this
knowledge be made persistent over a period of time?

The system component is specified using the same formalism, allowing both
user and system models to be combined to study the resulting conjoint behaviour.
The system is split into two automata, similar in structure, specifying the se-
lection and speaking tasks, as shown in Fig. 3(b–c). Both are always ready to
reply to user’s initiated actions as well as to interrupts. In addition, the SysSpeak
automaton defines the rate at which speech is recognised with variable es = 1.

Interrupt generation rate and interrupts handling is specified by the automa-
ton of Fig. 3(d). We assume that no nested interrupts occur. The Speak ’n Drop
model is the parallel composition of the four automata described above:

Usr��{move,startSpeak,click,endSpeak,drop,interrupt,clickOK}

((SysMouse��{drop,interrupt,clickOK}SysSpeak)��{interrupt,clickOK}Interrupt),
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Fig. 3. Stochastic automata of (a) Usr, (b) SysMouse, (c) SysSpeak and (d) Interrupt,
in which i=interrupt and OK=clickOK.

where the sets of actions identify the synchronisation of automata over the named
actions and �� stands for the PEPA cooperation operator. Actions interrupt and
clickOK, e.g., represent the occurrence of an interrupt and its handling. The
above composition expresses that they may occur only with the participation
(i.e. synchronisation) of all component automata. Action drop instead requires
the participation of all except the Interrupt automaton, as it is not part of its
synchronisation set at the cooperation operator. The resulting PEPA specifica-
tion can be analysed with the stochastic model checker PRISM [13], a prototype
tool that supports, e.g., the automatic verification of temporal logic properties
and reward properties. One kind of reward property is particularly useful for the
analysis of the effects of interrupts and will be explained in the next section.
Reward formulae implicitly use reward structures that must be included in the
specification to define those transitions that generate a certain amount of reward
when executed. In our case, e.g., we have assigned a reward of 1 to each drop
action to analyse the total number of such actions over a certain period of time.
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7 Analysis Results

As an indicator of the resilience of an interaction technique to external interrupts
we study the number of effective drops a user manages to perform during a fixed
period of time under a varying number of interrupts occurring randomly during
that period. The expected number of drops and interrupts occurring during an
interval of 5 minutes (i.e. 300 s) are cumulative reward measures that can be
formalised in reward stochastic temporal logic supported by the PRISM model
checker as:

R{"drops" }=? [C ≤ 300] and R{"interrupts" }=? [C ≤ 300].

The notation R{}=? means that instead of comparing the results with a
specific bound, the effective number of drops and interrupts is calculated.

Fig. 4(f) shows the expected number of drops a user manages to perform in
the presence of a number of interrupts over the time span, for the Drag ’n Drop
and Speak ’n Drop interaction techniques. The effective number of interrupts at
rate 1 in Fig. 4(f) is 130 and not 300 because the user needs time to handle an
interrupt (i.e. moving the cursor to a button and click on it). Recall that our
model assumes no new interrupts arrive while a user is still handling a previous
interrupt. With an interrupt rate close to 0, the user performs on average (given
the values chosen for the model’s parameters) 134 drops when using Drag ’n
Drop and only 109 when using Speak ’n Drop. As expected, the user’s perfor-
mance decreases when the interrupt rate increases. In the presence of about 130
interrupts in 300 s, the user manages to perform only 27 and 33 drops.

Although the differences are relatively small, we can nevertheless make some
observations. First of all, in the absence of interrupts Drag ’n Drop leads to
a higher average number of drops. This is explained by the fact that we have
assumed a time of recognition of spoken words equal to 2.5 × real time for
the Speak ’n Drop model; this is a realistic assumption, but it limits the speed
of interaction a user can reach. Furthermore, when the number of interrupts
increases, Speak ’n Drop leads to better performance than Drag ’n Drop. The
latter is more sensitive to interrupts because the total time involved in dragging
is relatively long and when an interrupt occurs the user needs to start all over.

Apart from a basic comparison of the performance of the two techniques, we
also investigated their sensitivity to the variation of the various action rates. In
Fig. 4(a), the performance of Drag ’n Drop is shown for different user behaviour
concerning the distribution of time between the various phases of a movement.
As expected, when the percentage of time spent on the ballistic phase increases
w.r.t. that spent on the visually-controlled phase, the performance improves
slightly. However, a variation of 12% of splitting between the two phases accounts
for only a 4% difference in the number of drops, showing that the model is not
very sensitive to how the movement is partitioned over time in the two phases.
Regarding Speak ’n Drop, the same analysis shows a negligible difference of
performance: a variation of 12% in the distribution of the time accounts for only a
1% difference in the number of drops. Likewise, in Fig. 4(b) the line labelled drops
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(a) Drag ’n Drop for varying behaviour.

