

A Dynamic Environment for Video Surveillance

Paolo Bottoni1, Maria De Marsico1, Stefano Levialdi1,2, Giovanni Ottieri1,
Mario Pierro1, and Daniela Quaresima1

1 Department of Computer Science "Sapienza" University of Rome, Via Salaria. 113,
00198 Roma, Italy, 2 DEI, Carlos III University, Madrid

{bottoni, demarsico, levialdi}@di.uniroma1.it, mat101@gmail.com,
{jowans,daniela.quaresima}@libero.it

Abstract Video surveillance systems must support multiple streaming and
prompt alert notification. We propose a two-tiered environment: a supervisor
defines presentation layouts and model interface reactions to alerts; a surveillant
watches synchronized videos, adapts layouts, and is notified with alerts.

Keywords: Video surveillance, Interface reconfiguration, Synchronization.

1 Introduction

Video surveillance is evolving from analog to digital, decoupling video sources from
presentation devices and enabling random access to scenes, automatic processing of
anomalies and advanced interfaces [1]. However, surveillants, still have to react to
alerts and automatic recognition of individuals or suspect behaviours is complex
[2,3]: small variations in algorithms parameters cause false negatives / positives,
wasting attention resources or diminishing users' trust in the system. An effective
interface should support event interpretation via multiple cameras, and ensure proper
information on alerts for timely redirection of attention. Hence, we organize subsets
of videos into views, with suitable stream layouts, typically related to camera
arrangement. The interface always presents the whole stream set at reduced
resolution; and a scheduler ensures adaptable frame rates for video refresh. Flow
synchronization provides optimal resource usage and presentations suited to the task.
Stream rearrangement and resynchronization may comply with surveillants' dynamic
needs or with supervisor's policies – e.g. to present streams from an alert area. The
overall interface structure is kept constant, while content is dynamically adapted
adapted to ensure full control whilst reducing attention stress.

2 Related work and requirement analysis

Research on usability of interactive digital surveillance systems is recent. Research
prototypes often assume well-controlled and synchronized settings and exclude
humans from the processing loop. However, [4] advocates user involvement through

usable interfaces. Focusing on interaction, we consider the impact of usability flaws
encountered by surveillants [5], especially related to performance degradation over
time and divided attention among cameras. Commercial systems map camera banks
onto window banks (views): a surveillant selects cameras to trace activities through
views. With many cameras, small images make this difficult; moreover, it is hard to
anticipate where a traced subject will reappear. Help comes from camera maps, and
from experimental layout algorithms arranging peripheral streams according to their
relative positions: a “geographic” context helps tracing a subject [6]. Our scheduling
derives from Ptolemy’s HDF [7]. Each iteration is a state in which flows stay constant
and the number of required activation cycles is determined. After each iteration,
admissible modifications can result in revision of the scheduling.

Literature and interviews with surveillants provided the main requirements:
continuous area overview and rapid focus switch on relevant information in case of
alarms. Users also need to modify stream arrangements and frame rates and to relate
each stream with the different views. To this aim, our system provides a map and uses
identifiers and color codes to indicate camera positions in a window grid in which
streams are played. Continuous information is kept for auditing: by logging all
modifications of the interface organization, either due to user interaction or to
generated alerts, and keeping track of users’ accesses. Interviews with experts also
highlighted the need for two classes of users, supervisors and surveillants.

3 System Use and Architecture

A network of services constitutes the server side. One service feeds the interface and
the streams, the others perform recognition activities. Fat clients allow access as
Supervisor or Surveillant. Supervisors manage stream identity and layout in a view,
and define a set of predefined views to address frequent or critical needs. They also
define or add servers for automatic alert triggering, and include or exclude cameras
from views, marking them on the map. Supervisors can select sources of different
types (files, web-accessible or closed-circuit cameras) and specify their paths and
access rights. Both supervisors and surveillants can further define parameters, e.g.
source frame rate, position and size. Modifications of frame rates or of the
composition of the active view require rescheduling. The surveillant environment
implements the overview + detail paradigm [8]. A panel constantly provides the
whole streaming set in a reduced size and a map of the cameras with positions and
observation cones. Such elements are kept constant as top (Stream) and bottom-right
panels (Map). The bottom-left panel (Focus) presents the currently selected view:
windows presenting streams at the chosen occupy grid cells to allow a closer
inspection of specific sources. Fig. 1 shows an interface screen with a chosen view. A
surveillant can adapt a presentation by adding or removing streams to and from the
Focus. Modifications cannot be made permanent, except for the dedicated surveillant
view. Alerts can activate a predefined view, or push specific information in the
normally empty alert cell. Fig. 1 shows how subject recognition from a database of
suspects triggers the visualization of the source stream in the alert cell, while the
database record is presented in the Information Panel (above the Map Panel).