0 0.2 0.4 0.6 0.8
0

50

100

150

Ex
pe

ct
ed

 re
w

ar
d

interrupts
drops (vc2=290)
drops (vc2=120)

(b) Effect of learning in Drag ’n Drop.
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(c) Intermediate actions in Drag ’n Drop.
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(d) Intermediate actions in Speak ’n Drop.
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(e) Intermediate actions in Speak ’n Drop
(with real-time speech recognition).
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(f) Drag ’n Drop vs. Speak ’n Drop (with
and without real-time speech recognition).

Fig. 4. (a) Case study; (b)–(h) Results performance analyses performed for this paper
(on the x-axes the values of the rate of interrupts used, ranging from 0 to 1 per second).

(vc2=1/0.120) shows the effect on performance of a user skilled in sustaining
the overall propositional goal, while that labelled drops (vc2=1/0.290) shows the
performance of a less skilled user. Clearly, in the former case the performance is
uniformly better than in the latter; this describes the effect of learning due to
frequent recurrence of the operation. According to the modelling experiments,
an already skilled user can increase her performance by 8% with such a learning
effect. This learning effect does not apply to Speak ’n Drop: there is no significant
variation in performance when the user is behaving procedurally or not.

Fig. 4(c) relates the performance of various actions to the overall perfor-
mance, i.e. it shows the total number of move, push and drag actions needed
to obtain the corresponding number of drops for the given number of interrupts
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occurring in 300 s. About 50% of moves, 35% of pushes and 10% of drags are
interrupted not leading to a successful drop. In fact, since the Drag ’n Drop
technique is sequential, clearly actions that occur towards the beginning of the
sequence fail more often than those close to the end. For Speak ’n Drop, it is
particularly interesting to relate the intermediate actions to the number of drops.
In Fig. 4(d) two facts show up clearly. First, the number of interrupted start-
Speak actions keeps decreasing after the other actions have reached a more or
less stable number. This is explained by the relatively slow speech recognition,
which forces users to adapt themselves to the performance of the system. Second,
the number of failures of the click and endSpeak actions is substantially equal
to the number of drops for any number of interrupts considered. In fact, given
the scale of Fig. 4(c), those actions collapse in the bottom curve and are not
distinguishable. This is explained by the parallel execution of the subtasks and
the very short time that passes between their respective completion, making the
occurrence of an interrupt unlikely.

From these results, one might conclude that Drag ’n Drop is better suited
for low interrupt rates while Speak ’n Drop takes the lead as the number of
interrupts increases. On the other hand, the Speak ’n Drop proves to be more
resilient, both to the number of interrupts and to the varying performance of
users. Also, taking into account the percentage of failures of intermediate actions
caused by interrupts, it can be expected that Speak ’n Drop might be more
appreciated by users because they experience less frustration than with Drag ’n
Drop, where for many interrupts they continuously need to restart their activity.

After these observations, we repeated the analysis specifying a real-time
speech recogniser as shown in Fig. 4(e). In this case we observe that the number
of startSpeak actions decreases in a similar way as for the other actions, the
percentage of failing clicks and endSpeaks is very low, the increase of failing
actions is moderate, and speech fails less often than selection. As before, the
click , endSpeak and drop actions cannot be distinguished in Fig. 4(e) since they
collapse in the bottom curve due to the scaling factor.

Finally, under the objective assumption that simple command languages can
be recognised in real time by a speech recogniser, Fig. 4(f) shows the overall
performance of the interaction techniques (i.e. number of drops) comparing Drag
’n Drop and Speak ’n Drop, both without and with real-time speech recognition.
Real-time multimodal interaction clearly gives the best results for any number
of interrupts.

8 Conclusions and Future Work

In this paper we have developed syndetic stochastic models of the Drag ’n Drop
and Speak ’n Drop interaction techniques and analysed their resilience to the
presence of external interrupts. We have modelled the human behaviour based
on the well-established cognitive theory ICS and used literature on Fitts’ law
to obtain timing information on task execution. The models have been specified
in the process algebra PEPA and analysed with the stochastic model checker
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PRISM. The models produce surprisingly plausible results given their level of
abstraction and the fact that the parameter values come from published ex-
periments each referring to different concerns of the overall user behaviour. To
exactly what extent our models may serve to predict performance of human in-
teraction in the presence of external interrupts requires further validation and
is a topic for future research. This brings us to another issue: in reality human
errors cannot be excluded and may clearly influence overall performance. Ex-
tending the models to cover erroneous behaviour is another interesting topic for
future research. A particular challenge is to take into account the effects of cog-
nitive load. A high cognitive load may result in more errors, but perhaps also
in a slower capability of resuming the original task after an interrupt. A further
topic for future research is the adaptation of the proposed methodology to the
formalisms more commonly used in the HCI community, like ICO [18].
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