Fig. 1. In an alert situation the Information panel presents info on the recognized person, while
the live stream in which the person was recognized is shown in a cell of the Focus panel.

An alert can cause replication of a stream on several windows: potentially
dangerous situations are rapidly assessed, by attracting attention through interface
changes, possibly complemented by sound signals. Frame rates of streams can be
singly adapted, e.g. streams from less visited zones may be kept at a low frame rate,
automatically increased if something occurs there. Typically, frame rates in the
Stream panel are slower than in the Focus one. A Scheduler manages the single
rates. Events are classified according to possible impact on the video presentation
rate, and identified by interpreting stimuli from the user or from servers. Each
interpretation defines a request, associated with a command sequence, possibly
leading to rescheduling and to redefining the Focus panel. Each modification request
is routed to a specific Command Manager for each panel.

4 System usability

The usability analysis was introduced in the development process through a cognitive
walkthrough, and an analysis based on Nielsen’s heuristics. We then classified the
identified design flaws according to Cognitive Dimensions [9], only considering those
relevant to the designed tasks. We especially analyzed view adaptation in the
supervisor and surveillant interfaces. As for the notions of notation, environment and
media upon which the analysis is based, we respectively identified: a) the collection
of windows within the Focus panel; b) the user commands to add, remove, or change
visualization parameters of selected videos; and c) the Focus panel, where the user
can manipulate symbols. Due to lack of space we only highlight some examples of
the evaluation and redesign process. For Abstraction: types and availability of
abstraction mechanisms, we observed that abstraction creation and management are
straightforward. However, it was difficult to understand at first sight that the view can

contain any view from a menu. A simple workaround was to expand the label of the
view panel. A problem with Premature commitment: constraints on the order of doing
things was related to the expected position of a newly added element. We decided to
use a fixed grid for positions.

5 Conclusions

We supports surveillants in rapidly focusing attention on relevant sources, while
maintaining an area overview. A first tier defines a supervisor environment, while in a
second, the surveillant can change predefined settings according to current needs. The
system can present relevant streams when predefined events occur. This avoids
missing relevant events due to difficult orientation within a stream bank, and
reference to physical locations. Users can personalize frame rates.

Acknowledgments. Partially supported by MIUR – PRIN 2006.

References

1. Valera, M., Valestin, S.A.: Intelligent distributed surveillance system: a review.
IEEE Proceedings of Image Signal Process 152, pp. 192–204, 2005

2. Micheloni, C., Snidaro, L., Piciarelli, C., Foresti, G.L.: Exploiting Temporal
Statistics for Events Analysis and Understanding. Proc. ICIAP 2007, pp. 530-
535, IEEE CS (2007).

3. Bremond, F., Thonnat, M.: Issues of Representing Context Illustrated by Video-
Surveillance Applications. Int. J. of Hum.-Comp. St., 48, 375-391 (1998)

4. Yamasaki, T., Nishioka, Y., Aizawa, K.: Interactive Retrieval for Multi-Camera
Surveillance Systems Featuring Spatio-Temporal Summarization. MM’08, pp.
797-800 (2008)

5. Keval, H.U., Sasse, M.A.: Man or a Gorilla? Performance Issues with CCTV
Technology in Security Control Rooms. 16th World Congress on Ergonomics
Conference. http://hornbeam.cs.ucl.ac.uk/hcs/publications/IEA2006_Keval.pdf

6. Girgensohn A., Shipman F., Turner T., Wilcox L.: Effects of Presenting
Geographic Context on Tracking Activity between Cameras .Proc. CHI 2007, pp.
1167-1176, ACM Press, (2007)

7. C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, H. Zheng,
“Heterogeneous Concurrent Model and Design in Java (Volume 3: Ptolemy II
Domains)” , UCB/EECS-2008-37, (2008)

8. Cockburn, A., Karlson, A., Bederson, B.B.. A review of overview+detail,
zooming, and focus+context interfaces. ACM Comp. Surv. 41, 1, 1-31 (2008)

9. Green, T.R.G., Petre, M.: Usability Analysis of Visual Programming
Environments: A ‘Cognitive Dimensions’ Framework. Journal of Visual
Languages and Computing, 7, 131 – 174, (1996)

